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Abstract

In this paper, we use the framework of

neural machine translation to learn joint

sentence representations across six very

different languages. Our aim is that a rep-

resentation which is independent of the

language, is likely to capture the under-

lying semantics. We define a new cross-

lingual similarity measure, compare up to

1.4M sentence representations and study

the characteristics of close sentences. We

provide experimental evidence that sen-

tences that are close in embedding space

are indeed semantically highly related,

but often have quite different structure

and syntax. These relations also hold

when comparing sentences in different

languages.

1 Introduction

It is today common practice to use distributed

representations of words, often called word em-

beddings, in almost all NLP applications. It

has been shown that syntactic and semantic re-

lations can be captured in this embedding space,

see for instance (Mikolov et al., 2013). To pro-

cess sequences of words, ie. sentences or small

paragraphs, these word embeddings need to be

“combined” into a representation of the whole

sequence. Common approaches include: sim-

ple techniques like bag-of-words or some type of

pooling, eg. (Arora et al., 2017), recursive neural

networks, eg. (Socher et al., 2011), recurrent neu-

ral networks, in particular LSTMs, eg. (Cho et al.,

2014), convolutional neural networks, eg. (Col-

lobert and Weston, 2008; Zhang et al., 2015) or

hierarchical approaches, eg. (Zhao et al., 2015).

In some NLP applications, both the input and

output are sentences. A very popular approach

to handle such tasks is the so-called “encoder-

decoder approach”, also named “sequence-to-

sequence learning (seq2seq)”. The main idea is

to first encode the input sentence into an inter-

nal representation, and then to generate the output

sentence from this representation. A very success-

ful application of this paradigm is neural machine

translation (NMT), see for instance (Kalchbrenner

and Blunsom, 2013; Cho et al., 2014; Sutskever

et al., 2014). Current best practice is to use recur-

rent neural networks for the encoder and decoder,

but alternative architectures like convolutional net-

works have been also explored.

The performance of these vanilla seq2seq mod-

els substantially degrades with the sequence

length since it is difficult to encode long sequences

into a single, fixed-size representation. A plausi-

ble solution is the so-called attention mechanism

(Bahdanau et al., 2015): where the generation of

each target word is conditioned on a weighted sub-

set of source words, instead of the full sentence.

NMT has been also extended to handle several

source and/or target languages at once, with the

goal of achieving better translation quality than

with separately trained NMT systems, in particu-

lar for under resourced languages, see for instance

(Dong et al., 2015; Zoph and Knight, 2016; Luong

et al., 2015a; Firat et al., 2016a).

In this work, we aim at learning multilingual

sentence representations, i.e. which are indepen-

dent of the language. Since we have to compare

these representations among each other, for the

same or between multiple languages, we only con-

sider representations of fixed size.

There are many motivations to learn such a mul-

tilingual sentence representation, in particular:

• it is likely to capture the underlying seman-

tics of the sentence (since the meaning is the

only common characteristic of a sentence for-

mulated in several languages);

• it has the potential to transfer many sentence
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processing applications to other languages

(classification, sentiment analysis, semantic

similarity, etc), without the need for language

specific training data;

• it enables multilingual search;

• such representation could be considered as

sort of a continuous space interlingua.

To train these multilingual sentence embed-

dings we are using the framework of NMT with

multiple encoders and decoders. We first describe

our model in detail, relate it to existing research,

and then present an experimental evaluation.

2 Architecture

We propose to use multiple encoders and de-

coders, one for each source and target language

respectively. The notion of multiple input lan-

guages can be also extended to different modali-

ties, e.g. speech and images. One can also envi-

sion to add classification tasks, in addition to se-

quence generation. Our ultimate goal is to jointly

train this generic architecture on many tasks at

once, to obtain a universal multilingual and -modal

representation (see illustration in Figure 1). To

ease the comparison and search, we are focusing

on representations of fixed-size, independently of

the length of the input (and output) sequence. This

choice has certainly an impact on the performance

for very long sequences, ie. in the order of more

than fifty words, but we argue that such long sen-

tences are probably not very frequent in every day

communication. We would also like to empha-

size that the goal of this work is not to improve

NMT (for multiple languages), but to use the NMT

framework to learn multilingual sentence embed-

dings. Once the system is trained, the decoders
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Figure 1: Generic multilingual and -modal en-

coder/decoder architecture.

are not used any more. This means in particular

that the usual attention mechanism cannot be used

since the attention weights are usually conditioned

on the decoder outputs. A possible solution could

be to condition the attention on the inputs only, for

instance so-called self-attention (Liu et al., 2016)

or inner-attention (Lin et al., 2017).

To fix ideas, let us consider that we have corpora

in L different languages which can be pairwise or

N -way parallel, N ≤ L. This means that our ar-

chitecture is composed of L encoders and L de-

coders respectively. However, this does not mean

that we always provide input to all encoders, or

targets for all decoders, but we change the used

models at each mini-batch. One could for instance

perform one mini-batch with two input languages

and one output language (which requires an 3-way

parallel corpus), and use one (different) input and

output language in the next mini-batch (which re-

quire a bitext). We call this partial training paths.

Note that we can also use monolingual data in this

framework, ie. the input and output language is

identical.

There are many possibilities to define partial

training paths, with 1 < M, N ≤ L.

1:1 translating from one source into one target

language respectively.

M:1 presenting simultaneously several source

languages at the input.

1:N translating from one source language into

multiple target languages.

M:N this is a combination of the preceding two

strategies and the most general approach. Re-

member that not all inputs and outputs need

to be present at each training step.

Our goal is to learn joint sentence representa-

tions, which are as close as possible when sen-

tences are presented in different languages at the

input. If we use 1:1 training, changing the lan-

guage pair at each mini-batch (input and output),

it is quite unlikely that the system would learn a

common joint representation which is independent

of the source language. A variant of 1:1 training is

to always use the same decoder, but many differ-

ent encoders. Since the decoder is shared for all

the input languages, and the capacity of the model

is limited, there’s an incentive for the system to

use the same representations for all the encoders.
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Figure 2: Possible partial training paths when four languages are available (En, Fr, Es and Ru).

From left: 1:1, 2:1 and 3:1 strategy, using En as common target language.

Right: 1:3 strategy, translating from one source to the three other target languages.

This training strategy only requires bitexts with

one common language (usually English). An im-

portant drawback, however, is that we will not ob-

tain an embedding of this common language since

it is never used at the input.1

Using multiple languages at the input at the

same time and combining the corresponding sen-

tence embeddings, ie. the M:1 strategy, has in

principle the potential to learn joint sentence em-

beddings, if an appropriate technique is used to

combine the individual embeddings. The most

straightforward approach is to average the embed-

dings. This was used for instance in (Firat et al.,

2016b) in a multilingual NMT system with atten-

tion. The joint embedding could be also enforced

by some type of regularizer. Again, having one

dedicated output language makes it impossible to

learn a representation for it.

The 1:N strategy is an interesting extension

of 1:1. The idea is translate from one input lan-

guage simultaneously to all L-1 other languages,

excluding the one at the input (ie. no auto-

encoder). The source and the set of target lan-

guages is changed at each mini-batch. By these

means, every input language has at least one tar-

get language in common with all input languages,

and each target language has at least one input lan-

guage in common. On one hand hand, this strategy

makes it possible to learn sentence embeddings for

all languages, but one the other hand, it requires

L-way parallel training data. Although bitexts are

usually used in MT, there are also several corpora

which can be aligned for more than two languages

(eg. Eurpoarl, TED, UN). Finally, the N:M strat-

1One could also use the common output language at the
input. This corresponds to training an auto-encoder which
is easier than a translation model and may have an negative
impact.

egy is the most generic one which combines all

above techniques. These different training strate-

gies are illustrated in Figure 2 for four languages.

2.1 Related work

The use of multiple encoders and decoders was

first studied in the context of neural MT. Dong

et al. (2015) used multiple decoders, i.e. 1:N

training, to achieve improved NMT performance.

Zoph and Knight (2016) and Firat et al. (2016b),

on the other hand, used multiple encoders, i.e.

M:1 training. It’s not surprising that this comple-

mentarity improves MT quality, in comparison to

one input language only. Many different config-

urations were explored by (Luong et al., 2015a)

for seq2seq models. Firat et al. (2016a) were the

first to use multiple encoders and decoders with a

shared attention mechanism. This approach was

further refined to enable zero-resource NMT (Fi-

rat et al., 2016b). Alternatively, it was proposed to

handle multiple source and target languages with

one encoder and decoder only, using a special to-

ken to indicate the target language (Johnson et

al., 2016) to enable zero-shot NMT. To best of

our knowledge, all these works focus on the im-

provement and extensions of seq2seq modeling,

and fixed-sized vector representations have not an-

alyzed in depth in a multilingual context.

Several publications consider joint representa-

tions in a multimodal context, usually text and

images, for instance (Frome et al., 2013; Ngiam

et al., 2011; Nakayama and Nishida, 2016). The

usual approach is to optimize a distance or correla-

tion between the two representations or predictive

auto-encoders (Chandar et al., 2013). The same

approach was applied to transliteration and cap-

tioning (Saha et al., 2016).

There is a large body of research on sentence
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representations. Common approaches include:

simple techniques like bag-of-words or some type

of pooling, eg (Arora et al., 2017), recursive NNs,

eg. (Socher et al., 2011), recurrent NNs, in par-

ticular LSTMs, eg. (Cho et al., 2014), convo-

lutional NNs, eg. (Collobert and Weston, 2008;

Zhang et al., 2015) or hierarchical approaches, eg.

(Zhao et al., 2015). In all these works, the sen-

tence representations are learned for one language

only. It is important to note that our multiple en-

coder/decoder architecture and the different train-

ing paths make no assumption on the type of en-

coder and decoder used. In principle, all these sen-

tence representations methods could be used. This

is left for future research.

There are several works on learning multilin-

gual representations at document level (Hermann

and Blunsom, 2014; Zhou et al., 2016b; Pham

et al., 2015). (Hermann and Blunsom, 2014) pro-

posed a compositional vector model to learn doc-

ument level representations. Their model is based

on bag of words/bi-gram composition. (Pham

et al., 2015) directly learn a vector representa-

tions for sentences in the absence of compositional

property. (Zhou et al., 2016b) learn bilingual

document representation by minimizing Euclidean

distance between document representations and

their translation.

Other multilingual sentence representation

learning techniques include BAE (Chandar et al.,

2013) which trains bilingual autoencoders with

the objective of minimizing reconstruction error

between two languages, and BRAVE (Bilingual

paRAgraph VEctors) (Mogadala and Rettinger,

2016) which learns both bilingual word em-

beddings and sentence embeddings from either

sentence-aligned parallel corpora (BRAVE-S), or

label-aligned non-parallel corpora (BRAVE-D).

Finally, many papers address the problem of

learning bi- or multilingual word representations

which are used to perform cross-lingual document

classification. They are trained either on word

alignments or sentence-aligned parallel corpora,

or both. I-Matrix (Klementiev et al., 2012) uses

word alignments to do multi-task learning, where

each word is a single task and the objective is

to move frequently aligned words closer in the

joint embeddings space. DWA (Distributed Word

Alignment) (Kociský et al., 2014) learns word

alignments and bilingual word embeddings simul-

taneously using translation probability as objec-

tive. Without using word alignments, BilBOWA

(Gouews et al., 2014) optimizes both monolin-

gual and bilingual objectives, uses Skip-gram as

monolingual loss, while formulating the bilin-

gual loss as Euclidean distance between bag-of-

words representations of aligned sentences. Un-

supAlign (Luong et al., 2015b) learns bilingual

word embeddings by extending the monolingual

Skip-gram model with bilingual contexts based on

word alignments within the sentence. TransGram

(Coulmance et al., 2015) is similar to (Pham et al.,

2015) but treats all words in the parallel sentence

as context words, thus eliminating the need for

word alignments.

3 Evaluation protocol

An important question is how to evaluate multilin-

gual joint sentence embeddings. Let us first define

some desired properties of such embeddings:

• multilingual closeness: the representations

of the same sentence for different languages

should be as similar as possible;

• semantic closeness: similar sentences

should be also close in the embeddings

space, ie. sentences conveying the same

meaning, but not necessarily the syntactic

structure and word choice;

• preservation of content: sentence represen-

tations are usually used in the context of a

task, eg. classification, multilingual NMT

or semantic relatedness. This requires that

enough information is preserved in the rep-

resentations to perform the task;

• scalability to many languages: it is desir-

able that the metric can be extended to many

languages without important computational

cost or need for human labeling of data.

Two main approaches have been used in the

literature to evaluate multilingual sentence em-

beddings: 1) cross-lingual document classifica-

tion based on the Reuters corpus, first described

in (Klementiev et al., 2012); and 2) cross-lingual

evaluation of semantic textual similarity (in short

STS). This task was first introduced in the 2016

edition of SemEval (Agirre et al., 2016). Both

tasks focus on the evaluation of joint sentence rep-

resentations of two languages only. In the Reuters

task, a document classifier is trained on English
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sentence representations and then applied to texts

in another language, and in the opposite direc-

tion respectively. STS seeks to measure the de-

gree of semantic equivalence between two sen-

tences (or small paragraphs). Semantic similarity

is expressed by a score between 0 (the two sen-

tences are completely dissimilar) and 5 (the two

sentences are completely equivalent). In 2016, a

cross lingual task was introduced (Es/En) and ex-

tended to two more language pairs in 2017 (Ar/En

and Tr/En).

In this work, we propose an additional evalu-

ation framework for multilingual joint represen-

tations, based on similarity search. Our metric

can be automatically calculated without the need

of new human-labeled data and scaled to many

languages and large corpora. We only need col-

lections of S sentences, and their translations in

L different languages, ie. sp
i , i = 1 . . . S, p =

1 . . . L. Such L-way parallel corpora are freely

available, for instance Europarl2 (20 languages),

the UN corpus, 6 languages (Ziemski et al., 2016),

or TED, 23 languages, (Cettolo et al., 2012).

Algorithm 1 Multilingual similarity search

1: L: number of languages

2: S: number of sentences

3: Epq: error between languages p and q
4: R(sp

i ): embedding of a sentence

5: D(): some distance metric

6: for p = 1 . . . L do

7: for q = 1 . . . L, q 6= p do

8: Epq = 0
9: for i = 1 . . . S do

10: if arg min
j=1...S

D(R(sp
i ), R(sq

j)) 6= i then

11: Epq + +
12: end if

13: end for

14: end for

15: end for

The details of our approach are given in algo-

rithm 1. The basic idea is to search the closest

sentence in all S sentences, and count an error if

it is not the reference translation. This requires

the calculation of S2 distance metrics and makes

only sense when there are no duplicate sentences

in the corpus. With increasing S it may be also

likely that the corpus contains several alternative

valid translations which could be closer than the

2http://www.statmt.org/europarl/

reference one. This is difficult to handle automat-

ically at large scale and counted as error by our

algorithm.

Similarity search mainly evaluates the multilin-

gual closeness property and can be easily scaled

to many languages. We will report results how the

similarity error rate is influenced by the number of

language pairs and the size of the corpus. We have

compared three distance metrics: L2, inner prod-

uct and cosine. In general, cosine performed best.

Note that all metrics are equivalent if the vectors

are normalized.

4 Experimental evaluation

We have performed all our experiments with the

freely available UN corpus. It contains about 12M

sentences in six languages (En, Fr, Es, Ru, Ar and

Zh). We have used the version which is 6-way par-

allel (about 8.3M sentences). This corpus comes

with a predefined Dev and Test set (4000 sentences

each). We lowercase all texts, limit the length of

the training data to 50 words and use byte-pair en-

coding (BPE) with a 20k vocabulary. BPE allows

to limit the size of the decoder output vocabulary,

it has only a small impact on the sentence length

(≈ +20%) and it showed similar or even superior

performance in NMT in comparison to many other

techniques to limit the size of the output vocabu-

lary (Sennrich et al., 2016). We have also found

that BPE is very robust to spelling errors which is

important when handling informal texts.

4.1 Different network architectures

In this work we only consider stacked LSTMs as

encoders and decoders. In the vanilla seq2seq

NMT model, the last state of the LSTM is used

as sentence representation. There is also evidence

that deeper architectures perform better in NMT

than shallow ones, eg. (Zhou et al., 2016a; Wu et

al., 2016). Following this tendency, we performed

the first set of experiments with stacked LSTMs

with three 512-dimensional hidden layers. Deeper

architectures did not improve the performance.

We then switched to using BLSTMs followed

by max-pooling (element-wise over the sequence

length). We are not aware of works which use

max-pooling in an NMT framework. One is in-

deed tempted to assume that max-pooling makes

it more difficult to create a target sentence which

preserves all information from the source sen-

tence. On the other hand, max-pooling is success-
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System
Average Similarity Error

efs efsr efsra efsraz
#pairs: 6 10 15 21

One-to-one systems:

efs-r 1.97% - - -

efs-a 2.09% - - -

efsr-a 1.90% 2.40% - -

efsra-z 1.91% 2.26% 2.51% -

One-to-many systems:

efsraz-all 1.70% 1.97% 2.38% 2.59%

One-to-many systems, nhid=1024:

efsraz-all 1.36% 1.64% 1.89% 1.95%

Three layer LSTM, nhid=512

Sentence representation: last LSTM state

System
Average Similarity Error

efs efsr efsra efsraz
#pairs: 6 10 15 21

One-to-one systems:

efs-r 1.11% - - -

efs-a 1.03% - - -

efsr-a 1.11% 1.31% - -

efsra-z 1.01% 1.19% 1.25% –

One-to-many systems:

efsraz-all 0.92% 1.07% 1.15% 1.20%

One layer BLSTM, nhid=512

Sentence representation: max pooling

Table 1: Error rates of similarity search on the UN Dev corpus. Languages are abbreviated with the

following letters: e=English, f=French, s=Spanish, r=Russian, a=Arabic, z=Chinese.

fully used in various sentence classification tasks,

eg. (Conneau et al., 2017). It should be noted that

the final sentence representation has twice the di-

mension of the BLSTM hidden layer.

The word embeddings are of size 384 for all

models. We use vertical dropout with a value of

0.2 and gradients are clipped at 2. The initial

learning rate is set to 0.01 and decreased each time

performance on the Dev data does not improve.

Performance is measured by perplexity for the de-

coders and similarity error at the embedding layer

for the encoders. It is important to note that the

similarity error rate can be only calculated once

the whole development set is processed. Therefore

it is not used to provide gradients to the encoders.

Training is performed for up to five epochs with

a batch size of 96. For the smallest models, one

iteration through the training data takes about 11h.

Most models converge after two to three epochs.

Table 1 summarizes our results on the UN Dev

corpus for several systems using the one-to-one

and one-to-many partial training paths. We com-

pare training of joint representations for three to

six languages using LSTM or BLSTM encoders.

In each column, we give the average similarity er-

ror over all n(n + 1)/2 language pairs. As an ex-

ample, the system trained with En, Fr, Es and Ru

at the input and Ar at the output (“efsr-a” in the

third line), achieves an average similarity error of

1.90% over 6 language pairs3, column “efs”, and

2.40% over 10 languages pairs4, column “efsr”.

3En-Es, En-Fr, Es-En, Es-Fr, Fr-En and Fr-Es.
4En-Es, En-Fr, En-Ru, Es-En, Es-Fr, Es-Ru, Fr-En, Fr-Es,

We can make the following observations. First,

using an BLSTM with max-pooling (Table 1 right)

performs much better than an LSTM and us-

ing the last hidden state as sentence representa-

tion (Table 1 left). This was also observed for

many monolingual tasks, eg. (Conneau et al.,

2017). This is particularly true when the num-

ber of languages is increased. This performance

gain does not result from the increased dimen-

sion of the sentence representation (2×nhid) since

an 1024-dimensional LSTM only achieves 1.36%

(see last line in Table 1 left). Second, increasing

the number of languages for which we seek a joint

sentence embedding does not seem to make the

task harder: the system trained on all languages

achieves the same results (1.01%) on three lan-

guages than when training only on these languages

(1.03%). Third, the one-to-many training strat-

egy (efsraz-all, 0.92%) performs better than 1:1

(efsra-z, 1.01%). In addition, it allows to obtain a

sentence embedding for all languages, while the

common output language is excluded in the 1:1

strategy.

Finally, we have explored whether deep archi-

tectures are needed when using an BLSTM en-

coder and a max-pooling sentence representation

(see Table 2). We found no experimental evidence

that stacking several BLSTM layers is useful.

4.2 Many-to-one training strategies

In this section, we study two M:1 training strate-

gies, namely 2:1 and 3:1. Since the number of

Fr-Ru, Ru-En, Ru-Es and Ru-Fr.

162



Network
LSTM + last BLSTM + max-pooling

3x512 3x1024 1x256 2x256 3x256 1x512 2x512 3x512

1:1, efsra-z 2.51 – 1.44 1.21 1,65 1.25 1.25 1.53

1:M, efsraz-all 2.38 1.89 1.27 1.30 1.53 1.15 1.17 1.30

Table 2: Error rates of similarity search on the UN Dev corpus for five language pairs (efsra). Compari-

sion of LSTMs and BLSTMs of different size and depth.

combinations quickly increases with the number

of input languages, we limit these experiences to

three input languages (system efs-a). In that case,

we have three 1:1 training paths (En→Ar, Fr→Ar

and Es→Ar), three 2:1 training paths (En+Fr→Ar,

En+Es→Ar and Fr+Es→Ar) and one 3:1 configu-

ration (En+Fr+Es→Ar). This is illustrated in Fig-

ure 2. To obtain efficient training, we use homo-

geneous mini-batches, ie. the number of encoders

and decoders is constant. Examples in a mini-

batch are sampled according to a coefficient. In

order to make a fair comparison, these resampling

coefficient were chosen so that each encoders al-

ways sees the same number of sentences (roughly

8.3M). We refer to the different runs with an ID

(first column in Table 3). As an example, for the

experiment with ID l2a, 90% of the mini-batches

are 1:1 and 5% are 2:1. Note that that the 2:1 sam-

ples have a coefficient of 0.05 since two encoders

are simultaneously used.

The first striking result is that presenting all in-

# input languages Similarity

ID 1 2 3 Error

One M:1 strategy

1 1 – – 1.03%

2 – 0.5 – 1.85%

3 – – 1 67.9%

Combining 1:1 and 2:1 strategies

12a 0.9 0.05 – 1.09%

12b 0.8 0.10 – 1.16%

12c 0.7 0.15 – 1.15%

12d 0.6 0.20 – 1.13%

12e 0.5 0.25 – 1.22%

Combining 1:1 and 3:1 strategies

13 0.5 – 0.5 1.38%

Combining 1:1, 2:1 and 3:1 strategies

123a 0.33 0.16 0.33 1.39%

123b 0.25 0.25 0.25 1.40%

Table 3: Different M:1 strategies for three input

languages (system efs-a). The baseline with the

1:1 strategy is 1.03% (line with ID 1).

put languages at once and averaging the three sen-

tence representations (3:1, ID 3) does not allow to

learn joint representations. We are however able

to learn joint representations with the 2:1 strat-

egy (ID 2), but the performance is worse than the

1:1 baseline (1.85% versus 1.03%). We are also

tried to alternate between 1:1 and 2:1 mini-batches

with increasing resampling coefficients (ID 12a to

12e). The idea is that each encoder learns to pro-

vide a sentence representation when used alone

and when used with another one. However, we ob-

serve that adding 2:1 training paths is not useful:

the similarity error increases. The same observa-

tion holds when adding 3:1 training paths (ID 13

and 123). Overall, we were not able to improve the

baseline of 1.03% similarity error obtained with a

simple 1:1 training strategy. Therefore, we did not

try the even more complex M:N paths. This failure

could be attributed to the fact that we simply av-

erage multiple sentence representations. In future

research, we will investigate other possibilities, eg.

based on correlation like proposed in (Saha et al.,

2016; Chandar et al., 2016).

Detailed similarity search error rates for all six

languages, including Zh, of our best system are

given in Table 4. Overall, the error rates vary only

slightly from the average of 1.2% although the six

languages differ significantly with respect to mor-

phology, inflection, word order, etc. In particular,

Chinese is handled as well as the other languages.

This is in nice contrast to many other NLP appli-

cation, in particular NMT, for which the perfor-

mances on Chinese are significantly below those

of other languages. All error rates are below 1.7%.

4.3 Large scale out-of domain similarity

search

In this section, we evaluate our sentence represen-

tation on out-of domain data. We are not aware

of another huge corpus which is 6-way parallel for

the same languages than the UN corpus. There-

fore, we have selected the Europarl corpus and

limit our study to three common languages (En,
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Target language

Src En Fr Es Ru Ar Zh All

En – 1.10 0.70 1.07 1.05 1.15 1.02

Fr 0.97 – 0.95 1.55 1.65 1.68 1.36

Es 0.68 1.10 – 1.20 1.35 1.27 1.12

Ru 0.78 1.52 1.23 – 1.32 1.32 1.23

Ar 0.78 1.52 1.07 1.48 – 1.23 1.22

Zh 0.97 1.55 1.12 1.35 1.30 – 1.26

All 0.83 1.36 1.02 1.33 1.33 1.33 1.20

Table 4: Pair-wise error rates of similarity search

for 6 languages (UN Dev). Training was per-

formed with a one layer BLSTM with 512 hid-

dens, max-pooling and the “efsraz-all” strategy.

Fr and Es). After excluding duplicates and limit-

ing the sentence length to fifty tokens, we dispose

of almost 1.5 million 3-way parallel sentences.

The two training strategies “efsra-z” and

“efsraz-all” achieve the same similarity error rate

of about 7.7%. We argue that this is an interest-

ing result given the size of the corpus (1.46M sen-

tences) and the fact that it contains several sen-

tences which are very similar (e.g. “The ses-

sion resumes on DATE”). Using the last state of

an LSTM 3x512 achieves an error rate of 12.2%.

Evaluating the similarity error requires the calcu-

lation of 1.46M2 distances for each language pair.

This can be very efficiently performed with the

FAISS open-source toolkit (Johnson et al., 2017)

which offers many options to increase the speed

of nearest neighbor search. Its implementation of

brute-force L2 search was sufficient for our pur-

poses.

4.4 Examples of multilingual search

On the next page, we give several examples of

similarity search. For each example, we give the

query and the five closest sentences. Remember

that we use the cosine distance, i.e. the value of 1.0

is a perfect match and smaller values are worse.

The first example in Table 5 shows two simple

query sentences for which four paraphrases were

found in the Europarl corpus. A more complicated

query sentence is used in the second example (see

Table 6). For such longer sentences, it is unlikely

to find several perfect paraphrases in the indexed

corpus. However, the system was able to retrieve

sentences which share a lot of the meaning of the

query: all cover the topic “punishment of (sexual)

crimes, independently of the country the crime is

committed in”. Finally, examples of cross-lingual

similarity search are given in Tables 7 and 8. In the

first example, all five nearest French and Spanish

sentences have very similar cosine distances, and

all are indeed semantically related. Note that the

closest French sentence is not the reference trans-

lation, but it nevertheless covers well the topic (its

English translation is “I should like to make one

remark, however, in response to some of the opin-

ions you have expressed”).

Table 8 gives an example where not all retrieved

sentences have similar cosine distances. The clos-

est sentence is the correct translation, for French

and for Spanish. Both second closest sentences are

well related to the query and also have a cosine

distance close to the best scoring sentence. The

third and following sentences are less related with

the query, which is clearly reflected in the substan-

tially lower cosine distance. It’s interesting to note

that the three closest sentences are all identical, in-

dependently of the language. This can be seen as

experimental evidence of the quality of the multi-

lingual sentence embeddings.

5 Conclusion

We have shown that the framework of NMT with

multiple encoders/decoders can be used to learn

joint fixed-size sentence representations which ex-

hibit interesting linguistic characteristics. We have

explored several training paradigms which corre-

spond to partial paths in the whole architecture.

We have proposed a new evaluation protocol of

multilingual similarity search which easily scales

to many languages and large corpora. We were

able to obtain an average cross-lingual similar-

ity error rate of 1.2% for all 21 languages pairs

between six languages5 which differ significantly

with respect to morphology, inflection, word or-

der, etc. We have also studied the evolution of the

similarity error rate when scaling up to 1.4 million

sentences, drawn from an out-of-domain corpus.

Acknowledgments

We would like to thank Ke Tran (Informatics Insti-

tute University of Amsterdam, m.k.tran@uva.nl)

and Orhan Firat (Middle East Technical Uni-

versity, orhan.firat@ceng.metu.edu.tr, now at

Google) for their help with implementing some of

the algorithms during their internship at Facebook

AI Research in 2016.

5English, French, Spanish, Russian, Arabic and Chinese.

164



Query: All kinds of obstacles must be eliminated. Query: I did not find out why.

D2=0.970245 All kinds of barriers have to be removed. D2=0.913365 I have no idea why.
D3=0.799097 All these things must be stopped. D3=0.913244 I fail to see the connection.
D4=0.794444 All forms of provocation must be avoided. D4=0.906929 I do not understand why.
D5=0.792740 All forms of violence must be prohibited.

Table 5: Five closest sentences found by monolingual similarity search in English. All are some form of

para-phrasing. The closest sentence (distance=1) is always identical to the query and therefore omitted.

Query All citizens who commit sexual crimes against children must be punished, regardless of whether the
crime is committed within or outside the EU.

D2=0.650070 All kinds of sexual abuse of children are criminal and must be seen as the crimes that they are in all Member
States.

D3=0.580904 The perpetration of violence against women is a criminal act, whether in public or in private.
D4=0.565544 The perpetrators of crimes cannot be allowed to believe that they will enjoy impunity, regardless of where

they may reside, be it in Europe, in Africa or in any other part of the world.
D5=0.560186 The impunity of those who commit terrible crimes against their own citizens and against other people re-

gardless of their citizenship must be ended.

Table 6: A more complicated English sentence and the five closest sentences (excluding itself). All cover

the punishment of (sexual) crimes.

EN59104 Query Allow me, however, to comment on certain issues raised by the honourable Members.

FR390378 D1=0.678347 Je voudrais toutefois apporter un commentaire à quelques-uns de vos avis.
FR59104 D2=0.676565 Permettez-moi toutefois de commenter certaines questions soulevées par les députés.
FR431699 D3=0.665086 Je voudrais toutefois formuler un certain nombre de commentaires concernant les remarques de

M. Watson.
FR651418 D4=0.660149 Je voudrais toutefois faire part de quelques remarques qui cadrent très bien avec ce que vous

avez évoqué.
FR269297 D5=0.647646 Je voudrais toutefois m’attarder sur certaines recommandations concrètes qui sont adressées à

la Commission.

ES59104 D1=0.693376 No obstante, permı́tanme comentar ciertas cuestiones planteadas por sus Señorı́as.
ES390378 D2=0.663397 Sin embargo, quisiera añadir algunas observaciones en relación con algunas de las opiniones

que han manifestado.
ES253861 D3=0.648316 Dicho esto, permı́tanme contestar algunos de los asuntos especı́ficos que ustedes han planteado.
ES133167 D4=0.637314 Permı́tanme, no obstante, señalar algunas consideraciones que acaban de exponerse.
ES652101 D5=0.636661 No obstante, permı́tanme que conteste a algunos comentarios que se han realizado.

Table 7: Cross-lingual similarity search. English query and the five closest French and Spanish sen-

tences. We also provide the index of the sentences (reference=59104). All the cosine distances are close

and the sentences are indeed semantically related.

EN77777 Query And yet the report on the fight against racism does not demonstrate that the necessary
conclusions have been drawn.

FR77777 D=0.766306 Pourtant, le rapport sur la lutte contre le racisme n’indique pas que l’on en ait tiré les conclusions
qui s’imposent.

FR1081193 D=0.719267 Ainsi, le rapport sur la lutte contre le racisme n’indique pas que l’on en a tiré les conclusions
qui s’imposent.

FR282752 D=0.483043 Le rapport sur les femmes et le fondamentalisme n’offre toutefois aucune solution à cette
problématique.

ES77777 D=0.781921 Sin embargo, el informe sobre la lucha contra el racismo no muestra que se hayan extraı́do las
conclusiones necesarias.

ES1081193 D=0.735487 Ası́, el informe sobre la lucha contra el racismo no muestra que se hayan extraı́do las conclu-
siones necesarias.

ES282752 D=0.474343 No obstante, el informe acerca de las mujeres y el fundamentalismo no ofrece ninguna solución
para este problema.

Table 8: Cross-lingual similarity search. English query and the three closest French and Spanish

sentences. In both cases, the correct translation was retrieved. The second closest sentences are also

semantically well related to the query. However, the third (and following sentences) only cover some of

the aspects of the query. This is indeed reflected in the lower similarity score.
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