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Abstract

We describe how a question-answering sys-

tem can learn about its domain from conver-

sational dialogs. Our system learns to relate

concepts in science questions to propositions

in a fact corpus, stores new concepts and re-

lations in a knowledge graph (KG), and uses

the graph to solve questions. We are the first

to acquire knowledge for question-answering

from open, natural language dialogs without a

fixed ontology or domain model that predeter-

mines what users can say. Our relation-based

strategies complete more successful dialogs

than a query expansion baseline, our task-

driven relations are more effective for solving

science questions than relations from general

knowledge sources, and our method is practi-

cal enough to generalize to other domains.

1 Introduction

Our goal is a question-answering (QA) system that

learns about its domain from users in open, nat-

ural language dialogs. Dialog learning interfaces

built on top of existing QA systems can complement

and refine knowledge acquired from other sources.

Even large QA systems such as Watson (Ferrucci

et al., 2010) that utilize heavy domain engineering

could benefit from focused dialogs to dynamically

improve their knowledge.

A successful QA system requires domain knowl-

edge. For example, 4th grade science questions are

difficult since they often exclude knowledge neces-

sary to relate answers to known facts. The question

in Figure 1 asks if an iron nail conducts electricity;

S1: Here’s the question: Which object is the best conductor of

electricity? (A) a wax crayon (B) a plastic spoon (C) a rubber

eraser (D) an iron nail. I’m not sure of the answer. What do

you think the answer is?

U1: iron nail

S2: Why do you think the answer is (D) an iron nail?

U2: electricity goes through metal

S3: I know “metals are shiny and good conductors of electricity

and heat,” does that mean that the answer is (D) an iron nail?

U3: yeah

S4: Okay, great. What’s the relationship between ‘electricity’

and ‘iron’, if any?

U4: iron conducts electricity because its metal

S5: Okay, great, I get it! The answer is (D) an iron nail

Figure 1: Top: A successful real user dialog. Open-

ended prompts (S1&S2) encourage conversational

explanations. Focused prompts (S4) target particular

relations. Bottom: Corresponding knowledge graph

consisting of relations between concepts.

the system only knows that metal conducts electric-

ity, and it needs to learn that iron is a metal in order

to answer the question with the relevant fact.

Our dialog system, KNOWBOT, conducts dialogs

about science questions and learns how concepts

in each question relate to propositions in a corpus

of science facts. KNOWBOT presents its user with

a question (line S1 in Figure 1), prompts them to

choose and explain their answer, and extracts rela-

tions – any semantic relationship between two con-
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cepts, such as metal to iron (line U4 in Figure 1) –

that increase its confidence in the user’s answer.

Relation extraction systems such as NELL (Carl-

son et al., 2010) use ontologies to predetermine valid

relation types and arguments, then scan text to fill

the ontology with facts. Open Information Extrac-

tion (Etzioni et al., 2011) avoids fixed ontologies

with domain-independent linguistic features, distant

supervision, and redundancy, but requires web-scale

text and doesn’t improve with interaction. Like

Open IE, we extract relations without predetermined

types, but are the first to do so from dialog.

KNOWBOT is an open dialog system, which

means a user utterance may progress the dialog task

even if its underlying action is not explicitly rep-

resented in a dialog model. This lets KNOWBOT

quickly bootstrap domain knowledge from users

without significant engineering overhead. Dialog-

driven extraction produces effective relations with-

out annotation, improves after each interaction, ac-

quires relations useful on a particular task, and em-

beds relations in a rich dialog context.

Users successfully correct the system in approxi-

mately 50% of dialogs even without a predetermined

dialog model. A baseline query expansion (Bast et

al., 2007) strategy that bases decisions on the acqui-

sition of new keywords instead of new relations re-

sults in only a 5% success rate. In comparison to

paraphrase relations from general knowledge bases,

relations acquired by our method are more effective

as domain knowledge, demonstrating that we suc-

cessfully learn from real users.

Our contributions include:

1. The first end-to-end system to construct knowl-

edge graphs for question-answering through

conversational dialog.

2. A generalizable method to represent the mean-

ing of user utterances without a dialog model

when task progression can be computed as a

function of extracted relations.

3. A novel data set of real user dialogs in which

users correct a QA system’s answer, together

with knowledge graphs representing the impor-

tant concepts and relations in each question, la-

beled with rich dialog features.

2 Conversational extraction for QA

Our QA task consists of 107 science questions from

the 4th grade New York Regents exam (Clark et al.,

2014).1 Each question has four possible answers.

We convert each of the four question-answer pairs

into a true/false question-answer statement using a

small number of pattern-based transformation rules.

Just as 4th graders read their textbooks for an-

swers, we collect SCITEXT (Clark et al., 2014), a

corpus of unlabeled true-false natural language sen-

tences from science textbooks, study guides, and

Wikipedia Science. Each question-answer statement

is associated with a subset of true/false support sen-

tences from SCITEXT based on positive word over-

lap between the question-answer pair and the sup-

port sentence. The degree to which a SCITEXT sen-

tence supports a question-answer pair is the sen-

tence’s alignment score (section 2.3).

Initially, the alignment score depends on keyword

overlap alone, but SCITEXT needs domain knowl-

edge to answer our questions. For example, the cor-

rect question-answer statement to What form of en-

ergy causes an ice cube to melt? (A) mechanical

(B) magnetic (C) sound (D) heat is Q(D), “Heat is a

form of energy and heat causes an ice cube to melt.”

To better align Q(D) to the SCITEXT sentence “A

snowball melting in your hand is an example of heat

energy,” we need to know that snowballs are made

of ice. Figure 2 illustrates this example.

To construct a knowledge base with which to use

SCITEXT, we extract concepts (section 2.1) from

questions and SCITEXT sentences, then use relations

(section 2.2) between concepts to determine which

question-answer statement Qi is most highly aligned

with a supporting SCITEXT sentence.

2.1 Concepts

A concept keyword in a sentence or user utter-

ance is any non-stopword of at least three char-

acters. Stopwords are domain-independent, low-

information words such as “the.”

A concept is a set of concept keywords with a

common root, e.g. {melts, melted, melting} or

{heat, heats, heated}. We use the Porter algorithm

for stemming (Porter, 1997). Question concepts ap-

1Our dialogs, extractions, and tools are available at

www.cs.washington.edu/research/nlp/knowbot
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pear in a question-answer statement, and support

concepts appear in a SCITEXT support sentence.

2.2 Relations

A relation is any pair of concepts that represents a

semantic correspondence. In general, relations can

be labeled with any feature that describes the corre-

spondence, such as a particular type. For example,

the relation between Obama and Hawaii can be la-

beled with the type born-in.

A predetermined ontology is typically required to

label relations with their type. In this work we la-

bel acquired relations with dialog-specific features.

Our thesis is that user explanations intend to relate

concepts together, and the system’s task is to deter-

mine the user’s intent. For example, the user utter-

ance U: it’s melting because of heat

relates the concepts represented by melt[ing] and

heat, with the words because of appearing be-

tween the two concept keywords. We refer to

because of as the relation’s intext.

Relations can be intuitively arranged as a knowl-

edge graph, which in this work is any graph whose

nodes are concepts and whose edges are relations

between those concepts, in the spirit of semantic net-

works such as ConceptNet (Havasi et al., 2007).

2.3 Sentence alignment

We calculate the alignment score α between the ith

question-answer statement Qi and its jth supporting

SCITEXT sentence Si,j as the normalized number of

relations between their concepts,

α(Qi, Si,j) =
‖RQi,Si,j

‖

‖CQi
∪ CSi,j

‖
, (1)

where CQi
is the set of concepts in Qi, CSi,j

is the

set of concepts in Si,j , and ‖RQi,Si,j
‖ is the number

of relations between CQi
and CSi,j

.

Normalized relation count is a practical semantic

similarity score that generalizes to different knowl-

edge representations. The dialog in Figure 2 aligns

Q(D) with the SCITEXT fact S by learning from the

user that, for example, heat is related to melting.

3 The KNOWBOT dialog system

KNOWBOT grows a knowledge graph of common-

sense semantic relations in open, conversational dia-

log. Figure 2 traces the growth of a knowledge graph

over a single dialog. Section 3.1 details how knowl-

edge is extracted from user explanations without a

dialog model. Section 3.2 describes dialog strate-

gies that elicit natural language explanations.

KNOWBOT uses task progress to drive natural lan-

guage understanding. It assumes the user intends

to provide one or more novel relations, and uses

the constraints described in section 3.1.1 to disam-

biguate noisy relations. This way, KNOWBOT knows

when the dialog progresses because its confidence in

the user’s chosen answer increases.

3.1 Building knowledge graphs from dialog

KNOWBOT builds KGs at three levels: per utter-

ance, per dialog, and globally over all dialogs. An

utterance-level knowledge graph (uKG) (Figure 2a)

is a fully connected graph whose nodes are all con-

cepts in an utterance. After aggressive pruning (sec-

tion 3.1.1), remaining edges update a dialog-level

knowledge graph (dKG) (Figure 2b; section 3.1.2).

Upon dialog termination, the dKG updates the

global knowledge graph (gKG), which stores rela-

tions acquired from all dialogs (section 3.1.3).

3.1.1 Utterance-level KGs

KNOWBOT initially relates every pair of concepts in

an utterance, then prunes them based on two con-

straints: alignment and adjacency.

Each user explanation is first converted into a

fully-connected utterance-level knowledge graph.

This uKG is noisy because users don’t intend

relations between every pair of keywords in

their utterance. For example, a typical utterance

U: freezes means it changes water

from a liquid to a solid mentions six

concepts, freezing, meaning, change, water, liquid,

solid, with
(

6
2

)

potential binary relations. Not every

relation is salient to the question. To remove noisy

relations, edges in the uKG are aggressively pruned

with two simple, rational constraints:

1. Alignment. An edge can only relate a question

concept to a support concept.

2. Adjacency. Edges can’t relate concepts whose

keywords are adjacent in the utterance.

The intuition for the alignment constraint is that the

user intends each explanation to relate the question

853



(a) utterance-level knowledge graph (uKG)

(b) dialog-level knowledge graph (dKG)

(c) The dialog goal is to align Q and S

Figure 2: Every pair of concepts in each user utterance is related then aggressively pruned. (a) Utterance-level

knowledge graphs represent individual utterances. Concepts (underlined, inset in nodes) are obtained by removing

stopwords and stemming. An edge that either doesn’t connect a question and support concept or else which connects

concepts whose keywords in the user utterance have no intervening words (intexts) are pruned, indicated here with

dashed lines. (b) The four remaining relations are stored in a dialog-level dKG.

to a known fact, and other relations in the utter-

ance are unintentional. For example, in the uKG for

the first utterance in Figure 2(a), the edge between

melt[ing] and heat is an alignment relation because

melt[ing] is a concept in S and heat is a concept in

Q. But the edge between because and heat is pruned

(dashed lines) since because is not a concept in S.

Adjacency is a simple, practical syntactic fea-

ture to reduce spurious relations. Users typically

put words or intexts between concepts they in-

tend to relate. The edge between melt[ing] and

because is pruned since their keywords are ad-

jacent in U1: it’s melting because of

heat, while U2 relates snow and ice with the intext

has the same behavior as the.

We find these constraints effective in practice, but

at this point other pruning constraints can be de-

ployed. A strength of our approach is that it wel-

comes aggressive pruning: just as in human-human

interaction, users who initially fail to communicate

their intention can try again later in the dialog.

3.1.2 Dialog-level KGs

Each dialog focuses on a single question. KNOW-

BOT starts with an empty dialog-level knowledge

graph (dKG). After each user turn, edges from that

turn’s uKG are added to the dKG, and KNOWBOT

rescores each of the four answers according to equa-

tion (1) where the set of relations RQi,Si,j
is exactly

the set of edges in the dKG. The dialog successfully

terminates when the user’s answer has the high-

est alignment score, indicating the “missing knowl-

edge” has been successfully provided by the user.

3.1.3 The global knowledge graph

The global knowledge graph (gKG) includes every

relation learned from every KNOWBOT dialog.

Because we do not use a fixed ontology or com-

prehensive dialog model, individual dialogs can re-

sult in noisy relations even after aggressive prun-

ing. However, as KNOWBOT conducts more dialogs

about the same problem, relations that more often

re-occur are more likely to be salient to the problem.

In this work, KNOWBOT takes advantage of re-

dundancy with a simple filter: it ignores singleton

relations originating in a single user utterance. We

find even this simple filter increases performance.

As KNOWBOT accumulates more dialogs, frequency

can be incorporated in more sophisticated models.

3.2 Dialog strategies for knowledge acquisition

We’ve described how a user’s free text explana-

tions are converted into knowledge graphs. Each

user explanation is uttered in response to a system
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prompt. A dialog system’s dialog manager chooses

the prompt to say next according to its dialog strat-

egy, which maps each system state to an action. An

effective dialog strategy guides users to informative

explanations that provide novel relations which let

KNOWBOT successfully answer the question.

We compare two different strategies. A user-

initiative strategy always asks open-ended questions

to prompt the user for new explanations, e.g. line

S2 in Figure 1. These prompts let users introduce

salient concepts on their own.

In contrast, a mixed-initiative strategy utilizes fo-

cused prompts (line S4 in Figure 1) to introduce po-

tentially related concepts. KNOWBOT chooses what

pair of concepts to ask about based on how discrim-

inative they are. The most discriminative concepts

are the pair of question and support concepts that

(1) don’t already have an edge between them, (2)

satisfies the alignment constraint for the user’s an-

swer, and (3) satisfies the alignment constraint for

the fewest alternative answers. By proposing rela-

tions that would lead to a swift completion of the

dialog task, KNOWBOT shares the burden of knowl-

edge acquisition with the user.

Both dialog strategies are question-independent,

but because we don’t use a comprehensive dialog

model to represent the state space, we rely on hand

built rules instead of optimizing with respect to a

reward function. For example, KNOWBOT always

starts by asking the user for their answer, and if a

new support sentence is found will always immedi-

ately present it to the user for confirmation.

4 Evaluation of dialog strategies

Our first experiment compares mixed-initiative and

user-initiative strategies (section 3.2) to a baseline

interactive query expansion (section 4.1). The pur-

pose of this experiment is to investigate whether

users can successfully complete our complex dialog

task even though we don’t use a trained semantic

parser for natural language understanding.

Dialogs were conducted through a web browser.

Users were colleagues and interns at the Allen Insti-

tute for Artificial Intelligence, and so were familiar

with the question-answering task but were not ex-

pert annotators. Users were invited to converse with

the system of their choice, and to move on to a new

question if they felt the dialog was not progressing.

Individual dialog sessions were anonymous.

The system starts each dialog with an empty

knowledge graph, using only identity relations to se-

lect its answer. This default answer is correct on

44 of the 107 questions, and an additional 10 ques-

tions have no associated supporting sentence for the

correct answer in SCITEXT. We run dialogs for the

remaining 53 questions, for which each answer can-

didate has 80 supporting sentences in SCITEXT on

average. A successful dialog terminates when the

system extracts enough novel relations from the user

that the correct answer has the highest alignment

score with one of its supporting sentences.

4.1 Baseline: Interactive query expansion

To evaluate whether task-driven relation extraction

is an effective method for knowledge acquisition in

the absence of an explicit dialog model, we also im-

plement a baseline dialog strategy based on interac-

tive query expansion (IQE). This baseline is similar

to the recent knowledge acquisition dialog system of

Rudnicky and Pappu (2014a; 2014b).

In IQE, new knowledge is learned in the form of

novel keywords that are appended to the question-

answer statement. For example, the dialog in Figure

1 shows the user teaching KNOWBOT how metal re-

lates to electricity. KNOWBOT understands that the

user intends that relation because it drives the dia-

log forward. IQE, in contrast, treats the user ut-

terance as an unstructured bag of keywords. The

unrecognized word “metal” is added to the bag of

keywords representing each of the four alternative

answers to form four augmented queries, and new

overlap scores against sentences from SCITEXT are

computed. The dialog progresses whenever a new

vocabulary word increases the score for the aug-

mented query for the user’s chosen answer.

The intuition behind query expansion is that users

will explain their answers with salient keywords

missing from the original question sentence. The ex-

panded query will overlap with and uprank a support

sentence that contains the acquired keywords.

4.2 Performance metrics

Task completion is the proportion of dialogs that

end in agreement. Higher task completion indicates

that the dialog system is more successful in acquir-
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ing enough knowledge by the end of the dialog to

change its answer from incorrect to correct.

Dialog length is the number of system and user

turns. Shorter dialogs are more efficient.

Acquisition rate is the number of edges in the

dKG at the end of each dialog. Acquisition rate mea-

sures two contrasting system features:

(1) how much new knowledge is acquired, and

(2) how much explanatory effort users expend.

From the perspective of raw knowledge acquisition,

higher acquisition rate is better because each dialog

adds more edges to the knowledge graph. From the

perspective of usability, lower acquisition rate is bet-

ter provided it doesn’t negatively affect dialog suc-

cess, because it indicates the user is able to success-

fully correct the system’s answer with a fewer num-

ber of explanatory relations.

4.3 Results

Our results (Table 1) show both strategies dramati-

cally outperform the baseline and have comparable

success rate and dialog length to each other. User-

initiative strategies acquire more knowledge per di-

alog but require more user effort.

IQE U.I. M.I.

Total dialogs 35 27 57

Task completion rate 5.7% 55.6% 49.1%

Mean Dialog Length 14.1 10.6 10.9

Mean acquisition Rate N/A 13.5 7.4

Table 1: Comparison of knowledge acquisition strate-

gies. Interactive query expansion (IQE)’s poor task com-

pletion indicates keywords can’t bridge the knowledge

gap. Relations are more successful. User-initiative (U.I.)

and mixed-initiative (M.I.) strategies have comparable

task completion and dialog length, but U.I. extracts twice

the relations before getting the correct answer: more

knowledge acquired but at the cost of more explanatory

effort. User comments indicate M.I. is more satisfying.

We find that the baseline has a very low comple-

tion rate of 5%, and longer dialog lengths of 14 turns

on average. Interactive query expansion is a poor

knowledge acquisition dialog strategy for our task.

In contrast, users were able to successfully correct

our system using both strategies about 50% of the

time, even though no in-domain ontology guides ex-

tractions and no comprehensive dialog model clas-

sifies explanations. The average dialog lengths and

completion rate for User Initiative (U.I.) and Mixed

Initiative (M.I.) strategies was approximately the

same, so that choice of strategy had little impact

on overall task success. However, strategy has a

great effect on acquisition rate. M.I. cuts the knowl-

edge acquisition rate nearly in half when compared

to U.I (7.4 novel relations per dialog to 13.5). M.I.

learns fewer new relations per dialog with compara-

ble task success, which means each dialog succeeds

with much less explanatory effort by the user but

also contributes less to the knowledge graph.

User comments indicated that the mixed-initiative

strategy was the most enjoyable system to use. We

find that open-ended, user-initiative strategies can

acquire more helpful relations in a single dialog but

guided, mixed-initiative strategies may be more ap-

propriate when usability is taken into account. Be-

cause our goal is lifelong interactive knowledge ac-

quisition, the impact of a single dialog on the total

knowledge graph is less important than the individ-

ual user effort required, and we conclude that the

mixed-initiative strategy is preferable.

5 Evaluation of knowledge quality

Experiment 1 evaluated whether users could suc-

cessfully complete our dialog task. Next, we eval-

uate whether the total output of our system, all rela-

tions acquired during all 431 conducted dialogs, rep-

resents useful domain knowledge on this task. We

evaluate on questions for which dialogs have been

held to investigate whether it’s possible to learn any

domain knowledge from natural language conversa-

tion without a dialog model, irrespective of overfit-

ting. We then use cross-validation to test if knowl-

edge transfers between questions.

As described in section 2, our QA system de-

composes each question/answer pair into a true/false

statement and chooses as its answer the statement

among the four that has the best supporting sentence

in a text corpus. Equation (1) scores each question-

answer statement by using domain relations to align

question concepts to support concepts. The next sec-

tion describes sources of domain relations.

5.1 Sources of domain knowledge

We compare relations from five sources:
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IDENTITY: An edgeless knowledge graph. The

only relations are between identical concepts, equiv-

alent to Jaccard overlap of concept keyword roots.

WORDNET: Paraphrase relations from Wordnet.

Wordnet (Fellbaum, 1998) is a lexical database of

synonyms and hypernyms common in NLP tasks.

For example, Snow et al (2006) use Wordnet as

training data for ontology induction. To build

WORDNET, we draw an edge between every pair

of Wordnet concepts (ws, wq) for which the Wu-

Palmer Similarity (WUP) (Wu and Palmer, 1994)

of the first sense in each concept’s synset exceeds

0.9, the best-performing WUP threshold we found.

Concepts in the Wordnet hierarchy have a higher

WUP when they have a closer common ancestor. If a

known fact is Heat energy causes snow to melt, but a

question asks if ice melts, then Wordnet should pro-

vide the missing knowledge that ice acts like snow.

PPDB: Paraphrase relations from PPDB (Gan-

itkevitch et al., 2013) are derived by aligning bilin-

gual parallel texts. PPDB is divided into subsets

where the larger subsets have more paraphrases with

less precision. We tried all subsets and found the

smallest to give the best results, which we report

here. The largest performed the worst of all rela-

tion sets we tested. We use the lexical paraphrases,

which relates unigrams. Concepts are related when

at least one concept keyword for each are para-

phrases in PPDB. We obtained better performance

by stemming PPDB words: for example, if snows

and iced are paraphrases in PPDB then we also con-

sidered snowing and icy to be in PPDB.

KNOWBOT: Each question is answered using re-

lations pooled from all dialogs about all questions.

The goal in each dialog is to acquire knowledge

helpful to answer the question. If KNOWBOT leads

to an increase in QA accuracy over IDENTITY, then

we can successfully use open dialog with a human in

the loop to learn knowledge that solves a question.

LEAVE-ONE-OUT: Each question is answered

only with relations learned during dialogs for ev-

ery other question. While KNOWBOT uses re-

lations learned from dialogs about the questions

on those same questions, LEAVE-ONE-OUT tests

whether knowledge generalizes to questions without

dialogs. Generalization is only possible when there

are at least two questions involving the same con-

cepts. Due to our small number of questions, in the

best case we expect only slight improvement.

%correct

IDENTITY 41%

WORDNET 34%

PPDB 39%

KNOWBOT 57%

LEAVE-ONE-OUT 45%

Table 2: QA accuracy on the 107 questions with dif-

ferent sources of domain knowledge. IDENTITY: iden-

tity relations only, e.g. “heats” to “heating.” WORD-

NET: Wordnet-derived pseudo-synonyms, e.g. “eagle”

to “owl.” KNOWBOT: the full, unablated global KG.

LEAVE-ONE-OUT: answers each question while ignoring

relations acquired during dialogs on that question.

5.2 Results

The results of QA using the different domain knowl-

edge is shown in Table 2. IDENTITY achieves

41% accuracy on this difficult reasoning task, show-

ing that some questions are answerable by search-

ing SCITEXT for supporting sentences with the

same concepts as in the question-answer statement.

WORDNET works surprisingly poorly. Examination

found WORDNET’s relations to be of good quality,

yet underperform IDENTITY. PPDB performed bet-

ter but still underperformed IDENTITY. We con-

clude that general paraphrase bases introduce too

much noise to apply directly without manual cura-

tion to our science domain, underscoring the need

for domain-specific knowledge acquisition.

KNOWBOT achieves accuracy of 57%, a dramatic

improvement over both baselines. Importantly, this

value does not test generalization to unseen ques-

tions, since KNOWBOT has held dialogs on these

questions. However, it does show that our system

can effectively learn about its domain: a poor dia-

log extraction system will fail to extract any helpful

knowledge from users during a training dialog. This

is a significant result because it shows that we suc-

cessfully acquire knowledge to solve many question

through conversational interaction without the over-

head of a closed dialog model or fixed ontology.

We also tested how well knowledge generalizes

with LEAVE-ONE-OUT. Our question set is less

suited to evaluate generalization because it covers

a wide range of topics with little overlap between
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questions. We still found LEAVE-ONE-OUT to be

the second-best performer with accuracy of 45%, a

10% relative improvement versus IDENTITY. Re-

dundancy is an effective noise reduction constraint:

when LEAVE-ONE-OUT ignores redundancy and in-

cludes singleton relations (those originating in a sin-

gle dialog utterance), its accuracy reduces to 32%.

6 Related work

Knowledge acquisition in dialog has long been a

central goal of AI research. Early dialog systems

acquired knowledge through ambitious interaction,

but were brittle, required hand-defined dialog mod-

els and did not scale. Terry Winograd (1972) pre-

sented the first dialog system that acquires knowl-

edge about the block world. TEIRESIAS (Davis,

1977) refines inference rules from terse interaction

with experts. CONVINCE (Kim and Pearl, 1987)

and its prototypes (Leal and Pearl, 1977) learn de-

cision structures through stylized but conversational

dialogs. An interactive interface for CYC (Witbrock

et al., 2003) learns from experts but don’t use natural

language. Fernández et al (2011) argue the impor-

tance of interactive language learning for conversa-

tional agents. Williams et al (2015) combine active

learning and dialog to efficiently label training data

for dialog act classifiers.

Relatively little work integrates relation extrac-

tion and dialog systems. Attribute-value pairs from

restaurant reviews can generate system prompts

(Reschke et al., 2013), and single-turn exchanges

with search engines can populate a knowledge graph

(Hakkani-Tur et al., 2014). Dependency relations

extracted from individual dialog utterances by a

parser also make effective features for dialog act

classification (Klüwer et al., 2010).

The work closest to our own, Pappu and Rudnicky

(2014a; 2014b), investigates knowledge acquisition

strategies for academic events. Their system asks

its users open-ended questions in order to elicit in-

formation about academic events of interest. They

compare strategies by how many new vocabulary

words are acquired, so that the best strategy prompts

the user to mention the most OOV words. In their

most recent work (2014b), they group the acquired

researcher names by their interests to form a bipar-

tite graph, and use acquired keywords for query ex-

pansion in a simple information retrieval task. Our

present contribution builds on this general idea, but

we learn an unlimited number of relations and con-

cepts from open dialogs, whereas they learn a small

number of relations belonging to a fixed ontology

from closed dialogs. We also show the acquired

knowledge is objectively useful for QA.

In closed dialog systems, the system’s dialog

model explicitly represents the meaning of every po-

tential user utterance. Any utterance not represented

by this comprehensive model is rejected and the user

asked to rephrase. Closed dialog systems work well

in practice. For example, in the well-studied slot-

filling or frame-filling model, users fill slots to con-

strain their goal, and an NLU module decomposes

user utterances to known actions, slots, and val-

ues. A slot-filling system to find flights might map

the utterance U: Show me a flight from

Nashville to Seattle on Sunday to the

action find-flight and the filled slots origin =

Nashville, destination = Seattle, and time = Sun-

day. However, for our domain, each distinct ques-

tion warrants its own actions, slots, and values. Such

a complex model would require abundant training

data or laboriously handcrafted interpretation rules.

In contrast, an open dialog system can usefully in-

terpret, learn from, and respond to user utterances

without a comprehensive dialog model. Domain-

independent dialog systems with the flexibility to

accept novel user utterances are a longstanding goal

in dialog research (Polifroni et al., 2003). Recent

work to address more open dialog includes boot-

strapping a semantic parser from unlabeled dialogs

(Artzi and Zettlemoyer, 2011), extracting poten-

tial user goals and system responses from backend

databases (Hixon and Passonneau, 2013), and in-

ducing slots and slot-fillers from a corpus of human-

human dialogs with the use of FrameNet (Chen et

al., 2014). These works focus on systems that learn

about their domain prior to any human-system dia-

log. Our system learns about its domain during the

dialog. While we rely on a limited number of tem-

plates to generate system responses, unscripted user

utterances can usefully progress the dialog. This al-

lows relation extraction from complex natural lan-

guage utterances without a closed set of recognized

actions and known slot-value decompositions.
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7 Discussion and Future Work

KNOWBOT acquires helpful, task-driven relations

from conversational dialogs in a difficult QA do-

main. A dialog is a success when it produces knowl-

edge to solve the question. Extractions increase QA

accuracy on questions for which dialogs have been

held, indicating that knowledge acquisition dialogs

can succeed without a closed dialog model by us-

ing task progress and careful pruning to drive natu-

ral language understanding. Our method is general

enough to scale to any task in which alternative di-

alog goals can be presented to a user and the sys-

tem’s confidence in each alternative computed from

semantic relations between concepts.

Our focus is on facilitated knowledge acquisition

rather than question-answering, so we purposefully

keep inference simple. The alignment score is a Jac-

card overlap modified to use relations, which makes

it fast and practical, but results in many ties which

we score as incorrect, and also ignores word or-

der. For example, the bag-of-keywords is identical

for contradicting answers “changing from liquid to

solid” and “changing from solid to liquid.” To make

this distinction, we could use an alignment score that

is sensitive to word order such as an edit distance.

We could expand our simple pruning constraints to

take more advantage of syntax, for example by us-

ing dependency parsers optimized for conversational

language (Kong et al., 2014).

The relational model for reasoning is both flexible

and powerful (Liu and Singh, 2004). However, in a

small number of cases, relations that align known

facts with question-answer statements are unlikely

to lead to the correct answer. For example, our ques-

tion set contains a single math problem, How long

does it take for Earth to rotate on its axis seven

times? (A) one day (B) one week (C) one month (D)

one year. The multiplication operation necessary to

infer the answer from the SCITEXT fact “The Earth

rotates, or spins, on its axis once every 24 hours”

is not easily represented by our model and requires

other techniques (Hosseini et al., 2014).

We observed only slight transfer of knowledge be-

tween questions. A larger question set with multiple

questions per topic will allow us to better evaluate

knowledge transfer. Our long-term goal is learn-

ing through any conversational interaction in a com-

pletely open domain, but because the fundamen-

tal trick that enables model-free NLU is computing

progress towards an explicit dialog goal as a func-

tion of possible extractions, our current method is

limited to tasks with explicit goals.

The simple redundancy filter we use effectively

distinguishes salient from noisy relations, but could

be improved with a model of relation frequency.

We consider all acquired relations equally salient,

but future work will examine how to rank relation

saliency. We will also examine how dialog fea-

tures can help distinguish between paraphrase, en-

tailment, and negative relations.

Our open system acquires relations from a wide

variety of user explanations without the bottleneck

of a hand-built dialog model, but the tradeoff is that

we use relatively simple, templated system prompts.

However, our collected corpus of real human-system

dialogs can be used to improve our system in fur-

ther iterations. For example, the knowledge graphs

we produce are targeted, question-specific semantic

networks, which could be used in lieu of FrameNet

to induce domain-specific dialog models (Chen et

al., 2014). With a dialog model to represent the

state space, reinforcement learning could then be

employed to optimize our strategies.

While most question-answering systems focus on

factoid questions, reasoning tasks such as ours re-

quire different techniques. Our method generalizes

to other non-factoid QA tasks which could usefully

employ relations, such as arithmetic word problems

(Hosseini et al., 2014) and biology reading compre-

hension questions (Berant et al., 2014).
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