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Abstract Videos of endoscopic surgery are used for education of medical experts, analy-

sis in medical research, and documentation for everyday clinical life. Hand-crafted image

descriptors lack the capabilities of a semantic classification of surgical actions and video

shots of anatomical structures. In this work, we investigate how well single-frame convolu-

tional neural networks (CNN) for semantic shot classification in gynecologic surgery work.

Together with medical experts, we manually annotate hours of raw endoscopic gynecologic

surgery videos showing endometriosis treatment and myoma resection of over 100 patients.

The cleaned ground truth dataset comprises 9 h of annotated video material (from 111 dif-

ferent recordings). We use the well-known CNN architectures AlexNet and GoogLeNet and

train these architectures for both, surgical actions and anatomy, from scratch. Furthermore,

we extract high-level features from AlexNet with weights from a pre-trained model from

the Caffe model zoo and feed them to an SVM classifier. Our evaluation shows that we

reach an average recall of .697 and .515 for classification of anatomical structures and surgi-

cal actions respectively using off-the-shelf CNN features. Using GoogLeNet, we achieve a

mean recall of .782 and .617 for classification of anatomical structures and surgical actions

respectively. With AlexNet the achieved recall is .615 for anatomical structures and .469 for

surgical action classification respectively. The main conclusion of our work is that advances

in general image classification methods transfer to the domain of endoscopic surgery videos

in gynecology. This is relevant as this domain is different from natural images, e.g. it is

distinguished by smoke, reflections, or a limited amount of colors.
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1 Introduction

In recent years, endoscopic surgery procedures as well as imaging technology have

advanced rapidly. These advances enable physicians to perform minimally invasive surg-

eries. As a side-effect, the recoded surgery videos benefit the surgeons’ work, as they

provide a great basis for documentation, training of young surgeons, and medical research.

Prior work supporting these aims has been conducted by our research group in the sec-

tor of endoscopic video analysis, such as a subjective quality assessment for the impact

of compression on the perceived semantic quality [13], instrument classification in laparo-

scopic videos [17], or extraction and linking of endoscopic key-frames to videos [3, 23].

In this work, we restrict ourselves to a very specific field in minimally invasive surgery

in the context of gynecology. In particular, we base our work on videos showing surgical

treatment of myoma resection and endometriosis. Our aim is to lay a baseline for (semi-)

automatic documentation for aforementioned surgical interventions. Therefore, we want to

achieve semantic classification of video shots displaying surgical tasks and various anatom-

ical structures relevant to gynecological surgery. Standard hand-crafted features lack the

expressive power for use cases of high-level classification in this domain [2]. On the con-

trary, CNNs have been successfully used for such problems in general image and video

domains [7, 25]. Multiple models have been proposed for semantic classification of video

shots, i.e. single frame, early fusion, late fusion, and slow fusion [6]. The importance of

deep learning in medical image analysis and content-based processing and analysis of endo-

scopic images and video also is apparent from the work of Litjens et al. [9] and Muenzer

et al. [12] respectively.

As stated above, we aim at creating a baseline for semi-automatic documentation and

therefore restrict ourselves to a single-frame model. Hence, the driving question behind our

research is:

How well do CNN-based single-frame models for semantic shot classification in the

field of gynecological surgery, a special domain of laparoscopic surgery, perform?

In order to answer the aforementioned question, we identify frequent surgical tasks and

anatomical classes in cooperation with medical experts from the regional hospital (LKH)

Villach in Austria. Based on this expert knowledge and over 100 video recordings of surgical

treatments, we generate a data set with scenes of surgical actions and anatomical structures

in gynecological surgery. The data set comprises 13 different semantic classes (five anatomy

and eight action classes) and consists of about 9 h of annotated video material. Furthermore,

we base our work on two well-known CNN architectures: AlexNet [7] and GoogLeNet

[25]. For both subsets, surgical action and anatomy, we adapt the classification layer of

the aforementioned networks, train the networks from scratch, and evaluate the predictive

performance of the resulting networks. The division of action and anatomical structures is

reasonable, as we employ a single label prediction model and surgical actions almost always

show anatomical structures. We also evaluate the usage of high-level CNN features (from

AlexNet classification as well as fully connected layers fc6 and fc7) for a multi-class SVM

classifier in the domain of endoscopic surgery videos in gynecology.

This work is novel, as there is no comparison of different CNN models and SVM

classifiers using CNN-extracted features for the use case of shot classification in gyneco-

logic surgery. We expect that advances in the general domain transfer to our specialized use

case, in particular we think that GoogLeNet achieves a better predictive performance than

AlexNet. Furthermore, we expect that the off-the-shelf CNN features do not work as good

for classification as the CNN models do. Another contribution of this work is a detailed
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discussion of important semantic content classes in the expert-domain of minimally invasive

gynecologic surgery. This is relevant to colleagues working in the field of medical video

analysis. The remainder of this paper is structured as follows. First, we discuss related work

in medical imaging on the topics of computer-aided diagnosis, transfer learning, and seman-

tic video classification. In Section 3, we describe the data annotation process as well as the

data used for training and testing the CNN models and SVM. Details for learning are pre-

sented in Section 4. We evaluate the results in Section 5 and draw conclusions and outline

possible future work in Section 6.

2 Related work

For the use case of classifying interstitial lung diseases, Li et al. [8] provide a simple

CNN model containing a single convolutional layer. They yield per–class precision and

recall between 0.8 and 0.9 for classification into five classes (normal, emphysema, ground

glass, fibrosis, and micro-nodules) outperforming the SIFT feature as well as Restricted

Boltzmann Machines. Anthimopoulos et al. [2] propose a deep CNN model containing

five convolutional layers for the classification of CT images into seven classes of intersti-

tial lung diseases (healthy, ground glass opacity, micronodules, consolidation, reticulation,

and honeycombing). Their results imply that, for this use case, their CNN approach out-

performs other CNNs as well as state-of-the-art methods using handcrafted features. In the

work of Yan et al. [29], a multi–stage deep learning framework is presented. Using the pro-

posed framework, the authors try to solve the problem of body-part recognition in MRI

images. In total, they achieve best performance regarding recall, precision and f–score com-

pared against logistic regression, SVMs, and CNNs. The importance of CNNs in medical

applications is also apparent from their use within other applications such as nucleus seg-

mentation [28], polyp detection in colonoscopy videos [15], microcalcification detection

in digital breast tomosynthesis [22], mitosis detection in breast cancer histology [1], and

short–term breast cancer risk prediction [19]. Our work is delimited to the aforementioned

research as in contrast to the classification of a state (e.g., healthy or consolidation, type of

tissue), we aim at classifying both, anatomical structures and surgical actions. Furthermore,

there haven’t been any efforts made regarding the classification of images extracted from

laparoscopic surgery videos. Fine tuning and transfer learning effects of CNNs are cov-

ered in recent literature by Shin et al. [24] as well as Tajbakhsh et al. [26]. These pieces of

work are based on the use cases of lymph node detection, interstitial lung disease classifi-

cation, polyp detection and image quality assessment in colonoscopy, pulmonary embolism

detection in computed tomography images, and intima-media boundary segmentation in

ultrasonographic images. Their results imply that CNNs are suitable for computer aided

diagnosis problems, and transfer learning from large-scale annotated natural image datasets

is beneficial for performance (which according to our preliminary studies does not apply

to the problem of scene classification). For colonic polyp classification, Riberio et al. [21]

proposed transfer learning using off-the-shelf CNN features. Based on high-level CNN

features (from CNNs trained for object recognition), Ng et al. [4] use semantic fisher vec-

tors for semantic classification of natural video scenes. Their results reach state-of-the-art

performance on MIT Indoor and SUN datasets. For a large-scale YouTube video dataset,

Karpathy et al. [6] give an overview on scene classification models based on CNNs, i.e.

single frame, late fusion, early fusion and slow fusion. Their results imply that the naive

single frame model (which is agnostic to temporal information)—despite it simplicity—

already provides a strong performance. Ng et al. [30] compare single frame models for scene



8064 Multimed Tools Appl (2018) 77:8061–8079

classification with slow fusion and LSTM-based models. In the domain of cataract surgery

videos, Quellec et al. [20] propose a temporal segmentation and recognition of tasks. The

temporal segmentation is based on the detection of idle phases, which is achieved by nearest

neighbor search in a reference dataset. Primus et al. [11] provide a video segmentation for

endoscopic surgeries based on analysis of spatial and temporal motion changes. For the use

case of cholecystectomy, a special form of laparoscopic surgeries, Primus et al. [18] provide

a rule-based method to temporally segment a surgery into different phases. The recogni-

tion of number and kind of used instruments (which is topic of their previous work [17])

act as main indication for a surgery phase. Shot boundary detection in cholecystectomy

surgery videos using Gaussian Mixture Models and a Variational Bayesian Algorithm is

investigated by Loukas et al. [10]. The work of Twinanda et al. [27] also focuses on the use

case cholecystectomy. They successfully apply CNNs, SVMs and HHMMs for detection

of surgical phases. The envisioned classification is different from the use cases mentioned

above, as in cholecystectomy there are predefined surgical phases, whereas in other fields

of laparoscopic surgery (such as as gynaecology) there is no general consensus for such sur-

gical phases. Moreover, we do not aim at defining shot boundaries. We provide the work

most related to this by ourselves [16] in which we already have preformed an exploratory

investigation of shot classification in the laparoscopic surgery domain. However, we did

no distinction between surgical actions and anatomical structures which resulted in poor

performances in the anatomical structure classes.

3 Laparoscopic gynecology video database

For this work, we analyze 111 different gynecological surgery videos. These videos con-

tain scenes of laparoscopic endometriosis treatment and laparoscopic myoma resection

and have a duration in the range of 20 min to 6 h. Analysis and discussion with medical

experts for gynecology at the regional hospital (LKH) Villach (Austria) have resulted in the

identification of two main aspects for the individual scenes: action and anatomy.

Anatomy This type of video scene features little or almost no surgical actions apart from

moving tissue and organs. Purpose of diagnosis scenes is the assessment of pathologies on

specific organs, such as ovaries, uterus, or liver. Hence, diagnosis scenes are relevant for

documentation purposes of the disease as well as its treatment. These scenes are impor-

tant for medical research and teaching purposes. A second aspect of diagnosis scenes is to

document the treatment outcome, i.e. which actions are performed, or how the tissue after

treatment looks like. Additionally to disease treatment documentation, diagnosis scenes

can be valuable whenever postoperative complications occur. According to our use case of

myoma resection and endometriosis treatment, we identify the following (sub-) classes as

diagnosis scenes of interest: Uterus, Ovaries, Oviduct, Liver and Colon. Please note that this

list of classes is no comprehensive list of anatomical structures visible in the surgery videos,

but it covers the most important organs which are encountered during surgical treatment.

For an overview on anatomical structure classes, please refer to Fig. 1.

Action The class of surgical action video scenes feature significant interaction with the

patient’s tissue and organs using a variety of different surgical instruments. These scenes

represent the main physical work for the surgeon. Their automatic classification is relevant

for documentation and even more for teaching purposes of certain operation techniques.
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Fig. 1 An overview on anatomical structure classes uterus, ovary, oviduct, liver, and colon. The frames are

extracted from the annotated data set

The main aspect of these scenes is the use of medical instruments, e.g. suction & irri-

gation device, graspers, monopolar needles, needleholders, or scissors. We identify the

(sub-) classes Suction & Irrigation, Suture, Dissection (blunt), Cutting, Cutting (cold),

Sling, Coagulation, and Injection as the most common surgical actions during laparoscopic

endometriosis treatment and myoma resection in our dataset (see Fig. 2). Of course, there are

several other actions to be performed, such as tissue extraction, or stapling, but as mentioned

before, we are interested in the most common and most important actions.

3.1 Annotation process

We derive the best matching class for a single shot implicitly by camera position and the

current action, e.g., the action in the center of the image or the organ which is inspected

Fig. 2 An overview on surgical actions coagulation, sling, injection, irrigation, suture, cutting (cold), cutting,

and blunt dissection. The frames are extracted from the annotated data set
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by a surgeon is the action or object of interest. With the surgical action classes, there is the

issue that a shot is likely to contain frames that could be classified as a diagnosis class as

well. For example, suturing the ovary may contain images with the ovary without a surgical

needle, or the suture is not clearly visible. On the one hand, this frame does not look like it

belongs to a suturing shot, but on the other hand it indeed does belong to the suturing shot

as the image has been recorded in its context. For the annotation of our dataset, we choose

to stick to the latter case and annotate such frames as the surgical task by defining begin and

end of the surgical action. Each frame from beginning until the end of a shot is labeled with

the corresponding shot label for the class it belongs to. Due to this circumstance, the dataset

also may contain blurry frames or frames in which instruments may cover huge parts of

the camera. We argue that these frames are nonetheless part of the corresponding shot and

thus correctly labeled. Prior to the annotation process, our annotators have been trained by

medical experts. The annotations are cross-validated by a single annotator and trimmed in

length or corrected when necessary. We do not filter blurry or irrelevant frames, as we are

interested in a baseline evaluation without any preprocessing (except for resizing and center

cropping) of the raw video frames. Thus, we leave the temporal dependencies within the

annotated scenes intact.

3.2 Semantic content classes

Due to legal restrictions, we are not able to publish the used dataset. In order to allow for

partial repeatability, we give a detailed explanation of the individual classes in the following.

Suction & Irrigation. These scenes feature the use of the suction and irrigation tube. Irri-

gation has the purpose to clean tissue in order to provide a clean field of view for the

surgeon. Main visual feature is a ray of liquid. The suction action is quite the oppo-

site to irrigation. It is used to absorb liquids. Classification problems in this class arise,

whenever the suction and irrigation tube is used for positioning tissue or palpation.

Suture. The main characteristic of suturing scenes is the visible surgical needle and the

suture. In general, the surgical needle can be of round or straight physical shape. During

the process of suturing, the surgical needle often is only partially visible, if at all. The

suture can vary in type, thickness, and color. An additional characteristic of these scenes

is the use of the knot pusher, which is preceded by a scene where suture and low motion

is visible.

Cutting (cold). Scenes of cold cutting, as annotated in this dataset, feature the separation

of tissue with a sharp instrument, such as a scalpel or a scissor. Characteristic to this type

of scenes is the use of multiple instruments: the instrument used for dissection itself (e.g.

scissors) and grasper for fixation of tissue. This characterization applies to cutting and

blunt dissection as well.

Cutting. Cutting scenes show surgical separation of tissue by using electro-surgery tech-

nology such as mono-polar needles. Occasionally, a bright dot can be seen at the top

of the instrument. A low to medium emission of smoke emerges from coagulated and

separated tissue.

Dissection (blunt). Blunt dissection scenes feature the use of blunt instruments for the

dissection of tissue. In our dataset, no specific tools can be bound to this action – the

surgeon uses two or more blunt tools.

Sling. This class contains scenes of separation of the uterus for extraction. The electrical

sling itself has an insulation which may look just like a special kind of suture. The coarse

procedure of this surgical action is (i) introduction of the sling, (ii) positioning around
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the cervix, and eventually, (iii) thermal dissection. The thermal dissection features a sig-

nificant amount of smoke. After this dissection, coagulation and suturing are required in

general.

Coagulation. These type of scenes show coagulation by electro-surgical surgery methods.

These scenes feature medium to high emission of smoke. The used instruments for this

action do vary. For example, surgeons can use graspers or scissors which implies an

additional difficulty for the classification of such scenes.

Injection. These scenes feature the injection of liquid into the patient’s tissue in order to

minimize traumata. The injection needle is visible as thin straight piece of shiny rounded

metal. The tissue around the tip of the needle typically inflates after the injection.

Uterus. The uterus is the main organ of interest during myoma resection. In endometriosis

treatment, the uterus can also be of interest in the adenomyosis disease pattern. The

videos sequences of the class uterus feature an inspection of the uterus.

Ovary and Oviduct These classes are again of diagnostic nature. They feature image

frames of clearly visible ovary. They are especially important for endometriosis disease

and diagnosis of adhesions.

Liver and Colon. These two organs also are inspected during endometriosis diagnosis and

treatment.

Out of 111 raw gynecological surgery videos, we manually annotated 1,105 shots con-

sisting of 822,918 different video frames resulting in about 9 h of annotated video scenes.

As already mentioned, the annotators have been trained by medical experts and the anno-

tated scenes have been checked partly by the experts. Tables 1 and 2 give an overview on

the annotated medical video database including class ID, class name, and short semantic

description for each action and anatomy class. Moreover, they contain information about

the distribution of annotations on a per-class basis, i.e. number of annotated shots, number

of annotated frames, average scene duration, and standard deviation. Most frequent actions

observed in this dataset are Suction and Irrigation, Coagulation, and Cutting (Cold). Suture

is the leading class in terms of annotated video duration. On average, suturing scenes have

longest duration, scenes of Cutting (Cold) are the shortest. The variance within the individ-

ual classes arises from surgery circumstances, such as intervention complications, or patient

anatomy. Due to the high variance of video sequence length (class–wise compared to aver-

age duration), no statistically significant conclusions can be drawn from the individual scene

length.

4 Frame-based shot classification

For this work, focus on the feasibility of endoscopic shot classification of laparoscopic

surgery videos in gynecology with CNNs. Moreover, we investigate how end-to-end trained

CNN with a problem-specific classification output layer perform against off-the-shelf CNN

features.

Therefore, we use a single-frame scene classification model allowing us to investigate the

influence of different network architectures and the quality of extracted high-level CNN fea-

tures for the application of SVMs. We base our shot classification on two different network

architectures: AlexNet [7] and GoogLeNet [25], which are designed for general purpose

image classification and trained for the 1,000 classes of the ILSVRC dataset. AlexNet fea-

tures input image patch sizes of 227×227 pixel. It consists of five convolutional layers,

MAX pooling, local response normalization, dropout and three fully connected layers. The
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Table 1 An overview on the annotated dataset with surgical actions: class id, class name, number of

shots, number of frames, average duration in seconds, standard deviation of duration in seconds, and class

description

ID Class Shots Frames tavg [s] tsd [s] Description

1 Dissection (blunt) 58 35,517 24.49 32.30 Blunt dissection of tissue

(e.g by tearing it apart)

2 Coagulation 212 84,786 16.00 16.09 Application of coagulation

in order to close a wound

3 Cutting (cold) 271 26,388 3.89 4.32 Dissect tissue with a sharp

instrument (e.g. scissors)

4 Cutting 106 92,653 34.96 49.96 Thermally dissect tissue

(e.g. with monopular electrodes)

5 Hysterectomy (Sling) 25 68,466 109.55 71.27 Dissection of large parts of

tissue with an electrical sling

6 Injection 52 52,355 40.27 26.66 Injection with a needle

7 Suction & Irrigation 173 73,977 17.10 24.63 Application of the suction

and irrigation tube

8 Suture 92 321,851 139.94 77.51 Process of suturing

last fully connected layer is task-specific. Thus, for our experiments, the number of output

neurons is altered to 5 and 8 output neurons for anatomy and action models respectively.

Apart from this, the remaining network structure remained unaltered. The GoogLeNet archi-

tecture features inception modules with dimensionality reduction. In total, there are 22

parametrized layers and five pooling layers. Below the stacked inception modules (each

reducing the image resolution) there is a convolutional low-level feature extraction expect-

ing input patches of 224×224 pixels. The end of the network features a fully connected

network. Analogous to the procedure with AlexNet, the network architecture remains

unchanged except for the adaptation of the classification layer.

We prepare the video database for training and evaluation, which simply means that we

extracted a square center crop of each video frame and then resized it to 256×256 pixel.

Thus, we save computational resources for resizing and cropping at training time. We fur-

thermore split the endoscopic video dataset into a test and a training set for each, anatomy

and action images. For the split, we considered the test set to contain approximately 10% of

the annotations. To ensure a diverse test set, we set a minimum number of images per class.

Table 2 An overview on the annotated dataset with anatomical structures: class id, class name, number of

shots, number of frames, average duration in seconds, standard deviation of duration in seconds, and class

description

ID Class Shots Frames tavg [s] tsd [s] Description

1 Colon 6 7,285 48.57 56.60 Clearly visible colon

2 Liver 10 3,378 13.51 12.39 Clearly visible liver

3 Ovary 52 28,460 21.89 25.15 Clearly visible ovary

4 Oviduct 8 4,797 23.99 29.78 Clearly visible oviduct

5 Uterus 40 23,005 23.01 41.80 Clearly visible uterus
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For the anatomy subset this means that we included at least 500 unique frames per class in

the test set and for action, we included at least 5,000 unique frames. The anatomy test set

thus comprises 6,874 unique frames, the action test set comprises 57,205 unique frames.

The remaining video frames are used to generate the test set. Please note that (as apparent

from Tables 1 and 2) for both, action and anatomy subsets, the distribution of number of

scenes and frames is highly imbalanced. For example, the action Suture is a frequent action

and features long scene durations. We thus feature a high number of suturing frames in the

database. On the other hand, there are actions such as Blunt Dissection featuring a very small

number of unique frames. For the test set, this imbalanced distribution perfectly models our

use case, as the frequently occurring classes are tested more thoroughly. For the training set,

we eradicate this imbalance by a combination of undersampling (dropping frames randomly

from the training set) and naive oversampling (duplicating frames randomly). To create the

training set, we choose the number of training examples per class to 100,000 images for the

action subset and 10,000 images for the anatomy subset. We define that classes containing

more unique images than the training set size per class are overrepresented classes. Oth-

erwise a class is underrepresented. For overrepresented classes, we (uniformly) randomly

choose the corresponding number of images from the remaining images without returning

the chosen images to the set we chose from. The data loss is negligible as we are drop-

ping many near-duplicate images. For the underrepresented classes, we choose images with

returning them to the set we chose from (uniformly) at random. We ensure that each anno-

tated image is included in this process by pre-filling the training set with one image of each

underrepresented class. This process resulted in 50,000 training images (generated from

33,732 unique images) for the anatomy model and 800,000 training images for the action

model (generated from 486,771 unique images).

For implementation of the machine learning approaches (CNN and SVM), we use Caffe

[5] and OpenCV [14]. At training time, we feed the network image patches of its expected

size (224 pixel squares for GoogLeNet, 227 pixel squares for AlexNet). These image

patches are crops chosen at random from the training images featuring a size of 256×256

pixels. As additional data augmentation, we also use Caffe’s mirror feature at training

time. For optimization, we use the Adam optimization method with initial learning rate of

0.001 and momentum parameters 0.9 and .999 Other hyperparameters like weight decay

are not altered from their respective values as shipped with the AlexNet and GoogLeNet

models. The training is performed on a machine featuring an Intel(R) Core(TM) i7-5960X

CPU 3.00GHz processor, 64GB of DDR-4 RAM, a Samsung SSD 850 pro and a NVIDIA

GeForce GTX TITAN X graphics card. For AlexNet, we use a batch size of 100 images per

batch. For GoogLeNet the batch size is set to 50 images per batch. For both, AlexNet and

GoogLeNet, we train action and anatomy models from scratch. This system takes approx-

imately ten days for training of all models and SVMs. The training loss and validation

performance of the CNNs is depicted in Fig. 3 for the anatomy models and in Fig. 4

for the action models. The x-axis shows the training epoch. The y-axis shows loss and

accuracy respectively. At each epoch, we measure average loss of the epoch and valida-

tion performance. For the anatomy models, the loss and accuracy curves bottom out after

approximately 10 epochs. In the surgical action models, the training loss for the GoogLeNet

network rises after 2 epochs. Longer training of AlexNet has the same effect. Also the

accuracy of the model drops with higher numbers of epoch. We think this behavior origins

in overfitting. For anatomical structures, this is less a problem as the individual classes are

less diverse. We select the models for evaluation with respect to least train loss and highest

training accuracy.
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Fig. 3 Loss and accuracy for anatomy models based on AlexNet and GoogLeNet CNN architectures for 50

epochs

For the SVM learning process, we classifiy the training set with the AlexNet model

with our weights and with off-the shelf weights which have been pre-trained for ImageNet

classification. We extract feature vectors from three different locations of the network: the

vector of class probabilites, the layer fc7, and the layer fc6 as input for SVM training and

testing. For simplicity we refer to these vectors as class, fc7, and fc6 respectively. We use

OpenCV’s C_SVC, which enables n-class classification with penalty multiplier for outliers.

We do not set specific weights per class, thus we are treating misclassification of each class

equally. This approach is reasonable, as we use a balanced training set. We use a linear

SVM kernel, as this kernel worked best within preliminary studies. As termination criterion,

we set the maximum number of iterations to 1,000 and the tolerance to 10−6.
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Fig. 4 Loss and accuracy for action models based on AlexNet and GoogLeNet CNN architectures for the

first 15 epochs

5 Evaluation

For evaluation, we use the trained models of AlexNet and GoogLeNet architectures for

action and anatomy classification as well as SVM classifiers trained on high-level CNN

feature vectors fc6, fc7, and class from the AlexNet architecture. As weights, we use off-the-

shelf weights that ære trained for ImageNet classification. In order to compare the predictive

performance of the networks and the SVM approach, we use class-based precision and recall

as well as average precision and average recall values over all classes. Evaluating precision

and recall in a class-based manner has the advantage that the imbalance of the classes in

the test set is taken into account. For the calculation of precision, recall, and f-value of class



8072 Multimed Tools Appl (2018) 77:8061–8079

i, we determine T Pi (true positive classification of class i), FPi (number of false positive

predictions for class i), and FNi (number of false negative predictions of class i). We also

calculate the probability that the true class is among the top three predictions. We refer

to this probability as Recall@3, which we can not evaluate for the SVM approach as the

OpenCV interface does not allow for that.

For the evaluation, we create an own validation set consisting of approximately 70,000

frames by choosing five representational scenes per class. Please note that these scenes are

neither in the training nor in the test set. Thus, this additional set validates the generalization

capabilities of the approaches. The validation set size for action and anatomy is 50,988 and

21,568 images respectively. For a class distribution within the validation set, please refer to

Table 3.

For a detailed and class-based performance overview, please consult Table 4 for the

surgical action classification and Table 5 for anatomical structure classification.

On average, GoogLeNet achieves the best results for surgical action classification in

terms of Recall, Precision, f-value and Precision@3. However, there are classes where other

approaches work better. For example, AlexNet is better at the classification of Coagulation.

We think that origins in the fact that tissue after coagulation and cutting with a monopolar

needle device looks very similar and is distinguished by the used instruments only (which

are not visible on each frame in the scenes and also appear frequently in other scenes).

GoogLeNet interprets these instruments more likely to be contained in other scenes than

AlexNet. The SVM approach using layer fc6 is better at classes Injection as well as Suction

& Irrigation. These two classes are special, as they feature most reflections. We think that

features from AlexNet trained on the ILSVRC dataset better map reflections as the models

trained on a database where reflections occur constantly.

For anatomical structure classification, GoogLeNet also dominates the average

performance in terms of Recall, Precision, f-value, and Precision@3. Interstingly, if we look

at Recall@3, AlexNet slightly surpasses GoogLeNet at Colon, Ovaries, and Uterus classes.

The other two classes, Oviduct and Liver are dominated by GoogLeNet. Considering

the small number of anatomical structure classes, Recall@3 is not that expressive for

the anatomy subset when the distances are that small as we observe them in the cases

GoogLeNet performs worse than AlexNet. In terms of f-value, the combination of precision

and recall, GoogleNet dominates in all but the Liver class, where the SVM approach using

fc7 features dominates with a value of .909 compared to .879. The same approach yields

Table 3 Overview on the validation data set

Class ID Action class #imgs Anatomy Class #imgs

1 Blunt Dissection 1,620 Colon 1,396

2 Coagulation 2,037 Liver 1,846

3 Cutting Cold 655 Ovaries 3,174

4 Cutting 2,634 Oviduct 3,032

5 Hysterectomy (Sling) 5,119 Uterus 1,336

6 Injection 4,446

7 Suction & Irrigation 1,475

8 Suture 7,508

Each class consists out of five scenes
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Table 4 Detailed evaluation results for the action subset

1 2 3 4 5 6 7 8 Avg.

Recall

AlexNet .577 .431 .176 .858 .621 .177 .323 .590 .469

GoogLeNet .792 .322 .354 .962 .923 .406 .484 .690 .617

SVM Class .002 .000 .116 .073 .399 .000 .532 .003 .141

SVM fc7 .631 .308 .180 .687 .626 .549 .236 .299 .440

SVM fc6 .632 .302 .272 .612 .743 .682 .406 .470 .515

Precision

AlexNet .447 .295 .229 .607 .768 .741 .135 .593 .477

GoogLeNet .566 .260 .246 .838 .860 .881 .254 .812 .590

SVM Class .571 .000 .018 .492 .405 .500 .075 .458 .315

SVM fc7 .470 .207 .110 .568 .463 .681 .215 .574 .411

SVM fc6 .517 .290 .150 .552 .681 .651 .292 .707 .480

f-value

AlexNet .504 .350 .199 .711 .687 .285 .190 .591 .440

GoogLeNet .660 .288 .290 .896 .891 .555 .333 .746 .852

SVM Class .005 .000 .031 .128 .402 .000 .131 .006 .088

SVM fc7 .539 .248 .136 .622 .532 .608 .225 .393 .413

SVM fc6 .569 .296 .193 .581 .711 .666 .340 .565 .490

Recall@3

AlexNet .820 .732 .214 .966 .882 .392 .818 .895 .715

GoogLeNet .956 .857 .647 1.00 .972 .762 .988 .920 .888

For class IDs of the action classes, please refer to Table 1. Bold numbers indicate the top performance within

a class

good performance regarding recall for the class Uterus. With a value of .874, the features

of fc6 layer also provide a good precision for Oviduct classification.

Our results further imply that introduction of an additional SVM classifier does not

improve prediction results on average when introducing more sophisticated neural networks.

This off-the-shelf feature approach looses performance in terms of recall per class and mean

precision compared to GoogLeNet CNN. Interestingly, for actions, the more basic layer fc6

works better than the more abstract features fc7 and class achieving very poor performances.

For anatomical structures, the layer fc7 works best out of the three evaluated features which

are used as SVM input. We observe that the GoogLeNet architecture is superior to the

AlexNet architecture and SVM Classifiers.

Hence, this gives a strong indication that improvements of CNN methods in the

general domain of image classification lead to improvements in the specialized domain of

laparoscopic surgery image classification. Also, off-the-shelf features from AlexNet and

linear SVMs slightly outperform AlexNet training from scratch when the right layer is cho-

sen. We think this originates in the training set. This set is correctly annotated, but not fully

noise-free considering individual images. Comparing surgical action to anatomical structure

classification performance, it is obvious that anatomical structures perform much better in

overall performance. We think this originates in the very complex nature of surgical action

scenes compared to more static scenes featuring anatomical structures and the agnostic of

the temporal dimension.
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Table 5 Detailed evaluation results for the anatomy subset

1 2 3 4 5 Avg.

Recall

AlexNet .652 .596 .858 .442 .528 .615

GoogLeNet .795 .862 .888 .623 .743 .782

SVM Class .554 .601 .484 .562 .581 .556

SVM fc7 .663 .891 .755 .374 .801 .697

SVM fc6 .572 .854 .712 .412 .697 .649

Precision

AlexNet .595 .765 .546 .800 .613 .664

GoogLeNet .805 .896 .747 .839 .619 .781

SVM Class .461 .659 .591 .860 .273 .569

SVM fc7 .792 .927 .561 .862 .475 .724

SVM fc6 .751 .882 .535 .874 .408 .690

f-value

AlexNet .622 .670 .667 .569 .568 .619

GoogLeNet .800 .879 .811 .715 .676 .776

SVM Class .503 .629 .532 .680 .372 .543

SVM fc7 .722 .909 .644 .522 .596 .679

SVM fc6 .649 .868 .611 .560 .514 .641

Recall@3

AlexNet .979 .694 .986 .773 .989 .884

GoogLeNet .977 .928 .965 .868 .981 .944

For class IDs of the action classes, please refer to Table 2. Bold numbers indicate top performance within a

class
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We visualize the performance for our surgical action and anatomical structure classes of

the individual approaches using confusion matrices depicted in Fig. 5 for the CNN action

models, and Fig. 6 for CNN anatomy models. SVM confusion matrices are given in Fig. 7

for action classification, and Fig. 8 for anatomy classification. Columns denote the predicted

class while rows indicate the true class. Cell shades illustrate prediction percentage relative

to the number of examples for a class.

CNN and SVM action models perform poorest in the classes Coagulation, Cutting Cold,

and Suction & Irrigation. We think this originates in the fact that the single-frame CNN

models have limited means to model the way the instruments are used. For CNN and

SVM anatomy models, there is a bias to confuse the classes Ovaries, Uterus and Oviduct.

We think this originates in the fact that these organs are spatially very near and when

these organs are on the images, it is likely that parts of those other classes are visible

as well.

6 Conclusion

In this paper, we investigate CNN.based single-frame classification models for video shots

in gynecological surgery. Together with medical experts, we provide a first taxonomy

for important anatomical structures and surgical actions of interest for the domain of

laparoscopy videos in gynecology. For this domain, we build a dataset of 9 h of video data

manually extracted from 111 different medical interventions. In particular, we train two dif-

ferent CNN architectures AlexNet and GoogLeNet from scratch for both, surgical action

and anatomical structure classification. Furthermore, we investigate an SVM approach using

off-the-shelf neural network features from AlexNet: class, fc7, and fc6. The best results

from the SVM approach using features extracted from AlexNet using off-the-shelf weights

outperform the full AlexNet CNN trained from scratch in both, anatomical structure as well

as action classification which might originate in the choice to label the database scene-wise

and not on a per-frame basis. Moreover, GoogLeNet, the best-performing approach on gen-

eral images, also is the best performing approach in this domain. These results imply that

advances in general image classification domains can lead to advances in difficult expert

domains, such as our use case of gynecological surgery video classification.

Despite the fact that this domain is pretty narrow, there is plenty of future work to do. We

think a per-pixel classification approach for anatomical structures could yield more accu-

rate results for structures which are spatially near each other. More examples for future

work include the evaluation of more sophisticated approaches for video classification, such

as frame fusion models or LSTM-based models. Also, the question of whether we can sur-

pass human performance by adding more network depth remains open. However, we think

that classification of surgical actions provides the most benefit for surgeons and therefore

focus on the following point. We assume that the capabilities of the used single-frame CNN

models AlexNet and GoogLeNet are not fully utilized. Hence, we aim at an improvement of

surgical action classification by using early fusion of raw image data with multiple (domain-

specific) modalities of which at least one represents a temporal dimension, such as motion

vectors.
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