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Abstract: Acquiring a diverse repertoire of general-purpose skills remains an
open challenge for robotics. In this work, we propose self-supervising control on
top of human teleoperated play data as a way to scale up skill learning. Play has
two properties that make it attractive compared to conventional task demonstra-
tions. Play is cheap, as it can be collected in large quantities quickly without task
segmenting, labeling, or resetting to an initial state. Play is naturally rich, cov-
ering ∼4x more interaction space than task demonstrations for the same amount
of collection time. To learn control from play, we introduce Play-LMP, a self-
supervised method that learns to organize play behaviors in a latent space, then
reuse them at test time to achieve specific goals. Combining self-supervised con-
trol with a diverse play dataset shifts the focus of skill learning from a narrow and
discrete set of tasks to the full continuum of behaviors available in an environment.
We find that this combination generalizes well empirically—after self-supervising
on unlabeled play, our method substantially outperforms individual expert-trained
policies on 18 difficult user-specified visual manipulation tasks in a simulated
robotic tabletop environment. We additionally find that play-supervised models,
unlike their expert-trained counterparts, are more robust to perturbations and ex-
hibit retrying-till-success behaviors. Finally, we find that our agent organizes its
latent plan space around functional tasks, despite never being trained with task
labels. Videos, code and data are available at learning-from-play.github.io

1 Introduction

There has been significant recent progress showing that robots can be trained to be competent spe-
cialists, learning complex individual skills like grasping ([1]), locomotion, and dexterous manipula-
tion ([2]). In this work, we are motivated by the idea of a robot generalist: A single agent capable of
learning a wide variety of skills. This remains a challenging open problem in robotics.

Conventionally, obtaining multiple skills involves defining a discrete set of tasks we care about,
collecting a large number of labeled and segmented expert demonstrations per task, then training
one specialist policy per task in a learning from demonstration (LfD) [3] scenario. Alternatively,
we might turn to reinforcement learning as a means of obtaining a set of skills, which would entail
manually designing one reward per task to drive policy learning. Unfortunately, designing reward
functions for robotic skills is very challenging, especially when learning from raw observations, typ-
ically requiring manually-designed perception systems. Additionally, using reinforcement learning
in complex settings such as robotics requires overcoming significant exploration challenges, typi-
cally addressed by introducing manual scripting primitives to an unsupervised collection ([4]) that
increase the likelihood of behavior with non-zero reward. In general for both paradigms, for each
new skill a robot is required to perform, a corresponding, sizeable, and non-transferable human
effort must be expended.

Furthermore, in real world settings, agents will be expected to perform not just a small discrete
set of tasks, but rather a wide continuum of behaviors. This presents a challenge for conventional
methods—if a slight variation of a skill is needed, e.g. opening a drawer by grasping the handle from
the top down rather than bottom up, an entirely new set of demonstrations or reward functions might
be required to learn the behavior. To address this, we are motivated by the idea of an agent capable of
task-agnostic control: the ability to reach any reachable goal state from any current state [5]. In this
setting, the notion of “task” is no longer discrete, but continuous—indexed by the pair (current state
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Figure 1: Play-LMP: A single model that self-supervises control from play data, then generalizes to a wide
variety of manipulation tasks. (a) Training: 1) sample a random window of experience from a memory of
play data; 2) train to recognize and organize a repertoire of behaviors executed during play in a latent plan
space, 3) train a policy, conditioned on current state, goal state, and a sampled latent plan to reconstruct the
actions in the selected window. The latent plan space is shaped by two stochastic encoders: plan recognition
and plan proposal. Plan recognition takes the entire sequence, recognizing the exact behavior executed. Plan
proposal takes the initial and final state, outputting a distribution over all possible behaviors that connect initial
state to final. We minimize the KL divergence between the two encoders, making the plan proposal assign
high likelihood to behaviors that were actually executed during play. (b) Inference: the policy is conditioned
on the current state, the goal state (specified by the user) and a latent plan which is sampled once from a plan
distribution (inferred from the current and goal states).

sc, goal state sg). Learning in this setting can be formalized as the search for a goal-conditioned
policy πθ(a|sc, sg) (Kaelbling [6]).

To generalize to the widest variety of tasks at test time (indexed by the pair (sc, sg)), it stands that
the agent should see the widest variety of (sc, sg) pairs during training, along with actions that
connect current and goal states. The ideal dataset to learn task-agnostic control then is both broad
and dense in its coverage of the environment’s interaction space: Fig. 2a. Unfortunately, it is difficult
to obtain datasets with this sort of coverage (Fig. 2b) in practice. Random exploration, while cheap
to collect, is typically insufficiently rich to power the learning of complex manipulation. Expert
demonstrations, on the other hand, can be arbitrarily complex but are expensive to collect, and still
typically form narrow training distributions over visited states, leading to an empirical “distribution
shift” problem (Ross et al. [7]) at test time.

In this work, we propose an alternative means of obtaining task-agnostic control—self-supervising
on top of unlabeled teleoperated play data: continuous logs of low-level observations and actions
collected while a human teleoperates the robot and engages in behavior that satisfies their own
curiosity. We emphasize two properties that make human play data a compelling choice for the basis
of learning goal-conditioned control. Play data is cheap: Unlike expert demonstrations (Fig. 5), play
requires no task segmenting, labeling, or resetting to an initial state, meaning it can be collected
quickly in large quantities. Play data is rich. Play is not random but rather structured by human
knowledge of object affordances (e.g. if people see a button in a scene, they tend to press it).
This makes play much more discriminate than what can be achieved by random scripting. Unlike
task demonstrations, operators are driven by their own curiosity during play, trying multiple ways
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Figure 2: The continuum of skills and its coverage. We advocate for learning the full continuum of skills
at once rather than discrete ones. (a) The ideal coverage is dense and broad over all regions of the space,
providing statistical support for all pairs of (current state, goal state). (b) We hypothesize different approaches
yield different coverages. (c) We observe in real datasets that for the same amount of collection time, play data’s
coverage largely surpasses that of 18 tasks worth of expert demonstrations and random exploration. Unlike the
other methods, play data coverage appears to grow linearly with collection time. This prompted us to explore
its coverage at larger scales, where we continued to observe the phenomenon. (d). See details in A.4.3 in [8].

of achieving the same outcome or exploring new behaviors. In this way, we can expect play to
naturally cover an environment’s interaction space. In our datasets Fig. 2c, we find empirically that
for the same amount of collection time, play indeed covers 4.2 times more regions of the available
interaction space than 18 tasks worth of expert demonstration data, and 14.4 times more regions than
random exploration.

In Sec. 3, we propose two self-supervised methods for learning task-agnostic control from play:
Play-GCBC and Play-LMP.

2 Related Work

Robotic learning methods generally require some form of supervision to acquire behavioral skills.
Conventionally, this supervision either consists of a cost or reward signal, as in reinforcement learn-
ing [9, 10, 11], or demonstrations, as in imitation learning Pastor et al. [3]. However, both of these
sources of supervision require considerable human effort to obtain: reward functions must be en-
gineered by hand, which can be highly non-trivial in environments with natural observations, and
demonstrations must be provided manually for each task. When using high-capacity models, hun-
dreds or even thousands of demonstrations may be required for each task (Zhang et al. [12], Rahma-
tizadeh et al. [13], Rajeswaran et al. [14], Duan et al. [15]). In this paper, we instead aim to learn
general-purpose policies that can flexibly accomplish a wide range of user-specified tasks, using data
that is not task-specific and is easy to collect. Our model can in principle use any past experience for
training, but the particular data collection approach we used is based on human-provided play data.

In order to distill non task-specific experience into a general-purpose policy, we set up our model to
be conditioned on the user-specified goal. Goal conditioned policies have been explored extensively
in the literature for reinforcement learning [6, 16, 17, 18, 19, 20], as well as for control via inverse
models [21, 22, 23, 24]. Learning powerful goal-conditioned policies with reinforcement learning
can produce policies with good long-horizon performance, but is difficult in terms of both the num-
ber of samples required and the need for extensive on-policy exploration [25, 26]. We instead opt to
train our model with supervised learning. This introduces a major challenge, since the distribution
over actions that can reach a temporally distant goal from the current state based on the data can be
highly multimodal. Even single-task imitation models of this sort must contend with multimodality
[27], and goal-conditioned models are typically restricted to short and relatively simple tasks, such
as pushing [21], re-positioning rope [22], or short-distance navigation [28]. We tackle substantially
more temporally extended tasks, using our proposed latent plan model, which models the multi-
modality explicitly using a hierarchical latent variable model. Hausman et al. [29] similarly learn
a continuous latent space of closely related manipulation skills, instead learning the space with a
discrete set of reinforcement learned tasks, defined by per-task rewards. In contrast to prior work on
few-shot learning from demonstration ([30, 31]), our method does not require a meta-training phase,
any expensive task-specific demonstrations, or a predefined task distribution. In contrast to prior
work that uses reinforcement learning (Paine et al. [32]), it does not require any reward function or
costly RL phase. Finally, Nachum et al. [33] derive a similar architecture to Play-LMP, justifying it
in a hierarchical reinforcement learning setting.
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Figure 3: The Playground environment. Details in A.3.1 in [8]
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Figure 5: Example of a supervised demonstration sequence labeled and segmented for the ”sliding” task.

3 Learning Task-Agnostic Control from Play Data

First we give a definition of the type of data we collect for our experiments and our assumptions
about its collection. We create a simulated “playground environment” (Fig. 3 and A.3.1 in [8]) for
play collection and task evaluation. In this environment an 8-DOF simulated robot (arm and gripper)
is situated in front of a desk with a sliding door and a drawer. On the desk is a rectangular block and
3 buttons that control lights. See an example of a play sequence in that environment in A.3.2 in [8].

What is Play? We propose play data is generated as follows: A human operator, given the current
state of the world sc, formulates a mental image of a goal state they would like to reach next sg ,
driven by their curiosity or some other intrinsic motivation. For example, in an environment with a
ball and cup sitting next to one other, the operator might choose sg representing “ball in cup”. Given
the current state sc (“ball next to cup”), and goal state sg (“ball in cup”), the operator considers all
the different high-level behaviors b that would achieve the goal. E.g., “place ball in cup”, “toss ball
in cup”, “bounce ball into cup” would all lead to sg . We can consider a prior distribution over all the
valid ways of reaching sg from sc, p(b|sc, sg), a behavioral repertoire encoding knowledge of object
affordances and environment dynamics. To actually achieve the desired outcome, they sample a
single high-level behavior plan from the distribution b ∼ p(b|sc, sg) and execute it, producing the
observed stream of low level state and action logs. We emphasize that play is not arbitrary behavior,
nor “random” actions, but rather the very deliberate goal-conditioned behavior that a person engages
in under their own direction.

3.1 Play-Supervised Goal-Conditioned Behavioral Cloning

We now describe “play-supervised goal-conditioned behavioral cloning”, or Play-GCBC, a method
that extracts goal-conditioned policies using self-supervision on top of raw unlabeled play data.
Let D be a play dataset, the unsegmented stream of high-dimensional sensory observations
and actions logged during teleoperation play. D consists of paired (Ot, at) tuples D =
{(O1, a1), · · · , (OT , aT )}. Ot is the set of observations from each of the robot’s N sensory channels
{o1, ..., oN}t at time t and at is the logged teleoperation action. In our experiments, O = {I, p}
consists of I , an RGB image observation from a fixed first-person viewpoint, and p, the internal
8-DOF proprioceptive state of the agent. See A.2 in [8] for details.

The key idea behind Play-GCBC is that a random window of (observation, action) pairs extracted
from play describes exactly how the robot got from a particular initial state to a particular final
state. Furthermore, it is guaranteed that the final state is reachable from the initial state under the
intervening actions. We can exploit this simple structure to create a self-supervised labeling scheme
for a goal-conditioned policy, treating the initial state of a random sequence as “current state”, the
final state as “reachable goal state”, and the actions taken as the labels to reproduce.
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Encoding perceptual inputs: Since our logs are raw observations, we define one encoder per sen-
sory channel Φ = {E1, ..., EN} with parameters θΦ, mapping N high-dimensional observations in
each O per timestep to one low-dimensional fused state st = concat([E1(o1), ..., EN (oN )]). For
simplicity we refer to this operation as st ← Φ(Ot).
Goal-conditioned policy: Let πGCBC(at|st, sg) be a stochastic RNN goal-conditioned policy with
parameters θGCBC , mapping from current state st and goal state sg to the parameters of a distri-
bution over next action at. We train Play-GCBC on batches of random play sequences as follows:
For each training batch, and each batch sequence element: we sample a κ-length sequence of obser-
vations and actions τ . We extract the final observation in τ as the synthetic goal state and encode
it. At each timestep t in τ , πGCBC takes as input the current state st ← Φ(Ot) and goal state sg ,
and maps to the parameters of a distribution over next action at. Both the encoders and the policy
are trained end-to-end to maximize the log likelihood of each action taken during the sampled play
sequence.

LGCBC = −
1

κ

k+κ
∑

t=k

log
(

πGCBC(at|st, sg)
)

(1)

We describe the minibatch training pseudo-code in Algorithm 1.

Multimodality problem: A challenge in self-supervising control on top of play is that in general,
there are many valid high-level behaviors that might connect the same (sc, sg) pair. This presents
multiple counteracting action label trajectories, which can impede learning. Therefore, policies must
be expressive enough to model all possible high-level behaviors that lead to the same goal outcome.

3.2 Play-supervised Latent Motor Plans

Motivation. We propose that unsupervised representation learning is well poised to address the
multimodality problem. Consider the following as motivation: if we could learn compact repre-
sentations of all the different high-level plans that take an agent from a current state to goal state
(essentially learning p(b|sc, sg)) and condition a policy on a single sampled plan, we could convert
a multimodal policy learning problem into a unimodal one. That is, a policy previously tasked with
a difficult multimodal plan inference problem would now be relieved of that problem, and free to
use the entirety of its capacity for unimodal plan execution. Ideally, individual points in the space
correspond to reusable common behaviors executed during teleoperation play. But how do we learn
good representations of high-level behavior unsupervised? Furthermore, how would we connect
plan representation learning to our main goal of extracting goal-conditioned policies?

Plan Representation Learning Leads to Goal-Conditioned Control. We turn to the widely influ-
ential variational autoencoder (VAE) ([34] framework to learn plans from play. VAEs combine latent
representation learning with deep generative models of observed data. Interestingly, we find that by
starting with a pure plan representation learning problem and respecting the fact that plans depend
on observed current and goal state, the generative decoder part of the model becomes equivalent to
a goal and plan-conditioned policy. See A.1.1 in [8] for discussion.

We call this method “Play-supervised Latent Motor Plans”, or Play-LMP, a unified objective for
learning reusable plan representations and task-agnostic control from unlabeled play data. Formally,
Play-LMP is a conditional sequence-to-sequence VAE (seq2seq CVAE) (Sohn et al. [35], Bowman
et al. [36]), autoencoding random experiences extracted from play through a latent plan space.

As a CVAE, Play-LMP consists of three components trained end-to-end: 1) Plan recognition: a
stochastic sequence encoder, taking a randomly sampled play sequence τ as input and mapping it
to a distribution qφ(z|τ) in latent plan space, the learned variational posterior. 2) Plan proposal: a
stochastic encoder taking the initial state sc and final state sg from the same sequence τ , outputting
pθ(z|sc, sg), the learned conditional prior. The goal of this encoder is to represent the full distri-
bution over all high-level behaviors that might connect current and goal state, potentially capturing
multiple solutions. 3) Plan and goal-conditioned policy: A policy conditioned on the current state
sc, goal state sg and latent plan z sampled from the posterior qφ(z|τ), trained to reconstruct the
goal-directed actions taken during play, following inferred plan z.

Like Play-GCBC, Play-LMP takes as input batches of randomly sampled play sequences τ and is
trained as follows:
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Plan encoding. For each training batch, and each batch sequence element τ : We first map the
sequence of raw observations in τ to a sequence of encoded states, using perceptual encoders Φ:
τ∗ = Φ(τ). Venc (“video encoder”), a bidirectional sequence encoder with parameters θV , im-
plements the posterior, taking preprocessed τ∗ as input and mapping it to the parameters of a dis-
tribution in latent plan space: µφ, σφ = Venc(τ∗). As is typical with training VAEs, we assume

the encoder has a diagonal covariance matrix, i.e. z ∼ N (µφ, diag(σ2
φ)). Individual latent plans z

are sampled from this distribution at training time via the “reparameterization trick” (Kingma and
Welling [34]) and handed to a latent plan and goal conditioned action decoder (described next) to be
decoded into reconstructed actions1.

Plan prior matching. We simultaneously extract synthetic “current” and “goal” states from the
same sequence τ that Venc just encoded: sc ← Φ(Ot) and sg ← Φ(Ot+κ). We define CGenc (“cur-
rent, goal encoder”), to be a feedforward network with parameters θCG implementing the learned
conditional prior. CGenc takes concatenated sc and sg , and outputs the parameters of a distribution
in latent plan space: µψ, σψ = CGenc(sc, sg). Venc and CGenc are trained jointly by minimizing
the KL divergence between their predicted distributions:

LKL = KL
(

N (z|µφ, diag(σ2
φ)) || N (z|µψ, diag(σ2

ψ))
)

(2)

Intuitively, LKL forces the distribution over plans output by CGenc to place high probability on
actual latent plans recognized during play by Venc .

Plan decoding. Finally we define πLMP , a stochastic RNN with parameters θLMP . πLMP takes
as input current state st, goal state sg , and a sampled latent plan z, and outputs the parameters of
a distribution in the agent’s action space A. The purpose of πLMP is both to act as a decoder in
a representation learning context and a goal and plan-conditioned policy in a task-agnostic control
context. We note that by taking plan z as input, the policy is relieved from having to represent
multiple high-level plans implicitly, aligning well with the original motivation. We compute the
action reconstruction cost as follows: For each timestep t in the input sequence τ , we feed in st ←
Φ(Ot), sg , and z to πLMP , which outputs the parameters for a probability distribution over observed

action at. We compute the maximum likelihood action reconstruction loss2 for each timestep:

Lπ = −
1

κ

k+κ
∑

t=k

log
(

πLMP (at|st, sg, z)
)

(3)

Gradients from this loss are backpropagated through πLMP , the reparameterized sampling oper-
ation, Venc , and encoders Φ, optimizing the entire architecture end-to-end. The full Play-LMP
training objective is:

LLMP = Lπ + βLKL (4)

Note that following Higgins et al. [37], we introduce a weight β, controlling LKL’s contribution to
the total loss. Setting β <1 was sufficient to avoid “posterior collapse” (Bowman et al. [36]), a
commonly identified problem in VAE training in which an over-regularized model combined with
a powerful decoder tends to ignore the latent variable z. We describe the full Play-LMP minibatch
training pseudocode in Algorithm 2.

Task-agnostic control at test time. Here we describe how Play-LMP solves user-provided ma-
nipulation tasks at test time. At the beginning of each test episode, the agent starts in some cur-
rent state Oc and receives a perceptual human-provided goal Og . Both are encoded in state space
(sc ← Φ(Oc), sg ← Φ(Og)), concatenated, and fed to the learned conditional prior, CGenc , which
outputs a distribution over high-level latent behavior plans z that should take the agent from sc to
sg . The agent samples a single plan z from the distribution, then decodes it in closed loop in the
environment. At each timestep of the decoding, the agent feeds (st, sg , z) to πLMP , a low level ac-
tion is sampled at ∼ πLMP (at|st, sg, z). We allow the agent to “replan” by inferring and sampling
new latent plans every κ timesteps (matching the average planning horizon it was trained with). In
our experiments, our agent gets observations and takes low-level actions at 30hz. We set κ to 32,
meaning that the agent replans at roughly 1hz. See Fig. 1b for details.

1We note that Venc is only used at training time to help learn a latent plan space, and is discarded at test
time. While we could in principle use Venc at test time to perform full sequence imitation, in this work we
restrict our attention to tasks specified by individual user-provided goal states.

2We can optionally also have the decoder output state predictions, and add another loss term penalizing a
state reconstruction loss.
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4 Experiments

In our experiments, we aim to answer the following questions: 1) Can a single play-supervised
policy generalize to a wide variety of user-specified visual manipulation tasks, despite not being
trained on task-specific data? 2) Are play-supervised models trained on cheap to collect play data
(LfP) competitive with specialist models trained on expensive expert demonstrations for each task
(LfD)? 3) Does decoupling latent plan inference and plan decoding into independent problems, as is
done in Play-LMP, improve performance over goal-conditioned Behavioral Cloning (Play-GCBC),
(which does no explicit latent plan inference)?

Tasks and Dataset: We define 18 visual manipulation tasks (see A.3.3 in [8]) in the same environ-
ment that play was collected in (Fig. 3 and A.3.1 in [8]). To compare our play-supervised models
to a conventional scenario, we collect a training set of 100 expert demonstrations per task in the
environment, and train one behavioral cloning policy (BC, details in A.1.2 in [8]) on the corre-
sponding expert dataset. This results in 1800 demonstrations total or ∼1.5 hours of expert data. We
additionally train a single multi-task behavioral cloning baseline conditioned on state and task id,
Multitask BC (Rahmatizadeh et al. [27]), trained on all 18 BC expert demonstration datasets. We
collect play datasets (example in A.3.2 in [8]) of various sizes as training data for Play-LMP and
Play-GCBC, up to ∼7 hours total. We define two sets of experiments over these datasets: pixel
experiments, where we study the multi-task visual manipulation problem, and state experiments,
where we ignore the visual representation learning problem and provide all models with ground
truth states (positions and orientations of all objects in the scene) as observations. The motivation
of the state experiments is to understand the how all methods compare on the control problem in-
dependent of visual representation learning, which could potentially be improved independently via
other self-supervised methods e.g. Sermanet et al. [38].

training data
Method labels input success %

BC labeled pixels 66.5%± 12.1
Play-GCBC (ours) unlabeled pixels 58.7%± 11.6
Play-LMP (ours) unlabeled pixels 69.4% ±10.8

BC labeled states 70.3%
Multitask BC labeled states 66.2%
Play-GCBC (ours) unlabeled states 77.9%
Play-LMP (ours) unlabeled states 85.5%

(a) 18-task success.
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Figure 6: Quantitative task success and robustness. (a) Play-LMP consistently outperforms the baselines,
whether trained on groundtruth states or directly on pixels. Success is reported with confidence intervals over
3 seeded training runs for pixel experiments. (b) models trained on play data are more robust to perturbations
to the initial position. See Sec. 4 for details.
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Figure 7: Improvement per task of Play-LMP over Play-GCBC (left) and BC baselines (right), in absolute
percentage points of accuracy (model trained on states).

Task success with play-supervision: We present our main findings for both experiments in Ta-
ble 6a. First, we find that despite not being trained on task labels, a single Play-LMP policy out-
performs the 18 specialized and supervised BC models (answering experimental questions 1 and
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2). Additionally, we find that the decoupling happening in Play-LMP compared to Play-GCBC is
beneficial and yields systematic improvements in performance. We report in Fig. 7 the absolute
improvement per task in percentage points of Play-LMP over the baselines, with up to 50 points of
improvement.
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Figure 8: 18-tasks average success for self-supervised models trained on various amounts of cheap play data
(left) vs. expert-trained models trained on expensive task demonstrations (right). A single task-agnostic Play-
LMP policy, trained on unlabeled play data generalizes with 85.5% success to the 18 test-time tasks with no
finetuning, outperforming a collection of 18 expert-trained BC policies who reach 70.3% average success. This
holds true even when Play-LMP is artificially restricted to only 30 minutes of play data (71.8%), despite play
being easier and cheaper to collect than expert demonstrations. These data ablation numbers were obtained
from models trained on ground truth state observations. Shaded regions indicate 95% confidence intervals over
20 rollouts. See Sec. 4 for details.

Scalability: We see in Fig. 8 that even when trained on only 30 minutes of play data, individual
Play-LMP policies outperform 18 BC policies trained on 90 minutes of expert task-specific demon-
strations. We feel this highlights the scalability and generality of the approach—that models trained
only on random windows extracted from play are prepared for specific tasks presented to them at test
time. We believe this comparison is fair for two reasons: 1) the baseline gets 3x more training data,
2) the baseline training data consists of curated task-specific demonstrations of optimal behavior,
whereas there is no guarantee that 30 minutes of play data contains optimal task demonstrations.

Robustness: In Fig. 6b, we find that models trained on play data (Play-LMP and Play-GCBC)
are significantly more robust to perturbations than the model trained on expert demonstrations only
(BC), a phenomenon we attribute to the inherent coverage properties of play data over demonstration
data. More details in A.4.1 in [8].

Unsupervised task discovery: We investigate the latent plan spaced learned by Play-LMP, seeing
whether or not it is capable of encoding task information despite not being trained with task labels.
In Fig. 4 we embed 512 randomly selected windows from the play dataset as well as all validation
task demonstrations, using the Φ plan recognition model. Surprisingly, we find that despite not being
trained explicitly with task labels, Play-LMP appears to organize its latent plan space functionally.
E.g. we find certain regions of space all correspond to drawer manipulation, while other regions
correspond to button manipulation.

Emergent Retrying: We find qualitative evidence that play-supervised models, unlike models
trained solely on expert demonstrations, make multiple attempts to retry the task after initial failure.
See A.4.2 in [8].

5 Conclusion

In this work, we advocate for learning the full continuum of tasks using unlabeled play data, rather
than discrete tasks using expert demonstrations. We introduce a self-supervised plan representation
learning algorithm able to discover task semantics despite never seeing any task labels. By learning
to generate actions for its task-agnostic policy, the model is able to train an entire deep sensory stack
from scratch. We showed that play brings scalability to data collection, as well as robustness to the
models trained with it. We explore the setting where play data and test-time tasks are defined over
the same playroom environment. Future work includes exploring whether generalization is possible
to novel objects or novel environments, as well as exploring the effects of imbalance in play data
distributions as discussed in A.5 in [8].
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[13] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine. Vision-based multi-task manipulation for
inexpensive robots using end-to-end learning from demonstration. CoRR, abs/1707.02920, 2017. URL
http://arxiv.org/abs/1707.02920.

[14] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine. Learning
complex dexterous manipulation with deep reinforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017.

[15] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba.
One-shot imitation learning. CoRR, abs/1703.07326, 2017. URL http://arxiv.org/abs/1703.
07326.

[16] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning with imagined
goals. In Advances in Neural Information Processing Systems, pages 9209–9220, 2018.

[17] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin, O. P.
Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in Neural Information Processing
Systems, pages 5048–5058, 2017.

[18] A. Levy, R. P. Jr., and K. Saenko. Hierarchical actor-critic. CoRR, abs/1712.00948, 2017. URL http:
//arxiv.org/abs/1712.00948.

[19] P. Rauber, F. Mutz, and J. Schmidhuber. Hindsight policy gradients. CoRR, abs/1711.06006, 2017. URL
http://arxiv.org/abs/1711.06006.

[20] S. Cabi, S. G. Colmenarejo, M. W. Hoffman, M. Denil, Z. Wang, and N. de Freitas. The intentional unin-
tentional agent: Learning to solve many continuous control tasks simultaneously. CoRR, abs/1707.03300,
2017. URL http://arxiv.org/abs/1707.03300.

9



[21] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking: Experiential learning
of intuitive physics. CoRR, abs/1606.07419, 2016. URL http://arxiv.org/abs/1606.07419.

[22] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining self-supervised
learning and imitation for vision-based rope manipulation. CoRR, abs/1703.02018, 2017. URL http:
//arxiv.org/abs/1703.02018.

[23] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin, P. Abbeel, and W. Zaremba.
Transfer from simulation to real world through learning deep inverse dynamics model. arXiv preprint
arXiv:1610.03518, 2016.

[24] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. CoRR, abs/1805.01954, 2018.
URL http://arxiv.org/abs/1805.01954.

[25] L. Pinto and A. Gupta. Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot
Hours. IEEE International Conference on Robotics and Automation (ICRA), 2016.

[26] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning Hand-Eye Coordination for Robotic Grasp-
ing with Deep Learning and Large-Scale Data Collection. International Journal of Robotics Research,
2017.

[27] R. Rahmatizadeh, P. Abolghasemi, L. Boloni, and S. Levine. Vision-based multi-task manipulation for
inexpensive robots using end-to-end learning from demonstration. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 3758–3765. IEEE, 2018.

[28] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik, A. A. Efros,
and T. Darrell. Zero-shot visual imitation. In ICLR, 2018.

[29] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller. Learning an embedding space for
transferable robot skills. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rk07ZXZRb.

[30] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-learning.
arXiv preprint arXiv:1709.04905, 2017.

[31] Z. Wang, J. S. Merel, S. E. Reed, N. de Freitas, G. Wayne, and N. Heess. Robust imitation of diverse
behaviors. In Advances in Neural Information Processing Systems, pages 5320–5329, 2017.

[32] T. L. Paine, S. G. Colmenarejo, Z. Wang, S. E. Reed, Y. Aytar, T. Pfaff, M. W. Hoffman, G. Barth-Maron,
S. Cabi, D. Budden, and N. de Freitas. One-shot high-fidelity imitation: Training large-scale deep nets
with RL. CoRR, abs/1810.05017, 2018. URL http://arxiv.org/abs/1810.05017.

[33] O. Nachum, S. Gu, H. Lee, and S. Levine. Near-optimal representation learning for hierarchical rein-
forcement learning. CoRR, abs/1810.01257, 2018. URL http://arxiv.org/abs/1810.01257.

[34] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[35] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional generative
models. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages 3483–3491. Curran Associates, Inc., 2015.

[36] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating sentences
from a continuous space. 2016.

[37] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. β-
VAE: Learning basic visual concepts with a constrained variational framework. International Conference
on Learning Representations (ICLR), 2017.

[38] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, and S. Levine. Time-contrastive networks:
Self-supervised learning from video. International Conference in Robotics and Automation (ICRA), 2018.
URL http://arxiv.org/abs/1704.06888.

[39] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: Improving the pixelcnn with
discretized logistic mixture likelihood and other modifications. CoRR, abs/1701.05517, 2017. URL
http://arxiv.org/abs/1701.05517.

[40] V. Kumar and E. Todorov. Mujoco haptix: A virtual reality system for hand manipulation. In Humanoid
Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on, pages 657–663. IEEE, 2015.

[41] A. van den Oord, O. Vinyals, et al. Neural discrete representation learning. In Advances in Neural
Information Processing Systems, pages 6306–6315, 2017.

10


