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Abstract

In this paper, we tackle the problem of understanding

the temporal structure of complex events in highly varying

videos obtained from the Internet. Towards this goal, we

utilize a conditional model trained in a max-margin frame-

work that is able to automatically discover discriminative

and interesting segments of video, while simultaneously

achieving competitive accuracies on difficult detection and

recognition tasks. We introduce latent variables over the

frames of a video, and allow our algorithm to discover and

assign sequences of states that are most discriminative for

the event. Our model is based on the variable-duration hid-

den Markov model, and models durations of states in addi-

tion to the transitions between states. The simplicity of our

model allows us to perform fast, exact inference using dy-

namic programming, which is extremely important when we

set our sights on being able to process a very large number

of videos quickly and efficiently. We show promising results

on the Olympic Sports dataset [16] and the 2011 TRECVID

Multimedia Event Detection task [18]. We also illustrate

and visualize the semantic understanding capabilities of our

model.

1. Introduction

With the advent of Internet video hosting sites such as

YouTube, personal Internet videos are now becoming ex-

tremely popular. There are numerous challenges associated

with the understanding of these types of videos; we focus

on the task of complex event detection. In our problem def-

inition, we are given Internet videos labeled with an event
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Figure 1. Examples of Internet videos for the event of “Grooming

an animal” from the TRECVID MED dataset [18] that illustrate

the variance in video length and temporal localization of the event.

Video 3 is the only video similar to sequences typically seen in

activity recognition tasks, where the event occupies the video in

full.

class, where the label specifies the complex event that oc-

curs within the video. This is a weakly-labeled setting, as

we are not given temporally localized videos. This means

that the event can occur anywhere within the video, and we

do not have temporal segmentations that indicate the time

points at which the event occurs. The detection aspect of

our problem manifests itself at the video level, where in the

testing phase, we are also given large numbers of irrelevant

videos, and must detect videos that correspond to events of

interest. This is in contrast to the typical detection task of

localizing the event within the video.

Of the difficulties presented by Internet videos, we fo-

cus on two points that have been largely ignored by recent

computer vision algorithms. First, there is a large number

of videos available on the Internet, creating the need for al-

gorithms that are able to efficiently index and process this

wealth of data. Secondly, there is a large amount of variance

in these videos, ranging from differences in low-level pro-
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cessing such as length and resolution, to high-level concepts

such as activities, events, and contextual information. In ad-

dition, there is high intra-class variance when trying to as-

sign class labels to these types of videos, as more often than

not the videos are not temporally localized, and will contain

varying amounts of contextual or unrelated segments.

These points have not been addressed by much of the

recent research on activity recognition and event detec-

tion [6, 22]. Although some of the recent works have con-

sidered Internet videos, complex activity recognition tasks

are typically already temporally localized [13, 16], and

event detection tasks focus only on localizing well-defined

primitive events [9]. In addition, few of these works deal

with large-scale classification.

In order to successfully classify these types of videos, we

formulate a model over the temporal domain that is able to

discriminatively learn the transitions between events of in-

terest, as well as the durations of these events. We reiterate

the challenges associated with complex event detection in

Internet videos and highlight key contributions of our model

that address these issues:

Extremely large number of difficult videos. Using dy-

namic programming, our model is able to perform effi-

cient, exact inference, and our max-margin learning frame-

work is based on the linear kernel Support Vector Machine

(SVM), which can be optimized very quickly using LIB-

LINEAR [3]. Together, the inference and learning pro-

cedures allow us to process large numbers of videos very

quickly. Also, the discriminative nature of our learning en-

ables us to obtain competitive classification results on diffi-

cult datasets.

Large amounts of variation in video length. Several pre-

vious methods that attempt to model temporal structure as-

sume a video to be of normalized length [12, 16]. How-

ever, this is an unrealistic assumption, as the frame rates of

the videos are generally on the same scale. Regardless of

the duration of a video, a simple motion should still occupy

the same number of frames. Our model is able to account

for this by representing videos as sequences of fixed length

temporal segments.

Weakly-labeled complex events that are not temporally

localized. Our model is flexible and allows for sequenced

states of interest to transition and occur anywhere within a

video, which is crucial for the weakly-labeled setting. The

appearance, transitions, and durations of these states are au-

tomatically learned with only a class label for the video.

In addition, the states can also correspond to semantically

meaningful concepts, such as distinguishing between se-

quences of frames that are relevant and irrelevant for an

event of interest.

In summary, the contributions of this paper are two-fold.

First, we identify several challenges and difficulties associ-

ated with complex event detection in Internet videos, a task

of growing importance. And secondly, we formulate a dis-

criminative model that is able to address these issues, and

show promising results on difficult datasets.

2. Related Work

We review related work on Hidden semi-Markov Mod-

els (HSMMs), Conditional Random Fields (CRFs), and dis-

criminative temporal segments in the context of video, and

refer the reader to a recent survey in the area by Turaga et

al. [24] for a comprehensive review.

HSMMs [2, 8, 14], CRFs [19, 23], semi-CRFs [20], and

similar probabilistic frameworks [1] have been previously

used to model the temporal structure of videos and text.

However, these works differ from ours in that they are ap-

plied to different domains such as surveillance video and

gesture recognition, and typically require the states to not

be latent in order for the models to work. In addition, many

of these models were not formulated with large-scale clas-

sification in mind, and have complex inference procedures.

Most similar to our method are recent works in video that

learn discriminative models over temporal segments [12,

15, 16, 21]. Satkin & Hebert [21] and Nguyen et al. [15]

attempt to discover the most discriminative portions or seg-

ments of videos. Laptev et al. [12] divide videos into

rigid spatio-temporal bins and compute separate feature his-

tograms from each bin to capture a rough temporal ordering

of features. Niebles et al. [16] represent videos as tempo-

ral compositions of motion segments, and learn appearance

models for each of the segments. Their model is tree struc-

tured, and assumes fixed anchors for each motion segment,

penalizing segments that occur at a distance from their an-

chors. Our work is different from these previous methods

in that in addition to discovering discriminative segments of

video, we also model and learn the transitions between and

durations of these segments with a chain structured model.

Whereas [16] heuristically fixes the anchor points and du-

rations of their temporal segments before training, our ap-

proach is completely model-based, and learns all parame-

ters for our transition and duration distributions. There has

also been a separate line of work that seeks to model tem-

poral segments of video with the use of additional annota-

tions [5, 7], which we do not require.

Drawing upon recent successes in the field, our model

leverages the Bag-of-Words (BoW) feature representation

and max-margin learning. Advances in feature representa-

tions have utilized the BoW model with discriminative clas-

sifiers to achieve state-of-the-art results on popular video

datasets [10, 26]. The representation has also been success-

fully used with semi-latent topic models [28] and unsuper-

vised generative models [17]. We learn parameters for our

model using the max-margin framework, which has recently

become very popular for latent variable models through the



introduction of general learning frameworks [4, 29].
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Figure 2. Given an input video, our algorithm divides it into tem-

poral segments and builds a structured temporal model on top of

the features. The nodes of the graph represent variables, while

the edges denote conditional dependencies between variables. The

state variables and duration variables are latent, meaning that they

are not observed in training or testing.

3. Our Model

Our model for videos is the conditional variant of the

variable-duration hidden Markov model (HMM), also re-

ferred to as an explicit-duration HMM or a hidden semi-

Markov model [2, 14]. We start by introducing our repre-

sentation for videos, then give intuition for our model by

briefly describing the variable-duration HMM.

3.1. Video representation

Given a video, we first divide it into temporal segments

of fixed length lseg , which can be seen in Figure 2. By using

fixed length segments, we are able to capture the fact that

simple motions should occupy similar numbers of frames,

and are invariant to the total length of the video. With this

division into segments, a video can be represented by n seg-

ments, where the number of segments n is proportional to

the video length. For each temporal segment i, we then

compute BoW histograms xi over the features in each seg-

ment, and treat these histograms as the observed input vari-

ables of our temporal model.

3.2. Variableduration HMM

A traditional approach is to use an HMM to model tran-

sitions between states of a video. However, the HMM

suffers because it imposes a geometric distribution on the

time within a state, which results when a state continuously

transitions to itself. To address this, we use the variable-

duration HMM, which allows each state to emit a sequence

of observations. This means that we must also model the

duration of a state, since a state can generate multiple obser-

vations before transitioning into another state. We choose

to model the duration of a state using a multinomial distri-

bution. The variable-duration HMM is much more appro-

priate for our application, since we expect a single state to

generate several temporal segments of video that are linked

together to form a single, coherent action or event. Our

hope is that the latent states and their durations will be able

to capture semantically meaningful and discriminative con-

cepts that are shared amongst the videos, as in Figure 3.

Note that by restricting the states to have a duration of one,

we obtain the standard HMM as a specific instance of the

variable-duration HMM.

The conditional variant of the variable-duration HMM is

similar to a hidden chain CRF [19]. The difference is in the

duration variables, which form an additional chain structure

beneath the hidden chain CRF as seen in Figure 2. Since all

the v-structures in the conditional variant are moralized, the

independencies of the two models are equivalent. Mapping

the model onto our video representation, we introduce a la-

tent state for each temporal segment of a video as shown in

Figure 2. Since these are latent variables, we are not given

labels for them during training or testing.

3.3. Model representation

In our model, there are three types of potentials that de-

fine the energy of a particular sequence assignment to the

latent state variables z = {z1, z2, . . . , zn} and duration

variables d = {d1, d2, . . . , dn} as shown in Figure 2. Intu-

itively, the duration variable acts as a counter, and decreases

after each consecutive state assignment until it reaches zero,

after which a new state transition can be made. While it

is counting down, the state assignment is not allowed to

change. We assume that we are given the maximum du-

ration dmax for all states and the number of states S for our

model. The potentials are defined in terms of parameters w

of our model that will be learned.

The first potential is a singleton appearance potential on

the latent state variables that measures the similarity of the

feature histogram xi for temporal segment i to its assigned

state zi.

ψa(Zi = zi) = w
a
zi
· xi (1)

The second potential encompasses both the state and du-

ration variables, and measures the score of transitioning be-

tween states, provided we are allowed to transition:

ψt(Zi =zi, Zi−1 = zi−1, Di−1 = di−1) =

−∞ · 1[di−1 > 0, zi 6= zi−1]

+ wt
zi−1,zi

· 1[di−1 = 0] (2)



The third potential measures the score of a given dura-

tion, provided we are entering a new state:

ψd(Zi =zi, Di = di, Di−1 = di−1) =

−∞ · 1[di−1 > 0, di 6= di−1 − 1]

+ wd
zi,di

· 1[di−1 = 0] (3)

Together, these potentials define the energy of a particu-

lar sequence assignment of variables z and d to our model:

E(z,d|w) =
∑

i

(ψa(Zi = zi)

+ψt(Zi = zi, Zi−1 = zi−1, Di−1 = di−1)

+ψd(Zi = zi, Di = di, Di−1 = di−1)) (4)

where we initialize ψt(Z1, Z0, D0) = 0 and D0 = 0.

4. Inference

Exact maximum a posteriori (MAP) inference for our

model can be done efficiently using dynamic programming.

In MAP inference, we must find the sequence of states z

and durations d that maximize the energy function given

above in equation 4. This can be done using a recurrence re-

lation that computes the best possible score given that tem-

poral segment j is assigned to state i. The score is com-

puted by searching over all possible durations d and previ-

ous states s, assuming that segment j is the last segment in

the duration of state i. We can use the following recurrence

relation for inference:

Vi,j = max
d∈{1...dmax}
s∈{1...S}

[wa
i · (

j∑

k=j−d+1

xk)

+ wt
s,i + wd

i,d + Vs,j−d] (5)

After building up the table of scores V , we can then re-

cover the optimal assignments by backtracking through the

table. The runtime complexity for this inference algorithm

is O(nmaxdmaxS
2), where nmax is the maximum number

of temporal segments in all videos. By utilizing structure

in the duration variables, our inference algorithm achieves

a complexity that is linear in dmax, whereas a naive imple-

mentation would have quadratic dependence.

5. Learning

There are three sets of parameters that we must learn in

our model, the appearance parameters wa, the transition pa-

rameters wt, and the duration parameters wd, which we can

concatenate into a single weight vector:

w = [wa
w

t
w

d] (6)

Groom dog Clean upPrepare water
Walk to dog Leave dog

1 1 2 3 3 3 3 2 4 4

Ideal latent variable assignments

1 0 0 3 2 1 0 0 1 0

States

Durations

Figure 3. This figure shows the ideal assignments to latent states

and durations for a sequence with a known temporal segmentation

that we hope our model is able to achieve. By understanding the

temporal structure of the video, we are able to classify it as con-

taining the event “Grooming an animal”.

Given a training set of N videos and their correspond-

ing binary class labels yi ∈ {−1, 1}, we can com-

pute their feature representations to obtain our dataset

(〈v1, y1〉, ..., 〈vN , yN 〉). To learn our parameters, we adopt

the binary Latent SVM framework of Felzenszwalb et

al. [4], which is a specific instance of the Latent Structural

SVM with a hinge loss function [29]. The objective we

would like to minimize is given by:

min
w

1

2
‖w‖2 + C

N∑

i=1

max(0, 1− yifw(vi)) (7)

where we consider linear classifiers of the form:

fw(v) = max
h

w · Φ(v,h) (8)

The latent variables h in the classifier are solved for by

performing MAP inference on the example v to find the

state and duration assignments. Using these assignments,

we can construct the feature vector Φ(v,h) for an example

v as follows. For the w
a parameters we sum the feature

histograms that are assigned to each state, and for the w
t

and w
d parameters we count the number of times each state

transition and duration occurs. We then normalize each of

these features and concatenate them together to form the

feature vector Φ(v,h).
The objective function is minimized using the Concave-

Convex Procedure (CCCP) [30]. This leads to an iterative

algorithm in which we alternate between inferring the latent

variables h, and optimizing the weight vector w. Once the

latent variables are inferred and the feature vectors Φ(v,h)
are constructed for each example, optimizing the weight

vector becomes the standard linear kernel SVM problem,

which can be solved very efficiently using LIBLINEAR [3].

This process is repeated for several iterations until conver-

gence or a maximum number of iterations is reached.

5.1. Initialization

In our model, we must initialize the latent states of the

temporal segments as well as their durations for each of our



Sport Class Niebles et al. [16] Our Method

high-jump 27.0% 18.4%

long-jump 71.7% 81.8%

triple-jump 10.1% 16.1%

pole-vault 90.8% 84.9%

gymnastics-vault 86.1% 85.7%

shot-put 37.3% 43.3%

snatch 54.2% 88.6%

clean-jerk 70.6% 78.2%

javelin-throw 85.0% 79.5%

hammer-throw 71.2% 70.5%

discus-throw 47.3% 48.9%

diving-platform 95.4% 93.7%

diving-springboard 84.3% 79.3%

basketball-layup 82.1% 85.5%

bowling 53.0% 64.3%

tennis-serve 33.4% 49.6%

Mean AP 62.5% 66.8%

Table 1. Average Precision (AP) values for classification on the

Olympic Sports dataset [16].

training examples, subject to the constraint that we have S

states we can assign and a maximum duration dmax. For

each video, we begin by initializing each segment to its own

state. Then, we use Hierarchical Agglomerative Clustering

to merge adjacent segments. This is done by computing the

Euclidean distance between feature histograms of all adja-

cent segments, and repeatedly merging segments with the

shortest distance. The number of merges for a given video

is fixed to be half the number of segments in the video.

Then, using all the videos, we run k-means clustering to

cluster all the states into S clusters, and assign latent states

according to their cluster assignments. This gives us the

assignments z for the states. We initialize the duration vari-

ables by assuming that all consecutive assignments of the

same state are a single state assignment with duration equal

to the number of consecutive assignments.

6. Experiments

We test our model on two difficult tasks: activity recog-

nition and event detection. In both scenarios, we are only

given class labels for the videos. We use the Olympic Sports

dataset [16] and the 2011 TRECVID Multimedia Event De-

tection (MED) dataset [18]. For both datasets, we compare

our model to state-of-the-art baselines that consider tempo-

ral structure, using the same features for all models.

In our experiments, we use 5-fold cross validation for

model selection to select the number of latent states and the

C parameter for the SVM. We set the maximum duration to

be the average video length, and set the length of temporal

segments based on the dataset and density of our sampled

features. For the Olympic Sports dataset, we used 20 frames

per segment, and for the MED dataset, we used 100 frames

per segment. We train a model for each class, and report

average precision (AP) numbers on the datasets.

6.1. Activity recognition

Dataset. The Olympic Sports dataset [16] consists of 16

different sport classes of Olympic Sports activities that

contain complex motions going beyond simple punctual

or repetitive actions. The sequences are collected from

YouTube, and class label annotations obtained using Ama-

zon Mechanical Turk. An important point to note is that the

sequences are already temporally localized.

Comparisons. We compare our model to the method of de-

composable motion segments [16], which achieves state-of-

the-art results using local features. Because much of their

performance derives from including a BoW histogram over

the entire video in their feature vector, we follow proto-

col and concatenate the BoW histogram to the end of our

feature vector Φ(v,h) before classification. For the fea-

ture representation, we use the same features used in [16],

which consists of an interest point detector [11] and con-

catenated Histogram of Gradient (HOG) and Histogram of

Flow (HOF) descriptors [12]. In addition, because [16] uses

a χ2-SVM, we use the method of additive kernels [25] to ap-

proximate a χ2 kernel for our BoW features to maintain effi-

cient processing while increasing discriminative power. Be-

cause the public release of this dataset is not the full dataset

used in the paper [16], we obtained results for their model

on the public release through personal communication with

the authors. The results are given in Table 1.

Results. We obtain better AP numbers for 9 of the 16

classes, as well as better overall mean AP compared to the

state-of-the-art baseline model. The promising performance

on this dataset shows that, given well-localized videos, our

model is able to capture the fine structure between temporal

segments that define a complex activity.

Observing the latent states that our model learns, we find

that there are three key components that allow us to do bet-

ter than [16]. First, our model is flexible and allows la-

tent states to appear anywhere within a sequence without

penalty. In the “snatch” sequences, the assignment of the

first latent state varies approximately equally between two

different states. This helps to capture the variability that ac-

companies the start of a “snatch” sequence, such as differ-

ences in preparatory motions of the athletes. The baseline

model is unable to easily account for this, as it has a fixed

anchor for its segments, and so the beginning of each se-

quence is almost always modeled by the same segment. The

second component is the effect of modeling the duration of

the segments. For the same latent state, the durations of the

state can vary greatly from sequence to sequence. In some

cases, our model is able to realize that the sequence is ex-

tremely short and already very discriminative, and assigns



Event Class Chance Niebles et al. [16] Laptev et al. [12] Our Method, dmax = 1 Our Method

Attempting a board trick 1.18% 5.84% 8.22% 6.24% 15.44%

Feeding an animal 1.06% 2.28% 2.45% 5.28% 3.55%

Landing a fish 0.89% 9.18% 9.77% 7.30% 14.02%

Wedding ceremony 0.86% 7.26% 5.52% 9.48% 15.09%

Working on a woodworking project 0.93% 4.05% 4.09% 3.42% 8.17%

Mean AP 0.98% 5.72% 6.01% 6.34% 11.25%

Table 2. Average Precision (AP) values for detection on the MED DEV-T dataset.

Event Class Chance Niebles et al. [16] Laptev et al. [12] Our Method, dmax = 1 Our Method

Birthday party 0.54% 2.25% 1.93% 1.97% 4.38%

Changing a vehicle tire 0.35% 0.76% 0.98% 1.01% 0.92%

Flash mob gathering 0.42% 8.30% 7.60% 7.58% 15.29%

Getting a vehicle unstuck 0.26% 1.95% 1.73% 1.82% 2.04%

Grooming an animal 0.25% 0.74% 0.72% 0.73% 0.74%

Making a sandwich 0.43% 1.48% 1.09% 0.80% 0.84%

Parade 0.58% 2.65% 3.77% 4.17% 4.03%

Parkour 0.32% 2.05% 1.95% 1.65% 3.04%

Repairing an appliance 0.27% 4.39% 1.54% 1.38% 10.88%

Working on a sewing project 0.26% 0.61% 1.18% 0.91% 5.48%

Mean AP 0.37% 2.52% 2.25% 2.20% 4.77%

Table 3. Average Precision (AP) values for detection on the MED DEV-O dataset.

the same state to the entire sequence. This is not allowed in

the baseline model, as the lengths of the motion segments

are pre-specified parameters. Finally, our model is able to

discard unnecessary states and represent most of the sport

classes with fewer than 3 states. The baseline model is opti-

mally trained with 6 motion segments, and forces sequences

into the temporal structure of its segments, causing the op-

timization to easily overfit.

We note that our model performs poorly in the “high-

jump” and “triple-jump” classes. The reason for this can be

attributed to the weak discriminative power of the features

extracted from these videos. Visualizing the latent states

learned for the “high-jump” class, we find that there are a

large number of videos that are all assigned to a single state.

This occurs because the underlying BoW histograms at the

segment level are too similar, and so our model tends to

group them together into a single duration. In addition, the

number of videos is skewed for several of the classes, and

“triple-jump” is one of the classes with fewer examples in

both training and testing, which makes it hard for both dis-

criminative models to learn meaningful parameters.

6.2. Event detection

Dataset. The 2011 TRECVID MED dataset [18] consists

of a collection of Internet videos collected by the Linguis-

tic Data Consortium from various Internet video hosting

sites. There are 15 events, and they are split into two sets,

the DEV-T set and the DEV-O set. The DEV-T set con-

sists of the 5 events “Attempting a board trick”, “Feeding

an animal”, “Landing a fish”, “Wedding Ceremony”, and

“Working on a woodworking project”. The DEV-O set con-

sists of the 10 events “Birthday party”, “Changing a vehicle

tire”, “Flash mob gathering”, “Getting a vehicle unstuck”,

“Grooming an animal”, “Making a sandwich”, “Parade”,

“Parkour”, “Repairing an appliance”, and “Working on a

sewing project”.

The task, although termed event detection, is more sim-

ilar to that of a retrieval task. We are given approximately

150 training videos for each event, and in the two testing

sets for DEV-T and DEV-O, we are given large databases

of videos that consist of both the events in the set as well

as null videos that correspond to no event. The null videos

significantly decrease the chance AP, causing our resulting

numbers to be very low. There are a total of 10,723 videos

in the DEV-T test set, and 32,061 videos in the DEV-O test

set. In the TRECVID task, the DEV-T set is used for de-

velopment, while the DEV-O set is used for evaluation. We

consider the two sets separately, as it is stated that there may

be unidentified positive videos of events from the DEV-T set

in the DEV-O test set, and vice versa.

Comparisons. We compare our models to strong base-

line methods that can capture temporal structure of local

features through decomposable motion segments [16], and

rigid spatio-temporal bins [12]. For the feature representa-

tion, we extract dense HOG3D features [10, 27], and use

a linear kernel SVM for all models. To illustrate the ef-

fect of the duration variables, we also train a version of our

model with the duration variable set to one, corresponding

to a standard hidden chain CRF [19]. Results for the MED

datasets are given in Table 2 and Table 3 for the DEV-T and



DEV-O sets, respectively.

1 2 3 4 5 6 7 8 9 10

Birthday party

1 2 3 4 5 6 7 8 9 10

Changing a vehicle tire

1 2 3 4 5 6 7 8 9 10

Flash mob gathering

1 2 3 4 5 6 7 8 9 10

Getting a vehicle unstuck

1 2 3 4 5 6 7 8 9 10

Grooming an animal

1 2 3 4 5 6 7 8 9 10

Making a sandwich

Figure 4. Examples of duration parameters learned for events in

the MED dataset. The x-axes are values of the duration parame-

ters, and the height of the bars represent the strength of the param-

eter, which is averaged over all states of the model.

Effect of duration variables. In a few rare cases, the hid-

den chain CRF is able to outperform our model by a small

margin. This can occur because for some events, the videos

that contain them vary between different types of motions

very quickly, and so the duration variables will sometimes

mistakenly merge these variations into a single state. In re-

lation to the bias-variance tradeoff, the low variance and

high bias of the hidden chain CRF allow it to generalize

better for certain events. In theory, any model learned us-

ing the hidden chain CRF can be learned using our duration

model as well, by learning large negative parameters for du-

rations greater than one. However, this does not always

occur as the duration variables are initialized to different

values, and the inference procedures score assignments dif-

ferently. On the other hand, the increased performance of

the hidden chain CRF also speaks well for our model, as it

shows that through better initializations and model selection

techniques, it is possible to achieve even better accuracies.

Visualizing the parameters learned for the duration vari-

ables, we find that the duration variables are commonly

utilized for states that correspond to the contextual and ir-

relevant portions of videos, as they typically occupy large

numbers of consecutive temporal segments. In Figure 4,

we show examples of the multinomial duration parameters

learned for events in the MED dataset. A hidden chain CRF

that imposes a geometric distribution would have a large

parameter for the duration of 1, and small parameters for

all other durations. Our models learn duration parameters

in favor of non-geometric distributions, which suggests that

the videos are better modeled with state durations.

Results. Our model achieves the best results for both MED

datasets, and achieves significant gains in AP for most of

the events. Much of the analysis from the previous section

on activity recognition holds for these datasets as well. By

Landing a fish

Feeding an animal

Repairing an appliance

Grooming an animal

V
id

e
o

 1
V

id
e

o
 2

V
id

e
o

 1
V

id
e

o
 2

V
id

e
o

 1
V

id
e

o
 2

V
id

e
o

 1
V

id
e

o
 2

Figure 5. Example inference results on two different videos for

four of our models learned on the MED dataset. The red and green

boxes represent different latent states that are the same across the

two videos, but different across models. Our models are able to

learn the transitions and durations of states, and successfully dis-

cover discriminative segments at varying points in videos of dif-

fering length. This figure is best viewed magnified and in color.

learning state assignments that can occur at any temporal lo-

cation and by modeling their durations, our model is able to

successfully capture the temporal structure of these highly

varying Internet videos, as seen in Figure 5. These proper-

ties are crucial in MED videos, as events are not temporally

localized and there is a large number of contextual segments

that we must model. For example, in the “Feeding an ani-

mal” visualizations in Figure 5, discriminative segments oc-

cur at completely different points in time for the two videos.

The fixed structure of the baseline models makes it unable

for them to capture the varied temporal structure of these



videos, as they treat segments at the same relative locations

of two videos to be the same.

Latent semantic understanding. In addition to achieving

competitive accuracies on difficult datasets, our model is

also able to capture semantic concepts in the latent states.

We find that in many instances, temporal segments assigned

to the same latent state are related in semantic content. This

occurs at varying locations across different videos, and is

shown in Figure 5. The “Landing a fish” class is a particu-

larly nice illustration of this, as we can typically identify a

state that corresponds to the actual catching of the fish.

7. Conclusion

In this paper we have introduced a model for learning

the latent temporal structure of complex events in Internet

videos. Our model is simple, and lends itself to fast, ex-

act inference, which allows us to process large numbers

of videos efficiently. In addition, we train our model in a

discriminative, max-margin fashion and are able to achieve

competitive accuracies on activity recognition and event de-

tection tasks. We’ve shown competitive results on difficult

datasets, as well as examples of semantic structure that our

model is able to automatically extract.

Possible directions for future work include incorporating

spatial structure into our model. We have tackled temporal

understanding of the structure of complex events, but being

able to learn spatial structure as well is another step towards

our overarching goal of holistic video understanding. An-

other possible direction is using the semantic understanding

capabilities of our model for video summarization.
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