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Abstract—Autonomic optical transmission and network-
ing requires machine learning (ML) models to be trained
with large datasets. However, the availability of enough
real data to produce accurate ML models is rarely ensured
since new optical equipment and techniques are continu-
ously being deployed in the network. One option is to gen-
erate data from simulations and lab experiments, but such
data could not cover the whole features space and would
translate into inaccuracies in the ML models. In this paper,
we propose an ML-based algorithm life cycle to facilitate
ML deployment in real operator networks. The dataset
for ML training can be initially populated based on the re-
sults from simulations and lab experiments. Once ML mod-
els are generated, ML retraining can be performed after
inaccuracies are detected to improve their precision.
Illustrative numerical results show the benefits of the pro-
posed learning cycle for general use cases. In addition, two
specific use cases are proposed and demonstrated that
implement different learning strategies: (i) a two-phase
strategy performing out-of-field training using data from
simulations and lab experiments with generic equipment,
followed by an in-field adaptation to support hetero-
geneous equipment (the accuracy of this strategy is shown
for a use case of failure detection and identification), and
(ii) in-field retraining, whereMLmodels are retrained after
detecting model inaccuracies. Different approaches are
analyzed and evaluated for a use case of autonomic trans-
mission, where results show the significant benefits of col-
lective learning.

Index Terms—Autonomic optical transmission and net-
working; Machine learning; Training function placement.

I. INTRODUCTION

T he revolution brought by 5G technology requires pro-

found changes, not only in the way optical networks

are built but also in the way they are fundamentally man-

aged. Specifically, agile control and management tools

must replace typical slow operation procedures that take

days or even weeks to implement service deployments or

network reconfigurations. In this regard, the software-

defined networking (SDN) paradigmmust be complemented

with monitoring and data analytics (MDA) capabilities to

enable autonomic networking [1,2]. Behind the autonomic

concept, machine learning (ML) plays an essential role for

a wide range of use cases in optical networks (see [3–7]).

Examples include use cases from self-configuration to pre-

dictive maintenance and, at several levels, from transmis-

sion to single and multilayer network [8–14].

Assuming that ML is going to be used, one of the main

problems that arises when it is applied to telecom scenarios

is the lack of data required to train typical MLmodels, such

as the artificial neural network (ANN) or the support vec-

tor machine (SVM). Note that ML training makes use of

known output feature(s) to derive a model relating input

and output data. However, existing legal and regulatory

context limits the availability of real network performance

measurement, and few research studies can be found

where the data came from real measurements (see [12,14]).

Moreover, obtaining training datasets belonging to specific

pre-commercial and commercial technologies, as well as

current and forecasted scenarios is a complex and ex-

tremely difficult task due to the vast combination of poten-

tial cases for the application of ML models. A possible

solution is to use simulation (e.g., VPIphotonics or tools like

the one in [15]) and lab or test-bed experiments to produce

a sufficient amount of valid data for ML training and test-

ing. Note that large datasets are needed to produce accu-

rate ML models, as shown in [16]. Nonetheless, it is not

clear whether this solution produces accurate ML models,

as the data might not cover real deployments.

In fact, because optical transmission and networking is

complex, wide ranged, and dynamic there are many exam-

ples where one just cannot generate all relevant examples

of training and testing data, as data generation depends on

the combination of elements. For instance, imagine the

case of optical connection (lightpath) signal analysis using

the spectrum acquired by an optical spectrum analyzer

(OSA) installed in intermediate reconfigurable optical add-

drop multiplexers (ROADMs) in the network [17]. Because

the transfer function of optical filters that an optical signal

has traversed affects the shape of its spectrum differently,

we should be able to produce all the combinations of filter

types for the different number of intermediate ROADMs to

train accurate ML algorithms capable of identifying pat-

terns, such as signal degradation. Even though we were

hypothetically able to produce this amount of data, if

new releases of ROADMs with different filter types were

introduced into the network, new data would need to behttps://doi.org/10.1364/JOCN.11.000226
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generated for the incremental number of possible combina-

tions. Another examplewould be the case of real-time optical

parameters analysis, like the state of polarization (SOP) [18]

to implement autonomic transmission. It is clear that one

just cannot produce data for every change in the parameters

since such change might be the effect of physical perturba-

tions with a different intensity, time duration, etc.

Regarding their location in the network, contrarily to the

centralized architecture of SDN, ML algorithms might be

executed as close as possible to data sources for particular

use cases attempting to minimize the amount of data con-

veyed from the observation points that measure perfor-

mance parameters to the ML algorithms, as well as at

minimizing the response time [19] to allow control loop im-

plementation, from subsystem to network. Continuing

with our previous examples, the ML algorithm designed

by the authors of [17] runs in every ROADM in the network

to detect and localize soft failures degrading the quality of

optical signals; once detected and localized, lightpaths can

be rerouted excluding the failed element. As for the auto-

nomic transmission example, the agent proposed in [18]

runs inside transponders to enable local control loop imple-

mentation for fast device reconfiguration according to me-

tered and forecasted data.

In this paper, we concentrate on a specific scenario: ML

applied to lightpath analysis and generalize our previous

work in [20,21] facing the problem of how to deploy highly

accurate ML algorithms reducing the need to generate com-

plete training datasets. Note that ML models can be re-

trained to enhance accuracy when model inaccuracies are

detected, thus creating a learning life cycle. Specifically,

the contribution of this paper is threefold:

1. A learning life cycle specifically designed for the deploy-

ment of ML-based algorithms in operators’ networks is

proposed in Section II. Starting from the motivation of

ML retraining to improve the accuracy of ML models,

the general options for ML training within such a learn-

ing life cycle are explored, including the out-of-field and

in-field generation of datasets and ML training.

2. A two-phase strategy to facilitate ML algorithm deploy-

ment in operator networks is proposed in Section III. It

consists of (i) training accurate models for a reference

equipment scenario based on simulations and/or experi-

ments carried out in laboratory or test-bed facilities and

(ii) devising a proper adaptation mechanism that

makes adjustments on the data for the specific light-

path being analyzed, whichmight have traversed differ-

ent ROADM types along its route from the transmitter.

Note that this strategy also facilitates the introduction

of ROADMs with new filter types, as current vendors

deploy new equipment releases in the network. This

strategy is applied to a use case of filter failure detec-

tion and identification [20].

3. In-field retraining procedures are explored in Section IV,

where starting from initially trained ML models, they

are retrained with augmented datasets that include

not-yet-considered patterns, added as soon as they are

detected. Strategies for its practical implementation in

optical networks are discussed: from typical individual

learning, where each agent detects new patterns from

their local sources and uses them for retraining, to col-

laborative learning, where agents spread knowledge

among themselves to speed up the learning curve [22].

Because ML training is a hard task and requires large

computation capabilities, analysis of distributed and cen-

tralized options reveals their pros and cons. In-field re-

training alternatives are applied to an illustrative use

case for autonomic transmission [21].

The discussion is supported by the results presented in

Section V.

II. PROPOSED ML-BASED ALGORITHM LIFE CYCLE

Data availability is one of the main obstacles for the gen-

eralized deployment of ML-based algorithms in operators’

networks. Ideally, one should start from a dataset with real

data samples properly covering the considered features

space. However, in many cases this is not possible as it

was argued in the introduction section.

An alternative approach for ML training is to build an

out-of-field training dataset with data generated from sim-

ulations and/or lab experiments. This approach might work

provided that one can reproduce in the lab a reasonably

large number of patterns to generate the training dataset.

Once trained, theMLmodels can be deployed in the network

and used for tasks such as prediction and classification.

However, it is not easy and, depending on the case, virtually

impossible to reproduce the large number of patterns that

can appear once the ML-based algorithms are deployed in

the network. Consequently, the ML models will present in-

accuracies (e.g., in the form of prediction or classification er-

rors). Such inaccuracies can be reduced by retraining theML

models with augmented training datasets that include new

samples in areas of the features space not yet covered.

Hence, the accuracy of the ML models must be monitored

in the field by comparing the results of applying the ML

models against the real measurements from the network.

Once patterns for which the ML models do not meet the ac-

curacy requirements are detected, the training dataset can

be augmented and ML retraining can be triggered.

For illustrative purposes, Fig. 1 shows how ML models

are improved when retraining is done after a prediction or

a classification error is detected. Figure 1(a) represents a

training dataset, where it can be observed how samples

in the training dataset are not uniformly distributed and

appear grouped in some areas (or subranges) of the fea-

tures space, while few samples are available in other areas.

This is a representation of a scenario where the training

dataset comes from samples obtained by lab experiments

and/or simulations, as well as for a scenario where the

probability to observe certain patterns is low, whereas

for other patterns the probability is higher. Figure 1(a) also

shows the regression model obtained with the training da-

taset, as well as some confidence interval. Note that

although a prediction can be done with the current regres-

sion model, there are some areas in the features space for

which no training samples exist, so the prediction error
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around those areas could be potentially high. In fact, let us

imagine that a prediction is needed for a value in one such

area [represented by the blue point in Fig. 1(a)]. Once the

prediction error is detected after observing the real value

measured in the network some time later, retraining can be

carried out using the original training dataset augmented

with the new pattern. Figure 1(b) represents the new re-

gression model with improved accuracy.

Figures 1(c) and 1(d) presents an example for binary

classification using SVMs; for the sake of simplicity, we

consider linearly separable classes in a two-dimensional

features space. Figure 1(c) illustrates that the current hy-

perplane perfectly separates the two classes of samples

identified in the training dataset. After a classification

error is identified by comparing the classification obtained

by the current SVM classifier and the real data measured

in the network, retraining is triggered and a more accurate

SVM classifier is obtained [Fig. 1(d)].

In view of this reality and trying to speed up the deploy-

ment of ML-based algorithms, the general ML-based algo-

rithm life cycle presented in Fig. 2 can be followed. Two

different activities and elements are defined in Fig. 2 as a

function of whether they are carried out/exist out of the field

(in blue color) or in the field (in green color). In particular,

based on results obtained by simulations or lab experiments

(labeled 1 in Fig. 2) an out-of-field dataset can be built (2).

Since simulation and experiments might include certain

assumptions and particularities that might not be true or

present in the network, samples in the dataset must be gen-

eralized (3) to create a new dataset (4). The aforementioned

process that reproduces patterns in the lab can be triggered

as soon as new equipment and techniques are deployed in

the network (0), as well as when inaccuracies are detected

in the current ML models.

Assuming that ML models are already deployed in the

network as a part of some algorithms (A), they are applied

to real-timemonitoring data (B) that has been conveniently

generalized (C) to produce information such as predictions

and classification. (D) Note that data samples can be stored

and used for retraining purposes in an in-field data reposi-

tory (E). The ML results are stored and later compared

against real measurements to find inaccuracies, check

the distribution of the samples in the dataset, and other

tasks. (F). Note that ML training can be carried out consid-

ering any mix of samples in the out-of-field and in-field da-

taset repositories.

We next present two different use cases that exploit the

proposed generic ML-based algorithm life cycle with the

addition of specific extensions.

(a)

(c)

(b)

(d)

Fig. 1. Different models: (a), (b) Retraining regression and (c),

(d) classification.

Fig. 2. Generic proposed ML-based algorithm life cycle.
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A. Out-of-Field ML Training With In-Field Model

Adaptation

This use case consists of two phases: (i) training accurate

models for a reference infrastructure (i.e., transponders,

ROADMs, and optical amplifiers) and (ii) devising a proper

adaptation mechanism that makes adjustments on the

data for the specific lightpath being analyzed, which might

have traversed different equipment from those considered

in the training phase.

Figure 3 gives an overview of the considered strategy.

Scenarios with generic equipment or just one single type

of equipment are used for simulation and/or lab experi-

ments to produce a large dataset used for ML training

and testing purposes [Fig. 3(a)]. Imagine that the ML

model(s) are used for classification to detect and identify

failures in optical connections. In the case where just

one single equipment model from one single vendor is de-

ployed in the field, the accuracy (defined in terms of failure

detection and identification) of the ML algorithm will be

equivalent to that obtained during out-of-field ML testing

phase.

When new types of equipment are deployed in the net-

work, new simulation and/or lab experiments must be car-

ried out. However, this time the amount of simulation or

experiments would exponentially increase to augment

the dataset to consider all possible combinations of equip-

ment that a lightpath could traverse. To avoid such an

explosion of experiments, an adaptation function that con-

verts the considered features to the specific equipment

characteristics must be found so the resulting adapted

features are equivalent to those used during the training

phase [Fig. 3(b)]. Doing this would allow the trained

ML models leading to out-of-field model training and

in-field adaptation to stay unaltered, which makes it a ro-

bust feasible solution for networks with heterogeneous

equipment.

B. In-Field ML Retraining

Similar to the previous use case, the in-field ML training

case starts from an initial MLmodel trained out of the field

[Fig. 4(a)]. Let us assume that the ML-based algorithm de-

ployed in the field produces periodical estimations of near

future bit errors based on features extracted from the

receiver in the transponder. In this case, it is easy to keep

track of the accuracy of the estimations because the real bit

errors are also measured by the transponder. When model

inaccuracy is detected, a learning loop can be triggered,

where training data can be generated and used to feed

in-the-field ML retraining to improve the accuracy of the

current model. When a new model is produced, it can re-

place the existing one and theML-based algorithm can con-

tinue to make predictions [Fig. 4(b)].

Although this option can be applied with no restriction

to ML-based analysis, ML training is in general a

(b)(a)

Fig. 3. Examples of out-of-field ML training and in-field model adaptation: (a) out-of-field and (b) in-field.

(b)(a)

Fig. 4. Examples of in-field ML retraining: (a) out-of-field and

(b) in-field.
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computationally demanding task. Therefore, the right place

for its training must be studied, as many agents run in envi-

ronments where computational resources are scarce.

The next sections focus on these two illustrative use

cases implementing learning life cycles.

III. OUT-OF-FIELD ML TRAINING WITH IN-FIELD

ADAPTATION

The out-of-field ML training option is studied through a

lightpath failure detection and identification use case,

where the spectra acquired by OSAs installed in intermedi-

ate nodes is analyzed for filter-related failure detection and

identification. Note that filter-related failures [e.g., filter

shift (FS) and filter tightening (FT)], noticeably deform

the shape of the optical spectrum. Here, the residual-based

approach developed in [23] is selected due to its potential to

be adapted to different types of filters because of its

dependency on the synthetic behavior of the filter re-

sponses. Note that one single filter type was considered

in [17,23], which limits the deployment of ML approaches

in real operator networks, which usually consist of equip-

ment from different vendors. The most straightforward sol-

ution to overcome this limitation is to have different models

trained about various types of filters that might be available

in the network. Nonetheless, it makes the training phase

very complex and data hungry. Yet, it will not be easy to com-

prehend the sequence of filters a priori and the responses of

slightly nonidentical filters in the networkmight not be very

well detected, necessitating evenmore combinations of mod-

els to have an appropriate generic model. In this section, we

present an enhanced version of such an approach with the

ability to be adapted to new filter types in the network. The

application of out-of-field model training and in-field adap-

tation leads to a robust, yet feasible, solution for networks

with heterogeneous filtering.

The residual-based approach lies in preprocessing the

acquired optical spectrum by comparing it to the one that

would be expected after passing the same number of filters

that the signal passes. This comparison produces a residual

representing the differential deformation that is used as

input for a classifier that detects soft failures [Fig. 5(a)].

Two modules are required to compute the residual signal:

(i) the expected signal calculator (ESC) [Fig. 5(b)] and

(ii) the residual computation and adaptation [Fig. 5(c)].

The ESC module generates a theoretically calculated opti-

cal spectrum emulating a properly operating lightpath.

The aim of ESC is to synthetically reproduce an averaged

noise-free version of the measured optical signal. Then, the

residual signal is easily obtained by subtracting the OSA-

acquired signal from the signal generated by the ESCmod-

ule. However, further elaboration on the residual signal is

required to make it suitable for decision-making and train-

ing the classifiers. The elaborated residual signals can ul-

timately be used to train SVM-based classifiers to detect

(i.e., decide whether a signal is normal or affected by a soft

failure) and identify filter failures (i.e., decide between FT

and FS).

The in-field adaptation is performed in (i) the ESC mod-

ule by considering the specific filters that the signal has

passed through [see three filter transfer functions in

Fig. 6(a)] and (ii) the residual computation module that

normalizes and adapts the residuals for the signal being

analyzed. Following the procedure presented in [23], the

calculated residual is normalized with respect to the mean

value of the central part of the residual, so the mean be-

comes 0. This normalization approach is operational when

the same type of filter exists in both out-of-field training

(b)

(a)

(d)

(c)

Fig. 5. Soft-failure detection and identification based on residuals analysis and in-field adaptation. (a) Residual-based approach, (b) ex-

pected signal calculator (ESC), (c) residual computation and adaptation, and (d) adaptation mechanism.

(b)(a)

Fig. 6. (a) Three filter types and (b) 4th order Gaussian

normalization.
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and in-the-field operation of the ML algorithm. However, it

produces distorted results in the presence of other filter

types. Considering this issue, we propose an adaptation

procedure [Fig. 5(d)] that consists of dividing the residual

signal into three segments [see Fig. 6(b)] and applying dif-

ferent normalization methods to each segment, reflecting

the filter characteristics. The normalization reference of

every segment is obtained by applying linear regression

to the unnormalized version of the residual signal obtained

for that segment. Then, the residual computation and

adaptation module receives the signal, as well as the linear

regression coefficients modeling three different normaliza-

tion references that consider the filter characteristics.

For this stage, the number of adaptation mechanism loops

equals the number of filter types that the lightpath has

passed through. By subtracting every segment of the un-

normalized residuals from the corresponding normaliza-

tion reference, a filter-type-agnostic residual signal is

obtained. Note that, as the amount of filter cascading effect

depends on the transfer function of the filter, there might

be an undesirable deviation in the residual signals when

the lightpath traverses different filter types; this deviation

is compensated in the fine-tuning step. The amount of

deviation can be computed locally, assuming that the mean

value of the residual remains zero when the signal is in

proper operation mode. Ultimately, a single classifier

trained with the measurements collected in the lab based

on a reference filter type can be used for optical spectra

experiencing filtering effects from different types of filters.

IV. IN-FIELD ML RETRAINING

To illustrate the in-field retraining option, let us con-

sider a use case assuming the architecture in Fig. 7, where

optical nodes (e.g., transponders, ROADMs in disaggre-

gated scenarios) generate monitoring and/or telemetry

data with performance measurements. Controlling subsys-

tems, device agents can be designed to collect metered data

from the device, analyze them by means of ML models, and

send back specific device configurations to enhance trans-

mission, thus resulting in a closed device-wide control loop

[18]. On top of that, node agents expose a single interface

to the SDN controller and enable local control loops to

affect several subsystems. Finally, the centralized MDA

controller running beside the SDN controller enables net-

work-wide autonomic operations.

In line with Fig. 4, in-field retraining can be immediately

triggered when model inaccuracies (in this use case, an inac-

curacy is defined as an incorrectly detected case) are locally

detected by device agents. In fact, depending on how the

knowledge generated by inaccuracies is used to improve

models and where the training task is carried out, several

alternatives can be implemented. Attending to how knowl-

edge is used, we have (i) individual learning, where gener-

ated knowledge is used for training and updating just the

ML model of the detecting device, and (ii) collective learning,

where the generated knowledge is spread and used for train-

ing and updating the MLmodels for every device. This alter-

native will speed up the learning curve, especially for rare

patterns, as ML models are updated in every device when

just one of them detects an unknown pattern. However, this

alternative entails higher complexity than individual learn-

ing because the training data may require previous normali-

zation to fitmodels with different characteristics. As to where

training is performed, we have (i) distributed training, where

training is executed locally (e.g., in the node agent), and

(ii) centralized training, where training is implemented in

a centralized element (e.g., the MDA controller).

Figure 8 illustrates the four how–where combinations,

where labels help to identify how data flows. Individual

learning is the most straightforward alternative, where

the distributed (local) training does not require any data

to be conveyed to the MDA controller at the expense of re-

quiring extra computational resources in the node agents

for ML training, whereas, in the centralized training, data

must be sent to the MDA controller where more computa-

tional resources are usually available. In the case of collec-

tive learning with distributed training, even though

training is performed locally, the MDA controller has the

role of distributing training data after normalization to

node agents, as such data normalization tasks require net-

work-wide knowledge. Finally, collective learning with a

centralized approach uses computational resources from

the MDA controller for training the MLmodels of every de-

vice using normalized training data.

The above-described approaches are evaluated through

the autonomic transmission use case (Fig. 9), where an op-

tical receiver is dynamically configured in response to pre-

dicted short-term pre-forward error correction (FEC) bit

error rate (BER) degradation [18]; the device agent using

ML models is called the autonomic transmission agent

(ATA). These ML models use the evolution within a time

window of measured Stokes parameters representing the

SOP as input parameters to return the expected BER for

a target short-term interval (e.g., 100 ms). ANN was the

selected ML algorithm due to its inherent capability to

admit complex correlation between input and output var-

iables while adding negligible overhead to subsystem oper-

ation. ANN requires one input for each of the last Stokes

parameters in the analyzed window and produces a single

output with the BER prediction for the target interval.

Finally, BER prediction is used to increase or reduce the

number of FEC iterations.Fig. 7. Reference architecture to illustrate in-field retraining.
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V. ILLUSTRATIVE RESULTS

In this section, we first analyze the performance of re-

training for regression and classification for two different

general examples that capture the general characteristics

of specific use cases in optical networks related to regres-

sion [9,12,18] and classification [17,20,23,24]. Next, we

present illustrative results for the above-described use

cases aiming at validating the feasibility of the considered

ML training options.

A. Retraining for Regression and Classification

Let us start analyzing the performance of retraining for

a regression use case. For simplicity, let us consider that a

response variable y ∈ R is to be predicted as a function of a

single feature x ∈ R. A model f �x� is defined in the whole x

range so that jf �x� − yj ≤ ε; however, no simple correlation

(e.g., linear) between x and y can be assumed. In addition,

let us assume that during the training phase only some sub-

ranges within the whole x range could be observed. Thus,

when an inaccuracy for a sample x0 (i.e., jf �x0� − yj > ε) is de-

tected, retraining must be triggered to improve the model.

For numerical evaluation, a large dataset of pairs hx, yi

was synthetically generated so that x and y are highly cor-

related within given subranges and randomly correlated in

other subranges. Next, an initial model obtained with a

fraction of subranges was trained [Fig. 10(a)]. For the sake

of simplicity, we assume a piece-wise linear model connect-

ing averaged values [25]. A one year in-field operation is

Fig. 8. Individual versus collective learning under centralized and distributed training.

Fig. 9. In-field retraining use case.

(b)

(c)

(a)

Fig. 10. (a) Initial and (b) steady regression models, and (c) accu-

racy evolution.
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emulated by randomly selecting samples from the whole

data set. When inaccuracies are detected, the model is re-

trained with the new data, so that the model is continu-

ously improved until reaching a steady model [Fig. 10(b)]

for which no significant further improvement is needed.

For the sake of a complete study, different scenarios have

been considered, according to the characteristics of the data

used for training and the complexity of the relationship be-

tween x and y. To this end, let density δ be the proportion of x

subranges contained in the initial training dataset and ρ be

the measure of correlation defined as the cubic correlation

between x and y [26] that can be used as an estimator of the

relationship complexity between both variables. Figure 10(c)

illustrates the accumulated number of inaccuracies detected

along the operation time for three different scenarios, as-

suming that new samples arrive every minute. Scenario

hδ � 90%, ρ � 40%i mimics a situation where a realistic

behavior can be likely reproduced during training and,

consequently, few inaccuracies are detected in operation.

In contrast, scenario hδ � 10%, ρ � 15%i reproduces a more

challenging situation, where most of the behavior is learned

during operation. Nevertheless, as shown in Fig. 10(c), accu-

racy improves quickly in all the cases and the number of in-

accuracies drops until reaching the steady model (≪0.1% of

model inaccuracies). Based on these results, we can conclude

that retraining cycles allow accurate models to be obtained,

speeding up ML-based algorithm deployment, whatever the

characteristics of the scenario.

Let us now focus on classification using SVMs; in this

case, let us consider an example where the categorical var-

iable ywith classes c0 and c1 is classified as a function of two

features x1, x2 ∈ R. Similar to the regression use case, we

generated synthetic data according to two different scenar-

ios: (i) the balanced scenario assumed that the probability of

generating both classes is similar [i.e., P�c0� ≈ P�c0�] and

that features x1 and x2 can be synthetically reproduced

with high likelihood, and (ii) the unbalanced scenario,

where P�c0� ≫ P�c1�, assumes that class c1 is only partially

reproducible for training through simulations and lab ex-

periments. This unbalanced scenario mimics an anomaly

detection use case, where c0 represents the normal class

and c1 the anomaly [24]. Examples of initial SVM classifiers

for both scenarios are illustrated in Fig. 11(a).

Three different strategies are compared: (i) no retraining

(i.e., the SVM classifier is never updated); (ii) periodic re-

training (i.e., retraining is triggered periodically; in this

case, once a month), augmenting the training dataset with

the data generated by the inaccuracies detected during the

last month, if any; and (iii) continuous retraining (i.e., re-

training is triggered every time an inaccuracy is detected).

The steady-state SVM classifier after one year of operation

and the continuous retraining is illustrated in Fig. 11(b).

Note how the SVM classifier was strongly modified in

the unbalanced scenario after processing real anomaly-like

measurements. Figure 11(c) plots the evolution of the accu-

mulated inaccuracies for one year. In light of the results,

it is clear that retraining is crucial to keep the number

of inaccuracies low and descending. In particular, a periodic

strategy can be used to reduce the amount of retrain-

ing loops while keeping a similar performance to the

continuous one. Nevertheless, in balanced scenarios, the

continuous strategy allows speeding up even more, obtain-

ing the steady ML model.

B. Out-of-Field ML Training With In-Field

Adaptation

In this subsection, we discuss the obtained results and

demonstrate how the proposed adaptation mechanism en-

ables the residual-based approach to be applied to the op-

tical spectrum of a signal after passing through different

types of filters in the network. For the experiments, we

configured a VPIphotonics scenario where a 100 Gb/s

DP-QPSK modulated signal was emulated [23]. After the

transmitter, the optical signal passes through eight optical

nodes (from N1 to N8); after every span, an optical ampli-

fier compensates for the accumulated attenuation of the fi-

ber. Every optical node consists of two wavelength selective

switches (WSS), each one modeled as a single optical filter

with a 2nd order Gaussian transfer function for the train-

ing phase. The filter’s bandwidth is set to 37.5 GHz, leaving

7.5 GHz as a guard band for the lightpath. Finally, the op-

tical signal ends in a coherent receiver that compensates

for the impairments introduced throughout the transmis-

sion. In addition, OSAs with 312.5 MHz resolution are

placed after every optical node to acquire the optical spec-

trum of every optical link.

The efficiency of the proposed adaptationmethod is illus-

trated in Fig. 12. The residual signals of a lightpath pass-

ing through three different types of filters with a Gaussian

transfer function of order 2, 3, and 4 are illustrated in

Fig. 12(a). Normalization shifts the residuals so its mean

is 0 [Fig. 12(b)]. Note that the differences among residuals

are clearly seen at the edges, whereas they are virtually

identical in the central part before and after normalization.

Fig. 11. (a) Initial and (b) steady training data, and SVM classi-

fiers. (c) Accuracy evolution.
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Adaptation focuses on compensating the effects of the dif-

ferent filters and the results are clearly visible at the edges

[Fig. 12(c)]. Note that the most relevant parts of the resid-

uals to detect filter-related soft failures are that of the

edges. As shown, even though the signals pass through dif-

ferent types of filters, they result in an identical residual

signal, removing the filter-dependent characteristics of

the residual signal.

To emulate failure scenarios, we modified the character-

istics of the 2nd WSS of every node in the setup; its band-

width and central frequency were modified to model FT

and FS failures, respectively. A large dataset of failures

was collected by inducing failures of magnitude in the

range [1–8] GHz for FS and in the range [1–15] GHz for FT.

We configured optical filters to be 2nd order Gaussian for

training and reconfigured them to become 3rd and 4th

order Gaussian for testing, where the same failure scenar-

ios were simulated.

We looked first at the benefits of applying the adaptation

mechanism to identify normal cases. We found that accu-

racy is very poor (<20%) when no adaptation is applied and

becomes perfect with residual adaptation. Next, we looked

at the benefits of applying residual adaptation to detect

failures. Three cases were studied: (i) 2nd order for both

out-of-field training and in-field testing [note that no adap-

tation is needed (the case in [23])]; (ii) 3rd order; and (iii) 4th

order, in which 2nd order filters were used for training, and

3rd and 4th order, respectively, with adaptation were used

for testing. The results are reported in Fig. 13, where

Figs. 13(a)–13(b) show the average node accuracy of iden-

tifying FS and FT, respectively, for failures in all eight

nodes and varying levels of failure magnitudes. The accu-

racy is promising for all the cases under study, even though

it degrades for very small magnitudes in which the spec-

trum looks like normal cases; in fact, failure detection is

100% in all cases when the failure identification step is

the cause of the reduced accuracy (Table I). To highlight

the impact of cascaded nodes, Fig. 13(c) presents the

average accuracy for FS and FT with respect to the node

where the failure occurs; failure magnitudes in the range

of [1–4] GHz for FS and [4–7] GHz for FT were considered.

As shown, the accuracy drops at the very last nodes be-

cause the accumulated filter cascading effects make it very

challenging to distinguish between different cases.

Ultimately, the efficiency of the algorithm for transmis-

sion systems with two different filter types was evaluated.

To this end, we modified the above-described setup to have

2nd order Gaussian filters in the first four nodes and 4th

order Gaussian filters in the last four. As reported in

Table I, failure detection accuracy is 100% while failure

identification shows perfect accuracy for magnitudes above

some values. Specifically, the minimum failure magnitude

(c)(b)(a)

Fig. 12. (a) Unnormalized residual, (b) normalized w/o adaptation, and (c) normalized with adaptation.

(c)(b)(a)

Fig. 13. Average node accuracy with respect to failure magnitudes for (a) FS and (b) FT. (c) Accuracy per node with respect to the

sequence of cascaded nodes.

TABLE I

RESULTS COMPARISON

Failure Type Identification

Scenario

Failure

Detection

Min FS

Magnitude

Min FT

Magnitude

Only 2nd or 4th order 100% 2 GHz 6 GHz

Only 3rd order 100% 2 GHz 7 GHz

Mix of 2nd and 4th order 100% 5 GHz 7 GHz
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to be detected with 100% accuracy is 5 and 7 GHz, for FS

and FT, respectively, just a bit higher than in the case of one

single filter type. These results validate the performance of

our residual adaptation method.

C. In-Field Retraining

In this subsection, we present the obtained results for

the autonomic transmission use case. For evaluation pur-

poses, we configured a setup with eight emulated optical

nodes consisting of one node agent and one ATA with an

MDA controller in the control plane. Software modules

were implemented as independent Python 3.0 processes

enabling multiple configurations to reproduce both individ-

ual and collective learning approaches with centralized or

distributed training.

An initial training dataset with 10,000 samples from lab

experiments ([18,27]) was used to train ANNs; specifically,

ANNs were configured with 90 inputs (i.e., 30 last values of

each Stokes parameter) and 45 hidden neurons. Then, op-

eration started and continuously generated synthetic ran-

dom samples at a rate of 278 μs (3.6 kHz), emulating real

events that included some unobserved during lab experi-

ments, causing SOP and BER fluctuation according to

[18]. Figure 14(a) shows an example of SOP measurements

and estimated and measured BER, where an example of

the model inaccuracy can be observed. Such model inaccur-

acy detection triggers the learning loop.

The performance of individual and collective approaches

was evaluated in terms of convergence time. As the number

of ATAs significantly affect the convergence time, we

started with a setup with just four of them. Figure 14(b)

plots the prediction error normalized to the error of the ini-

tial trained models versus time normalized with respect to

the time when all events are observed (∼500 in total) in the

collective approach. When inaccuracies are detected, mod-

els are improved and the prediction error decreases. Such

prediction error reduction is remarkable under the collec-

tive approach, as ATA modules share knowledge among

each other as soon as it is discovered; in fact, ∼3.5 speed

up is observed compared to the individual learning ap-

proach. This result suggests that the speed-up ratio and

the number of ATAs are somehow related. To analyze such

a relation, we reproduced the previous experiment and con-

figure a number of ATAs from one to eight; the results are

reported in the embedded chart inside Fig. 14(b), where an

almost linear relation between speed up and the number of

device agents can be observed.

Let us now evaluate distributed and centralized retrain-

ing in terms of (i) the amount of data exchanged between

node agents and the MDA controller and (ii) the amount

of data to be stored locally in node agents. Figure 14(c)

presents accumulated data volumes at the end of executions

for every ATA in the network. Under the individual learning

approach, data for every detected model inaccuracy is either

stored in the local node or sent to theMDA controller to aug-

ment the training dataset; moreover, model updates after

every retraining are sent back to nodes in the centralized

training. A slightly lower amount of data is exchanged in

distributed training under the collective learning approach,

as model inaccuracies are detected among all ATAs. Finally,

regarding computational resources, retraining an ANN

takes several minutes in a medium-sized computer (i.e.,

Intel Core i7-4790 with 16 GB RAM), which would convert

into hours considering that computing resources in nodes

are much more limited. This fact unfortunately greatly lim-

its the applicability of distributed retraining.

Table II summarizes the analysis of the proposed alter-

natives and the results of the illustrative use case.

(a) (b) (c)

Fig. 14. (a) Inaccuracy example, (b) individual versus collective, and (c) centralized versus distributed.

TABLE II

SUMMARY OF IN-FIELD RETRAINING

Features Suitable Applicability Scenarios

Learning Training Learning Speed Complexity

Correlation of the

Observed Patterns

Availability of CPU

and Storage Resources

Individual
Distributed

Slow
Low

Negligible/Low
Need extra resources at nodes

Centralized Medium Available

Collective
Distributed

Fastest
Highest

Medium/High
Need extra resources at nodes

Centralized High Available
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The characteristics of each approach, in terms of learning

speed and complexity (elements involved, data exchange,

computing and storage needs, etc.) are reviewed. Collective

learning was shown to be a more suitable option compared

to individual learning for those cases where a significant

correlation between observations from different agents ex-

ists. In addition, a brief analysis of proper use cases and

scenarios for each approach is presented. Regarding the

need for computational and storage resources at the nodes,

centralized training uses already available resources in the

centralized MDA controller, while they are usually scarce

in the node agents to support distributed training.

VI. CONCLUDING REMARKS

A learning life cycle has been proposed looking at

deploying highly accurate ML models, thus implementing

the autonomic optical transmission system and networking

paradigm. The proposed framework includes the steps of

the traditional ML model construction and test workflow

(i.e., data generation, ML training, and model evaluation),

and adds adaptation and generalization, both of which can

be implemented out-of-field and in-field. The learning cycle

has been designed to overcome critical obstacles, such as

the lack of real measurements used for ML training or the

extremely large complexity of reproducing realistic hetero-

geneous scenarios, thus paving the way toward smart op-

tical networks.

Two relevant use cases have been used to show practical

applications in a comprehensive way. First, out-of-field

training with in-field model adaptation was proposed as a

scalable option to obtain accurate models and algorithms

for filter-related failure detection and classification in

optical networks with heterogeneous transmission and

switching devices. Second, in-field training was presented

as an approach to achieve autonomic transmission for a use

case to predict pre-FEC BER for intelligent receiver con-

figuration purposes. This approach takes advantage of the

capabilities available in advanced transponders to push

data analytics at the subsystem level and opens the pos-

sibility to implement different in-field collaborative learn-

ing strategies.

Numerical evaluation was carried out to highlight the

main benefits of the proposed learning cycle. As a general

conclusion, the learning cycle was validated as an effective

way to dynamically and continuously improve the accuracy

of ML models for typical regression and classification pur-

poses. Regardless of the uncertainty of the data to model

and data availability for ML training during the initial

out-field training, in-field retraining showed a fast conver-

gence to accurate models.

In the out-of-field ML training with an in-field model

adaptation use case, the model adaptation phase helped

to achieve similar in-field detection and classification accu-

racy on heterogeneous networks as that observed on out-

of-field homogeneous networks. As for the in-field ML

retraining, the learning speed was remarkably increased by

implementing collaborative learning, regardless of whether

the centralized or distributed training was implemented.
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