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Abstract

The acquisition of light field images with high angular reso-
lution is costly. Although many methods have been proposed
to improve the angular resolution of a sparsely-sampled light
field, they always focus on the light field with a small base-
line, which is captured by a consumer light field camera. By
making full use of the intrinsic geometry information of light
fields, in this paper we propose an end-to-end learning-based
approach aiming at angularly super-resolving a sparsely-
sampled light field with a large baseline. Our model con-
sists of two learnable modules and a physically-based mod-
ule. Specifically, it includes a depth estimation module for
explicitly modeling the scene geometry, a physically-based
warping for novel views synthesis, and a light field blending
module specifically designed for light field reconstruction.
Moreover, we introduce a novel loss function to promote the
preservation of the light field parallax structure. Experimental
results over various light field datasets including large base-
line light field images demonstrate the significant superiority
of our method when compared with state-of-the-art ones, i.e.,
our method improves the PSNR of the second best method up
to 2 dB in average, while saves the execution time 48×. In ad-
dition, our method preserves the light field parallax structure
better.

Introduction
Light field images provide rich information of 3D scenes by
recording not only the intensity but also the direction of light
rays. Conventional light field acquisition methods include
camera array (Wilburn et al. 2005) and computer-controlled
gantry (Vaish and Adams 2008), which sample the light
field at different viewpoints through single or multiple ex-
posures. Due to the increase of hardware complexity, it is
very costly to obtain high angular resolution using these sys-
tems. Recently, commercial light field cameras (Lytro 2016;
Raytrix 2016) attract a lot of attention because of their porta-
bility. However, the limitation of sensor resolution leads to
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Figure 1: Comparisons of the execution time (in second) and
reconstruction quality (PSNR/SSIM) of different methods.
Here, a sparse light field containing 2 × 2 views of spatial
resolution 512× 512 is super-resolved to a high angular res-
olution light field containing 7× 7 views. The PSNR/SSIM
value refers to the average over 48 light fields with a dispar-
ity range of [−4, 4]. Our method produces the highest recon-
struction quality while takes less time than all other methods
except one.

an inevitable trade-off between the spatial and angular reso-
lution of the captured light field images.

To mitigate this problem, many studies have been de-
voted to the light field angular super-resolution. Particularly,
inspired by the great success of convolutional neural net-
works (CNNs) (Krizhevsky, Sutskever, and Hinton 2012;
Dong et al. 2014), many learning-based methods have been
proposed to enable light field angular super-resolution from
an extremely small set of views (Kalantari, Wang, and Ra-
mamoorthi 2016; Yeung et al. 2018; Wang et al. 2018b;
Wu et al. 2017; 2019). They always focus on the reconstruc-
tion of light fields captured by commercial light field cam-
eras, where the baseline of the input views is very small.
These methods can be roughly classified into two cate-
gories: non-depth based and depth based. When the base-
line of the input views increases, methods without model-
ing the scene depth (Yeung et al. 2018; Wang et al. 2018b;
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Figure 2: The flowchart of the proposed method for light field angular super-resolution. The reconstruction of a 3× 3 light field
from a 2 × 2 sparse one is depicted for demonstration. An output with higher angular resolution can be easily realised using
a similar architecture. Three modules are involved in our method. The depth estimation module predicts a depth map for each
view of the high angular resolution light field, the warping module initially generates the novel views by physically warping
the input views based on the estimated depth maps, and the light field blending module explores the spatial-angular relations
among the warped light fields (i.e., the light field parallax geometry) to reconstruct a high angular resolution light field.

Wu et al. 2017) always produce obvious artifacts in the syn-
thesized novel views. Although utilizing depth information
makes it easier to handle inputs with large disparities, ex-
isting depth-based methods cannot achieve acceptable per-
formance for large-baseline sampling yet, because they ei-
ther neglect the angular relations between the reconstructed
views (Kalantari, Wang, and Ramamoorthi 2016) or under-
use the spatial information of the input views (Wu et al.
2019).

In view of these issues, in this paper we focus on the an-
gular super-resolution of light field images with a large base-
line, and propose an end-to-end trainable method, by making
full use of the intrinsic geometry information of light fields.
As illustrated in Fig. 2, our method consists of three mod-
ules. Specifically, we first estimate a 4D depth map for the
high angular resolution light field, which provides a depth
for each light ray in the 4D light field. Compared with the
direct prediction of the intensity of each light ray, the es-
timation of depth maps could be much more accurate. The
resulting 4D depth is then utilized to synthesize all novel
views by backward warping. For the blending module which
attempts to fuse the warped images, different from existing
methods which perform the fusion of the warped images for
each view independently via multiple 2D convolutional lay-
ers (Kalantari, Wang, and Ramamoorthi 2016), we adopt a
light field blending instead. That is, the blending considers
not only the complementarity between images warped from
different input views, but also the angular correlations be-

tween warped images at different novel views, as shown in
Fig. 3. Furthermore, to improve the ability of preserving the
light field parallax structure, we introduce a novel loss based
on the gradient of epipolar-plane images (EPIs). This loss
can be potentially used in other light field related tasks.

We demonstrate the advantage of our method on the an-
gular super-resolution of a 2× 2 light field to a 7× 7 one by
using various datasets containing light fields with relatively
large disparities. That is, as shown in Fig. 1, our method is
able to reconstruct a high angular resolution light field with
higher quality both qualitatively and quantitatively. More-
over, our method is very efficient compared with the state-
of-the-art ones.

Related Work

The problem of light field angular super-resolution has been
studied for decades. Existing methods can be roughly clas-
sified into two categories: non-depth based methods and
depth-based methods.

For non-depth based methods, various priors for light field
images were used to solve the inverse problem of super-
resolution, such as a mixture of Gaussians, sparisty and low-
rank (Levin, Freeman, and Durand 2008; Shi et al. 2014;
Kamal et al. 2016; Mitra and Veeraraghavan 2012; Vaghar-
shakyan, Bregovic, and Gotchev 2018). These methods al-
ways require large number of input views. Based on com-
pressive sensing principles, light field images with a large
amount of data can be recovered from fewer acquisitions
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(Babacan et al. 2012; Marwah et al. 2013; Gupta et al. 2017).
However, the input views need to be sampled in specific pat-
terns, which increases the difficulty of acquisition.

Recently, some methods using CNNs have been proposed.
Yoon et al. (2015) proposed an end-to-end network to first
improve the spatial resolution of each view individually,
then generate novel views one by one based on neighboring
input views. The performance of this method is very lim-
ited, as the relations between input views are not explored.
More recently, different methods have been proposed to ex-
plore the regular structure of the light field. Wu et al. (2017)
applied CNNs to reconstruct 2D EPIs. Similarly, Wang et
al. (2018b) proposed to process 3D volumes of the stacked
EPIs. These methods are not able to fully exploit the 4D in-
formation of the light field yet. Yeung et al. (2018) proposed
to process the 4D data using pseudo 4D filters, i.e. spatial-
angular separable filters, which produces good results on
real-world images captured by light field cameras.

Depth-based methods for light field angular super-
resolution typically first estimate depth map at the novel
view or the input view, and then use it to synthesize the novel
view by backward- or forward-warping (Wanner and Gold-
luecke 2014; Jeon et al. 2015). The performance of these
methods is heavily relied on the accuracy of estimated depth
maps. Recently, this pipeline was modeled using CNNs
(Kalantari, Wang, and Ramamoorthi 2016), which consists
of depth and color estimation components. This method
struggles against inputs with large baseline as the depth es-
timation component fails to capture the long-distance cor-
respondences. Moreover, this method independently syn-
thesizes novel views while neglects their inter-view corre-
lations. Wu et al. (2019) also proposed a learning-based
method leveraging the depth information. They computed
the depth value based on the structure of sheared EPIs, and
upsampled the EPIs for light field angular super-resolution.
As an EPI is a 2D slice of a 4D light field, the EPI-based
method cannot utilize the information of spatial context,
making it difficult to handle complicated scenes. Layered
representations are also modeled using CNNs for novel view
synthesis (Zhou et al. 2018; Mildenhall et al. 2019), which
is able to generate novel views at different positions using
single representation.

The Proposed Method
Let L(x,u) denote a 4D high angular resolution light field,
where x = (x, y) is the spatial coordinate and u = (u, v) is
the angular coordinate, and L(x,u′) be a small set of views
belonging to L, where u

′ is the angular position sampled
at the (u, v) grid. Our objective is to super-resolve L(x,u′)
in the angular domain to construct a high angular resolu-
tion light field denoted as L(x,u′), which is as close as to
L(x,u). This problem can be formulated as:

L̂(x,u) = f(L(x,u′)), (1)

where f is the function representing the angular super-
resolution process to be learned.

To reconstruct a high angular resolution light field from
sparse views, the intensities of unsampled light rays are re-
quired to be predicted. A naive method is straightforwardly

applying deep CNNs to regress the values. It relies on the
powerful representation ability of deep CNNs to learn the
light field image statistics from a large variety of data. How-
ever, when the baseline of the input views increases, the
ghosting and blurry effects are severe because local convo-
lutions always have trouble in modeling long-distance rela-
tions.

Remark: One unique characteristic of the light field is
the intrinsic geometry information, i.e., the geometry re-
lation among the involved views (or the light field par-
allax structure), and likewise the geometry of captured
scenes/objects. It is expected that the performance of angu-
lar super-resolution will be enhanced by fully exploring such
valuable geometry information.

To this end, our proposed method consists of three mod-
ules, i.e., depth estimation fd, warping fw and light field
blending fb. Specifically, we first estimate a depth map for
each view in the light field, which indicates the correlations
between the known light rays to unknown ones. Based on
the 4D ray depth, novel views can be initially generated by
warping the input views, giving a set of warped light fields.
The warped images inevitably have distortions due to depth
estimation errors, non-Lambertian regions, and occlusions.
Different from commonly used blending method, which
combines the images warped from different views to individ-
ually produce a novel view, we propose a light field blend-
ing strategy, which explores the angular relations among the
warped light fields to preserve the geometry structure of the
reconstructed light field.

Depth estimation. In this module, a 4D ray depth, de-
noted as D(x,u), is estimated from the input views:

D(x,u) = fd(L(x,u
′)). (2)

The estimation of the 4D depth map from sparse views is
based on the regular structure of a light field, called light
field parallax structure, which can be formulated as:

L(x,u) = L(x+ d∆x,u+∆u), (3)

where d is the depth for point L(x,u). Based on this prop-
erty, we believe a sequential of convolutional layers is able to
learn the 4D depth map. Note that we do not use the ground-
truth depth maps as supervision, and the depth estimation is
completely induced by the following warping module.

The architecture of the depth estimation module is de-
picted in Fig. 2. The network consists of nine layers of
convolution, each followed by a ReLU activation layer ex-
cept the last one. To find the correspondences between input
views with large disparities for depth estimation, the net-
work is required to have sufficient receptive field. Therefore,
We use 7×7 kernels with a dilation rate of 2 for the first two
layers. Then the kernel size is decreased to 5 × 5 and 3 × 3
in the rest layers. Such a setting provides a receptive field of
43, which is sufficient for input views with a disparity range
of [−21.5, 21.5].

Warping. Based on the estimated depth maps, novel
views can be synthesized by warping the input views. The
warping can be formulated as:

W (x,u,u′) =fw(L(x,u
′), D(x,u))

=L(x+D(x,u)(u− u
′),u′),

(4)
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Figure 3: Illustration of two different blending strategies:
view blending vs. light field blending. In this example,
u1, · · · ,u5 denote 5 views of the ground truth light field.
Suppose we need to reconstruct views u2, · · · ,u4 from
input views u1 and u5 by blending the warped images.
Wui→uj

stands for the resulting image by warping ui to
the location of uj . Green regions are the occluded regions
and always have errors after warping. The distortion of the
edges in the EPIs of the warped light fields is caused by in-
accurate depth estimation. To synthesize uk (k = 2, 3, 4),
view blending only blends Wu1→uk

and Wu5→uk
. In con-

trast, our proposed light field blending employs all 6 warped
images from the 2 input views to the other 3 views, which
is able to take advantage of the spatial-angular relations be-
tween warped light fields to recover the geometry structure
in the EPIs.

where W (x,u,u′) denotes a novel view at angular position
u produced by warping an input view at u′.

The reconstruction errors of the warped light fields are
minimized to provide proper instruction for the depth esti-
mation network as the ground truth depth maps are not avail-
able in practice. Moreover, the smoothness of each depth
map is encouraged by penalizing the spatial gradient. Fi-
nally, the training loss for depth estimation module is for-
mulated as:

ℓd =
∑

x,u

(
∑

u′

|L(x,u)−W (x,u,u′)|+∇xD(x,u)

)
.

(5)
Light field blending. The light fields initially warped

from input views inevitably contain distortions due to two
reasons. First, the depth estimation module is not able to
predict the ray depth accurately, especially on challenging
areas such as textureless regions and repeat patterns. This
problem is difficult to solve especially without the ground
truth depth maps as supervision. Second, even with ground
truth depth maps, the warping operator will introduce errors
in occluded regions as no source pixels can be found in the
input views (Wang et al. 2018a). As a results, the linear ge-
ometry structures in EPIs of the warped light fields could be
distorted, and errors could appear in the occluded regions,
as shown in Fig. 3.

Existing methods produce the final reconstruction by

blending the images warped from different input views us-
ing sequential 2D spatial convolutional layers (Kalantari,
Wang, and Ramamoorthi 2016). In this paper, we call this
strategy as view blending. View blending is not suitable for
light field reconstruction here, as the linear geometry struc-
tures of the EPIs are not taken into consideration. To this
end, we propose a novel blending strategy, called light field
blending. The core idea is exploring the angular relations be-
tween warped views to recover the geometry structure of the
EPIs. Fig. 3 is a toy example to show the difference between
view blending and light field blending. We use 3D light field
for simplification, which can be easily extended to 4D light
field.

The light field blending is implemented using a deep
CNN. The network architecture is depicted in Fig. 2. Sup-
pose the size of the high angular resolution light field and
the input sparse light field are (H × W × M × N) and
(H × W × M ′ × N ′), respectively, then the warped light
fields W has a size of (H × W × MN × M ′N ′). We
first extract 64 feature maps from the M ′N ′ warped images
for each novel view individually. Next, to explore the rela-
tions between views of a light field, we adapt the interleaved
spatial-angular convolutions (Niklaus, Mai, and Liu 2017;
Yeung et al. 2019; 2018). That is, sequential 2D convolu-
tional layers are alternatively applied on the spatial and an-
gular dimension, which enables to fully explore the direc-
tional relations between spatial patches while needs fewer
computational resources compared with 4D convolutions.
To increase the receptive field in spatial dimension, dilation
is used in the spatial convolution. Following this spatial-
angular feature extraction, three layers of 3D strided con-
volution are used to reconstruct the residual map. Finally, a
light field image is reconstructed as:

L̂(x,u) = W (x,u,u′

1
) + fb(W (x,u,u′)), (6)

where W (x,u,u′

1
) is the light field warped from the first

one of the input views.
The light field blending network is supervised by mini-

mizing the reconstruction error of the predicted light field

L̂:

ℓb =
∑

x,u

∣∣∣L(x,u)− L̂(x,u)
∣∣∣ . (7)

EPI gradient loss. To further preserve the valuable light
field parallax structure, i.e. promote the geometry consis-
tency between the reconstructed novel views, we propose
a novel loss function based on the gradient of EPIs.

An EPI is a 2D slice of the 4D light field, which can be
constructed by fixing one dimension of the spatial and an-
gular domain, respectively. The horizontal and vertical EPI
can be represented as Ey∗,v∗(x, u) = L(x, y∗, u, v∗) and
Ex∗,u∗(y, v) = L(x∗, y, u∗, v), respectively. Due to the reg-
ular and symmetric distribution of views in a light field,
an EPI is composed of linear geometry structures, and the
slope of the lines indicate the depth of corresponding scene
points. Therefore, EPIs of the reconstructed light field pro-
vide straightforward evaluation for the light field structure.

Our proposed EPI gradient loss is defined as the ℓ1 dis-
tance between the gradient of EPIs constructed from the pre-
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Table 1: Quantitative comparisons (PSNR/SSIM) of different methods over HCI dataset.

Light field Disparity range Wu et al. (2017) Wu et al. (2019) Yeung et al. (2018) Kalantari et al. (2016) Ours

bedroom [−1.7, 2.2] 30.06/0.809 39.15/0.961 38.22/0.957 38.77/0.959 41.98/0.975
bicycle [−1.7, 1.7] 26.17/0.762 30.84/0.924 32.92/0.945 32.37/0.935 34.03/0.954
herbs [−3.1, 1.8] 26.86/0.694 30.80/0.831 31.05/0.836 31.70/0.847 32.76/0.882
dishes [−3.1, 3.5] 23.46/0.710 26.59/0.876 27.00/0.863 28.56/0.893 29.63/0.938

Avg. over 4 light fields 26.64/0.744 31.84/0.898 32.30/0.900 32.85/0.909 34.60/0.937

Table 2: Quantitative comparisons (PSNR/SSIM) of different methods over HCI old dataset.

Light field Disparity range Wu et al. (2017) Wu et al. (2019) Yeung et al. (2018) Kalantari et al. (2016) Ours

buddha [−0.85, 1.54] 32.86/0.916 42.91/0.986 44.03/0.988 42.47/0.985 45.65/0.991
buddha2 [−0.70, 1.20] 32.63/0.902 38.03/0.966 40.61/0.973 39.51/0.969 41.48/0.975
stillLife [−2.71, 2.56] 21.64/0.550 24.63/0.792 24.14/0.771 24.78/0.797 25.67/0.854
papillon [−1.17, 0.89] 34.55/0.936 41.42/0.981 44.73/0.986 43.04/0.983 45.51/0.987

monasroom [−0.79, 0.72] 35.45/0.946 41.06/0.983 44.92/0.989 43.09/0.985 45.88/0.990

Avg. over 5 light fields 31.43/0.850 37.61/0.942 39.69/0.941 38.58/0.944 40.84/0.960

Table 3: Quantitative comparisons (PSNR/SSIM) of different methods over Inria DLFD dataset. 4 light fields were selected to
show individual results.

Light field Disparity range Wu et al. (2017) Wu et al. (2019) Yeung et al. (2018) Kalantari et al. (2016) Ours

Black&white [−1.62, 0.10] 21.77/0.600 33.73/0.969 29.31/0.923 30.62/0.925 34.69/0.974
Furniture [−2.06, 1.92] 28.35/0.852 36.62/0.949 38.36/0.948 36.73/0.935 40.62/0.962

Three pillows [−2.33, 1.98] 21.15/0.534 24.48/0.809 24.50/0.755 24.64/0.807 25.88/0.917
White roses [−1.52, 3.38] 25.25/0.719 35.60/0.962 36.27/0.960 36.28/0.960 40.59/0.981

Avg. over 39 light fields 25.05/0.740 32.35/0.911 31.65/0.892 32.53/0.899 34.83/0.933

dicted and the ground truth light field:

ℓe =
∑

y,v

(
∣∣∣∇xEy,v(x, u)−∇xÊy,v(x, u)

∣∣∣

+
∣∣∣∇uEy,v(x, u)−∇uÊy,v(x, u)

∣∣∣)

+
∑

x,u

(
∣∣∣∇yEx,u(y, v)−∇yÊx,u(y, v)

∣∣∣

+
∣∣∣∇vEx,u(y, v)−∇vÊx,u(y, v)

∣∣∣).

(8)

Training details. The final objective of our whole net-
work is:

min ℓd + ℓb + λℓe, (9)

where λ is the weighting for the EPI gradient loss. Our
model is trained to predict a light field with 7 × 7 views
from four corner views. The dataset used for training con-
sists of 20 scenes from HCI dataset (Honauer et al. 2016).
All images have the spatial resolution of 512× 512, and the
disparity range of [−4, 4].

During training, each image was randomly and spatially
cropped into 96× 96 patches. To keep the spatial resolution
unchanged, padding of zeros was used for all convolutional
layers. The model was implemented with PyTorch. We used
Adam optimizer (Kingma and Ba 2014) with β1 = 0.9 and
β2 = 0.999. The learning rate was set to 1e−4 initially and
decreased by a factor of 0.5 every 5e3 epochs. The codes are
available at https://github.com/jingjin25/LFASR-geometry.

Experimental Results

We compared with four state-of-the-art learning-based
methods primarily developed for light field angular super-
resolution, including Wu et al. (2017), Wu et al. (2019), Ye-
ung et al. (2018) and Kalantari et al. (2016). All these mod-
els except Wu et al. (2017) with training codes available
were re-trained using the same dataset and the suggested
training configurations by the authors for fair comparisons.

To evaluate the performance of different methods on in-
puts with large baselines, 3 datasets containing totally 48
light fields with a disparity range of [−4, 4] were used,
namely, HCI (Honauer et al. 2016), HCI old (Wanner, Meis-
ter, and Goldluecke 2013) and Inria DLFD (Shi, Jiang, and
Guillemot 2019). The disparity range of the test dataset is
much larger than that of light fields captured by commeri-
cial cameras, which is usually less than 1 pixel. It is worth
noting that the baseline range between input corner views of
a 7 × 7 light field are 6 times of the disparity range, i.e., in
the range of [-24, 24].

Reconstruction evaluation. We used PSRN and SSIM
to quantitatively evaluate all methods, and Tables 1, 2 and
3 list the results. We also presented the disparity range of
each light field to investigate its effect on the reconstruc-
tion quality. It can be observed that the results of non-depth
based method Wu et al. (2017) have very low PSNR (below
30dB) when the disparities of light fields are larger than 1.5
pixel. Although Yeung et al. (2018) is able to achieve quiet
good performance when the sampling baseline is relatively
small (see the reuslts of buddha, papillow and monasroom

11145



Bicycle 26.17/0.762 30.84/0.924 32.92/0.945 32.37/0.935 34.03/0.954

Black and white 21.77/0.600 33.73/0.969 29.31/0.923 30.620.925 34.69/0.974

Bowl and chair 22.38/0.668 35.21/0.965 31.59/0.915 31.67/0.913 37.96/0.971

Input Views Our Reconstructed Novel View Wu et al.
(2017)

Wu et al.
(2019)

Yeung et al.
(2018)

Kalantari et al.
(2016)

Ours Ground Truth

Figure 4: Visual comparisons of different methods on the reconstructed center view from four corner input views.

Table 4: Comparisons of running time (in second) of different methods.

Algorithms Wu et al. (2017) Wu et al. (2019) Yeung et al. (2018) Kalantari et al. (2016) Ours

running time 257.70 101.70 0.48 168.86 3.49

in Table. 2 ), the PSNR and SSIM of their results decrease
greatly on light fields with a wider disparity range (see the
results of stillLife in Table 2 and dishes in Table 1). How-
ever, even under the help of depth information, Wu et al.
(2019) and Kalantari et al. (2016) only achieve performance
comparable to Yeung et al. (2018), which indicates that the
depth information is not fully utilized in these methods. In
contrast, the predictions of our method always have the high-

est quality, i.e., our method improves the PSNR around 1dB
in small baseline sampling (disparities are smaller than 1.5
pixel) and more than 2dB in large baseline sampling (dispar-
ities are larger than 1.5 pixel), which demonstrates the great
advantages of our method.

We also provided visual comparisons of different meth-
ods, as shown in Fig. 4. It can be seen that the predictions
of Wu et al. (2017) have severe ghosting caused by the large
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Figure 5: We qualitatively evaluated the effectiveness of our depth estimation and light field blending modules. The estimated
depth map, and the zoomed-in images before and after the light field blending module are presented.

Figure 6: Comparisons of the parallax content PR curves for
different methods.The PR curves are computed by averaging
over all testing light field images.

disparity of objects, while different levels of artifacts appear
around occlusion boundaries in the results of other com-
pared methods. In contrast, our method produces high qual-
ity images which are closer to the ground truth ones.

To further evaluate the preservation of the light field paral-
lax structure quantitatively, we compared the light field par-
allax edge precision-reall (PR) curves (Chen, Hou, and Chau
2018) of the angularly super-resolved light fields, and Fig. 6
shows the results. It can be seen that the PR curve of our
method is closer to the top-right corner compared with oth-
ers, which shows that the light field structure is well main-
tained in the predictions of our method.

Efficiency evaluation. Our method takes 3.49 seconds
to reconstruct a 7 × 7 light field with spatial resolution of
512× 512 from 2× 2 views. Specifically, it takes 0.39 sec-
onds to initially synthesize all novel views and 3.50 seconds
for light field blending. Table 4 shows the comparisons of
the running time for different methods to angularly super-
resolve a light field. It can be seen that our method is signif-
icantly faster than other methods except Yeung et al. (2018).
However, consider the compromise of Yeung et al. (2018) on
the performance, our method is superior. All methods were
evaluated on a Intel 3.70 GHz desktop with 32 GB RAM and
a GeForce RTX 2080 Ti GPU.

Ablation study. In Fig. 5, we demonstrated the effective-
ness of three modules involved in our method. The estimated
depth map for the center view, the warped images and the fi-

Table 5: Quantitative comparisons (PSNR/SSIM) of view
blending and light field blending.

HCI HCI old Inria DLFD

View blending 32.69/0.920 39.25/0.954 33.17/0.920
Light field blending 34.29/0.933 40.70/0.958 34.56/0.929

nal reconstructed images after blending are presented. It can
be observed that our depth estimation module performs good
on most areas, but produce rough boundaries for some ob-
jects. Consequently, the warped images maintain sharp tex-
ture on plain areas, but have obvious distortions around oc-
clusion boundaries. Moreover, various artifacts appearing in
the images warped from different input views are corrected
in the blended images, which demonstrates the effectiveness
of our light field blending module.

We also quantitatively compared the reconstruction qual-
ity of light field blending and view blending. For fair com-
parisons, we built two networks using different blending
strategies and the same depth estimation module, and trained
them without the EPI gradient loss. The results are listed in
Table 5, which demonstrates the advantage of our proposed
light field blending.

Conclusion

We have presented a learning-based method for light field
angular super-resolution. More precisely, we focused on the
reconstruction of a high angular resolution light field from
a small set of input views with a large baseline. By explic-
itly modeling the scene geometry for novel view synthesis
and efficiently exploring the angular relations for light field
blending, our method outperforms the state-of-the-art ones
on the task of super-resolving light fields of angular resolu-
tion 2 × 2 to those of angular resolution 7 × 7 over various
datasets with a disparity range of [−4, 4], i.e., our method
improves the PSNR of the second best method up to 2 dB
in average, while saves the execution time 48×. In addition,
our method preserves the light field parallax structure better.
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