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Learning local equivariant representations
for large-scale atomistic dynamics

Albert Musaelian1,3, Simon Batzner 1,3 , Anders Johansson 1, Lixin Sun1,
Cameron J. Owen 1, Mordechai Kornbluth 2 & Boris Kozinsky 1,2

A simultaneously accurate and computationally efficient parametrization of
the potential energy surface ofmolecules andmaterials is a long-standing goal
in the natural sciences.While atom-centeredmessage passing neural networks
(MPNNs) have shown remarkable accuracy, their information propagation has
limited the accessible length-scales. Local methods, conversely, scale to large
simulations but have suffered from inferior accuracy. This work introduces
Allegro, a strictly local equivariant deep neural network interatomic potential
architecture that simultaneously exhibits excellent accuracy and scalability.
Allegro represents a many-body potential using iterated tensor products of
learned equivariant representations without atom-centered message passing.
Allegro obtains improvements over state-of-the-art methods on QM9 and
revMD17. A single tensor product layer outperforms existing deepMPNNs and
transformers on QM9. Furthermore, Allegro displays remarkable general-
ization to out-of-distribution data. Molecular simulations using Allegro
recover structural and kinetic properties of an amorphous electrolyte in
excellent agreement with ab-initio simulations. Finally, we demonstrate par-
allelization with a simulation of 100 million atoms.

Molecular dynamics (MD) and Monte-Carlo (MC) simulation methods
are a core pillar of computational chemistry, materials science, and
biology. Common to a diverse set of applications ranging from energy
materials1 to protein folding2 is the requirement that predictions of the
potential energy and atomic forces must be both accurate and com-
putationally efficient to faithfully describe the evolution of complex
systems over long timescales. While first-principles methods such as
density functional theory (DFT), which explicitly treat the electrons of
the system, provide an accurate and transferable description of the
system, they exhibit poor scaling with system size and thus limit
practical applications to small systems and short simulation times.
Classical force fields based on simple functions of atomic coordinates
are able to scale to large systems and long timescales but are inher-
ently limited in their fidelity and can yield unfaithful dynamics.
Descriptions of the potential energy surface (PES) using machine
learning (ML) have emerged as a promising approach tomovepast this
trade-off3–24. Machine learning interatomic potentials (MLIPs) aim to

approximate a set of high-fidelity energy and force labels with
improved computational efficiency that scales linearly in the number
of atoms. A variety of approaches have been proposed, from shallow
neural networks and kernel-based approaches3–6 to more recent
methodsbasedondeep learning14,15,20,25,26. Inparticular, a classofMLIPs
based on atom-centered message-passing neural networks (MPNNs)
has shown remarkable accuracy9,11,14,15,26,27. In interatomic potentials
based on MPNNs, an atomistic graph is induced by connecting each
atom (node) to all neighboring atoms inside a finite cutoff sphere
surrounding it. Information is then iteratively propagated along this
graph, allowing MPNNs to learn many-body correlations and access
non-local information outside of the local cutoff. This iterated propa-
gation, however, leads to large receptive fields with many effective
neighbors for each atom, which impedes parallel computation and
limits the length scales accessible to atom-centered message-passing
MLIPs. MLIPs using strictly local descriptors such as Behler-Parrinello
neural networks5, GAP6, SNAP7, DeepMD20,MomentTensorPotentials8,
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or ACE12 do not suffer from this obstacle due to their strict locality. As a
result, they can be easily parallelized across devices and have been
successfully scaled to extremely large system sizes28–31. Approaches
based on local descriptors, however, have so far fallen behind in
accuracy compared to state-of-the-art equivariant, atom-centered
message passing interatomic potentials15.

Message-passing interatomic potentials
Message-passing neural networks (MPNNs) which learn atomistic
representations have recently gained popularity in atomistic machine
learning due to advantages in accuracy compared to hand-crafted
descriptors. Atom-centered message-passing interatomic potentials
operate on an atomistic graph constructed by representing atoms as
nodes and defining edges between atoms that are within a fixed cutoff
distance of one another. Each node is then represented by a hidden
state ht

i 2 Rc representing the state of atom i at layer t, and edges are
represented by edge features eij, for which the interatomic distance rij
is often used. The message-passing formalism can then be concisely
described as32:

mt + 1
i =

X
j2N ðiÞ

Mt ht
i ,h

t
j ,eij

� �
ð1Þ

ht + 1
i =Ut ht

i ,m
t + 1
i

� �
ð2Þ

where Mt and Ut are an arbitrary message function and node update
function, respectively. From this propagation mechanism, it is imme-
diately apparent that as messages are communicated over a sequence
of t steps, the local receptive field of an atom i, i.e., the effective set of
neighbors that contribute to the final state of atom i, grows approxi-
mately cubically with the effective cutoff radius rc,e. In particular, given
aMPNNwithNlayer message-passing steps and local cutoff radius of rc,l,
the effective cutoff is rc,e =Nlayerrc,l. Information from all atoms inside
this receptive field feeds into a central atom’s state hi at the final layer
of the network. Due to the cubic growth of the number of atoms inside
the receptive field cutoff rc,e, parallel computation can quickly become
unmanageable, especially for extended periodic systems. As an
illustrative example, wemay take a structure of 64 molecules of liquid
water at pressure P = 1 bar and temperature T = 300K. For a typical
setting of Nt = 6 message-passing layers with a local cutoff of rc,l = 6Å
this would result in an effective cutoff of rc,e = 36Å. While each atom
only has approximately 96 atoms in its local 6Å environment
(including the central atom), it has 20,834 atoms inside the extended
36Å environment. Due to the atom-centered message-passing
mechanism, information from each of these atoms flows into the
current central atom. In a parallel scheme, each worker must have
access to the high-dimensional feature vectors hi of all 20,834 nodes,
while the strictly local scheme only needs to have access to
approximately 63 = 216 times fewer atoms’ states. From this simple
example, it becomes obvious that massive improvements in scalability
can be obtained from strict locality in machine learning interatomic
potentials. It should be noted that conventional, atom-centered
message passing allows for the possibility, in principle, to capture
long-range interactions (up to rc,e) and can induce many-body
correlations. The relative importance of these effects in describing
molecules and materials is an open question, and one of the aims of
this work is to explore whether many-body interactions can be
efficiently captured without increasing the effective cutoff.

Equivariant neural networks
The physics of atomic systems is unchanged under the action of a
number of geometric symmetries—rotation, inversion, and translation
—which together comprise the Euclidean group E(3) (rotation alone is
SO(3), and rotation and inversion together comprise O(3)). Scalar

quantities such as the potential energy are invariant to these symmetry
group operations,while vector quantities such as the atomic forces are
equivariant to them and transform correspondingly when the atomic
geometry is transformed. More formally, a function between vector
spaces f : X→ Y is equivariant to a group G if

f ðDX ½g�xÞ=DY ½g�f ðxÞ 8g 2 G,8x 2 X ð3Þ

whereDX[g]∈GL(X) is the representation of the group element g in the
vector space X. The function f is invariant if DY[g] is the identity
operator on Y: in this case, the output is unchanged by the action of
symmetry operations on the input x.

Most existing MLIPs guarantee the invariance of their predicted
energies by acting only on invariant inputs. In invariant, atom-centered
message-passing interatomic potentials in particular, each atom’s
hidden latent space is a feature vector consisting solely of invariant
scalars25. More recently, however, a class of models known as equiv-
ariant neural networks33–36 have been developed which can act directly
on non-invariant geometric inputs, such as displacement vectors, in a
symmetry-respecting way. This is achieved by using only E(3)-equiv-
ariant operations, yielding a model whose internal features are
equivariant with respect to the 3D Euclidean group. Building on these
concepts, equivariant architectures havebeen explored for developing
interatomic potential models. Notably, the NequIP model15, followed
by several other equivariant implementations26,27,37–39, demonstrated
unprecedentedly low error on a large range ofmolecular andmaterials
systems, accurately describes structural and kinetic properties of
complex materials, and exhibits remarkable sample efficiency. In both
the present work and in NequIP, the representation DX[g] of an
operation g∈O(3) on an internal feature space X takes the form of a
direct sum of irreducible representations (commonly referred to as
irreps) of O(3). This means that the feature vectors themselves are
comprised of various geometric tensors corresponding to different
irreps that describe how they transform under symmetry operations.
The irreps of O(3), and thus the features, are indexed by a rotation
order ℓ ≥0 and a parity p∈ (−1, 1). A tensor that transforms according
to the irrep ℓ, p is said to “inhabit” that irrep. We note that in many
cases one may also omit the parity index to instead construct features
that are only SE(3)-equivariant (translation and rotation), which sim-
plifies the construction of the network and reduces the memory
requirements.

A key operation in such equivariant networks is the tensor pro-
duct of representations, an equivariant operation that combines two
tensors x and ywith irreps ℓ1, p1 and ℓ2, p2 to give an output inhabiting
an irrep ℓout, pout satisfying ∣ℓ1 − ℓ2∣ ≤ ℓout≤ ∣ℓ1 + ℓ2∣ and pout = p1p2:

ðx� yÞ‘out,mout
=
X
m1 ,m2

‘1 ‘2 ‘out

m1 m2 mout

� �
x‘1 ,m1

y‘2,m2 ð4Þ

where
‘1 ‘2 ‘out
m1 m2 mout

� �
is the Wigner 3j symbol. Two key properties

of the tensor product are that it is bilinear (linear in both x and y) and
that it combines tensors inhabiting different irreps in a symmetrically
valid way. Many simple operations are encompassed by the tensor
product, such as for example:

• scalar-scalarmultiplication: (ℓ1 = 0, p1 = 1), (ℓ2 = 0, p2 = 1)→ (ℓout =
0, pout = 1)

• vector dot product: (ℓ1 = 1,p1 = −1), (ℓ2 = 1, p2 = − 1)→ (ℓout = 0,
pout = 1)

• vector cross product, resulting in a pseudovector: (ℓ1 = 1, p1 = −1),
(ℓ2 = 1, p2 = − 1)→ (ℓout = 1, pout = 1).

The message function Mt ðht
i ,h

t
j ,eijÞ of the NequIP model, for

example, uses this tensor product to define amessage from atom j to i
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as a tensor product between equivariant features of the edge ij and the
equivariant features of the neighboring node j.

Atomic cluster expansion
Finally, parallel to atom-centered message-passing interatomic
potentials, the Atomic Cluster Expansion (ACE) has been developed as
a unifying framework for various descriptor-based MLIPs12. ACE can
also be expressed in terms of the same tensor product operation
introduced above, with further details provided in “Methods”.

In this work, we present Allegro, an equivariant deep-learning
approach that retains the high accuracy of the recently proposed
class of equivariant MPNNs15,26,27,37,39,40 while combining it with strict
locality and thus the ability to scale to large systems.We demonstrate
that Allegro not only obtains state-of-the-art accuracy on a series of
different benchmarks but can also be parallelized across devices to
access simulations with hundreds of millions of atoms. We further
find that Allegro displays a high level of transferability to out-of-
distribution data, significantly outperforming other local MLIPs, in
particular including body-ordered approaches. Finally, we show that
Allegro can faithfully recover structural and kinetic properties from
molecular dynamics simulations of Li3PO4, a complex phosphate
electrolyte.

The outline of the article is as follows: we first surveyed relevant
related work on message-passing interatomic potentials, equivariant
neural networks, and the atomic cluster expansion. We then outline
the core ideas and design of the Allegro approach, followed by a series
of results on standard benchmarks. Finally, we show the results of
molecular dynamics simulations on a challenging material, an analysis
of the scaling properties of Allegro, and a theoretical analysis of the
framework.

Results
In the following, we describe the proposed method for learning high-
dimensional potential energy surfaces using strictly local many-body
equivariant representations.

Energy decomposition
We start by decomposing the potential energy of a system into per-
atom energies Ei, in line with previous approaches5,6,25:

Esystem =
XN
i

σZi
Ei +μZi

ð5Þ

where σZi
and μZi

are per-species scale and shift parameters, which
may be trainable. Unlike most existing MLIPs, we further decompose
the per-atom energy into a sum of pairwise energies, indexed by the
central atom and one of its local neighbors

Ei =
X
j2N ðiÞ

σZi ,Zj
Eij ð6Þ

where j ranges over the neighbors of atom i, and again one may
optionally apply a per-species-pair scaling factor σZi ,Zj

. It is important
to note that while these pairwise energies are indexed by the atom i
and its neighbor j, they may depend on all neighboring atoms k
belonging to the local environmentN ðiÞ. Because Eij and Eji contribute
to different site energies Ei and Ej, respectively, we choose that they
depend only on the environments of the corresponding central atoms.
As a result and by design, Eij ≠ Eji. Finally, the force acting onatom i, F

!
i,

is computedusing autodifferentiation according to its definition as the
negative gradient of the total energy with respect to the position of
atom i:

F
!

i = � ∇iEsystem

which gives an energy-conserving force field.

The Allegro model
The Allegro architecture, shown in Fig. 1, is an arbitrarily deep equiv-
ariant neural network with Nlayer ≥ 1 layers. The architecture learns
representations associated with ordered pairs of neighboring atoms

Tensor,Scalar,

Output MLP

Layer

Layer

Layer

...

Layer

Two-body MLP

Embedding MLP

Latent MLP Linear

Embed

(a) (b)

Fig. 1 | The Allegro network. a shows the Allegro model architecture and b details a tensor product layer. Blue and red arrows represent scalar and tensor information,
respectively, ⊗denotes the tensor product, and ⊕ is concatenation.
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using two latent spaces: an invariant latent space, which consists of
scalar (ℓ =0) features, and an equivariant latent space,whichprocesses
tensors of arbitrary rank ℓ ≥0. The two latent spaces interact with each
other at every layer. The final pair energy Eij is then computed by a
multi-layer perceptron (MLP) acting on the final layer’s scalar features.

We use the following notations:
r!i: position of the ith atom in the system
r!ij : relative displacement vector r!j � r!i from i to j
rij: corresponding interatomic distance
r̂ij : unit vector of r!ij

Y
!ij

‘,p: projection of r̂ij onto the ℓ-th real spherical harmonic which
has parity p = (−1)ℓ. We omit them = − ℓ, . . . , 0, . . . ℓ index within the
representation from the notation for compactness
Zi: chemical species of atom i
MLP(. . . ): multi-layer perceptron—a fully connected scalar neural
network, possibly with nonlinearities
xij,L: invariant scalar latent features of the ordered pair of atoms ij at
layer L
Vij,L
n,‘,p: equivariant latent features of the ordered pair of atoms ij at

layer L. These transform according to a direct sumof irreps indexed
by the rotation order ℓ∈0, 1, . . . , ℓmax and parity p∈− 1, 1 and thus
consist of both scalars (ℓ =0) and higher-order tensors (ℓ >0). The
hyperparameter ℓmax controls the maximum rotation order to
which features in the network are truncated. In Allegro, n denotes
the channel index which runs over 0, . . . ,nequivariant − 1. We omit the
m index within each irreducible representation from the notation
for compactness.

Two-body latent embedding. Before the first tensor product layer,
the scalar properties of the pair ij are embedded through a nonlinear
MLP to give the initial scalar latent features xij,L=0:

xij,L=0 =MLPtwo�body 1HotðZiÞ k 1HotðZjÞ k BðrijÞ
� �

� uðrijÞ ð7Þ

where ∥ denotes concatenation, 1Hot( ⋅ ) is a one-hot encoding of the
center and neighbor atom species Zi and Zj, and

BðrijÞ= ðB1ðrijÞ k ::: k BNbasis
ðrijÞÞÞ ð8Þ

is the projection of the interatomic distance rij onto a radial basis. We
use the Bessel basis functions with a polynomial envelope function as
proposed in ref. 14. The basis is normalized as described in Supple-
mentary Note 1 and plotted in Supplementary Fig. 1. Finally, the
function uðrijÞ : R ! R by which the output of MLPtwo-body is multi-
plied is the same smooth cutoff envelope function as used in the radial
basis function.

The initial equivariant features Vij,L=0
n,‘,p are computed as a linear

embedding of the spherical harmonic projection of r̂ij :

Vij,L=0
n,‘,p =wij,L=0

n,‘,p Y
!ij

‘,p
ð9Þ

where the channel index is n = 0, . . . , nequivariant − 1, and where the
scalar weights wij,L=0

n,‘,p for each center-neighbor pair ij are computed
from the initial two-body scalar latent features:

wij,L=0
n,‘,p =MLPL=0

embedðxij,L=0Þn,‘,p: ð10Þ

Layer architecture. Each Allegro tensor product layer consists of four
components:
1. an MLP that generates weights to embed the central atom’s

environment
2. an equivariant tensor product using those weights
3. an MLP to update the scalar latent space with scalar information

resulting from the tensor product

4. an equivariant linear layer that mixes channels in the equivariant
latent space.

Tensor product: Our goal is to incorporate interactions between
the current equivariant state of the center-neighbor pair and other
neighbors in the environment, and the most natural operation with
which to interact equivariant features is the tensor product. We thus
define the updated equivariant features on the pair ij as a weighted
sum of the tensor products of the current features with the geometry
of the various other neighbor pairs ik in the local environment of i:

Vij,L
n,ð‘1 ,p1 ,‘2,p2Þ!ð‘out,poutÞ =

X
k2N ðiÞ

wik,L
n,‘2,p2

Vij,L�1
n,‘1 ,p1

� Y
!ik

‘2,p2

� �
ð11Þ

=
X

k2N ðiÞ
Vij,L�1
n,‘1 ,p1

� wik,L
n,‘2,p2

Y
!ik

‘2,p2

� �
ð12Þ

=Vij,L�1
n,‘1 ,p1

�
X

k2N ðiÞ
wik,L

n,‘2,p2
Y
!ik

‘2,p2

0
@

1
A ð13Þ

In the second and third lines, we exploit the bilinearity of the tensor
product in order to express the update in terms of one tensor product,
rather than one for each neighbor k, which saves significant compu-
tational effort. This is a variation on the “density trick”6,41.

We note that valid tensor product paths are all those satisfying
∣ℓ1 − ℓ2∣ ≤ ℓout ≤ ∣ℓ1 + ℓ2∣ and pout = p1p2, so it is possible to have
(ℓ1, p1) ≠ (ℓ2, p2) ≠ (ℓout, pout). We additionally enforce ‘out ≤ ‘max. Which
tensor product paths to include is a hyperparameter choice. In this
work we include all allowable paths but other choices, such as
restricting (ℓout, pout) to be among the values of (ℓ1, p1), are possible.

Environment embedding: The second argument to the tensor

product,
P

k2N ðiÞw
ik,L
n,‘2,p2

Y
!ik

‘2,p2
, is a weighted sum of the spherical har-

monic projections of the various neighbor atoms in the local envir-
onment. This can be viewed as a weighted spherical harmonic basis
projection of the atomic density, similar to the projection onto a
spherical-radial basis used in ACE12 and SOAP41. For this reason, we

refer to
P

k2N ðiÞw
ik,L
n,‘2,p2

Y
!ik

‘2,p2
as the “embedded environment” of

atom i.
A central difference from the atomic density projections used in

descriptor methods, however, is that the weights of the sum are
learned. In descriptor approaches such as ACE, the n index runs over a
pre-determined set of radial–chemical basis functions, which means
that the sizeof the basismust increasewith both thenumber of species
and the desired radial resolution. In Allegro, we instead leverage the
previously learned scalar featurization of each center-neighbor pair to
further learn

wik,L
n,‘2,p2

=MLPL
embedðxik,L�1Þn,‘2,p2

ð14Þ

which yields an embedded environment with a fixed, chosen number
of channelsnequivariant. It is important to note thatwik,L

n,‘2,p2
is learned as a

function of the existing scalar latent representation of the center-
neighbor pair ik from previous layers. At later layers, this can contain
significantly more information about the environment of i than a two-
body radial basis. We typically choose MLPembed to be a simple one-
layer linear projection of the scalar latent space.

Latent MLP: Following the tensor product defined in Eq. (11), the
scalar outputs of the tensor product are reintroduced into the scalar
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latent space as follows:

xij,L =MLPL
latent xij,L�1 k

M
ð‘1 ,p1 ,‘2,p2Þ

Vij,L
n,ð‘1 ,p1 ,‘2,p2Þ!ð‘out =0,pout = 1Þ

0
@

1
A � uðrijÞ

ð15Þ

where ∥ denotes concatenation and⊕ denotes concatenation over all
tensor product paths whose outputs are scalars (ℓout = 0, pout = 1), each
of which contributes nequivariant scalars. The function uðrijÞ : R ! R is
again the smooth cutoff envelope from Eq. (7). The purpose of the
latent MLP is to compress and integrate information from the tensor
product, whatever its dimension, into the fixed dimension invariant
latent space. This operation completes the coupling of the scalar and
equivariant latent spaces since the scalars taken from the tensor pro-
duct contain information about non-scalars previously only available
to the equivariant latent space.

Mixing equivariant features: Finally, the outputs of various tensor
product paths with the same irrep (ℓout, pout) are linearly mixed to
generate output equivariant features Vij,L

n,‘,p with the same number of
channels indexed by n as the input features had:

Vij,L
n,‘,p =

X
n0

ð‘1,p1,‘2,p2Þ

wL
n,n0 ,ð‘1 ,p1 ,‘2,p2Þ!ð‘,pÞV

ij,L
n0 ,ð‘1 ,p1 ,‘2,p2Þ!ð‘,pÞ:

ð16Þ

The weights wL
n,n0 ,ð‘1 ,p1 ,‘2,p2Þ!ð‘,pÞ are learned. This operation com-

presses the equivariant information from various paths with the same
output irrep (ℓ, p) into a single output space regardless of the number
of paths.

We finally note that an SE(3)-equivariant version of Allegro, which
is sometimes useful for computational efficiency, can be constructed
identically to the E(3)-equivariant model described here by simply
omitting all parity subscripts p.

Residual update. After each layer, Allegro uses a residual update42 in
the scalar latent space that updates the previous scalar features from
layer L − 1 by adding the new features to them (see Supplementary
Note 2). The residual update allows the network to easily propagate
scalar information from earlier layers forward.

Output block. Topredict thepair energy Eij, we apply a fully connected
neural network with output dimension 1 to the latent features output
by the final layer:

Eij =MLPoutputðxij,L=Nlayer Þ ð17Þ
Finally, we note that we found normalization, both of the targets

and inside the network, to be of high importance. Details are outlined
in “Methods”.

Dynamics of small molecules
We benchmark Allegro’s ability to accurately learn energies and forces
of small molecules on the revised MD-17 dataset43, a recomputed
version of the original MD-17 dataset10,44,45 that contains ten small,
organic molecules at DFT accuracy. As shown in Table 1, Allegro
obtains state-of-the-art accuracy in the mean absolute error (MAE) in
force components, while NequIP performs better for the energies of
some molecules. We note that while an older version of the MD-17
dataset which haswidely been used to benchmarkMLIPs exists10,44,45, it
has been observed to contain noisy labels43 and is thus only of limited
use for comparing the accuracy of MLIPs.

Transferability to higher temperatures
For an interatomic potential to be useful in practice, it is crucial that it
be transferable to new configurations that might be visited over the
course of a long molecular dynamics simulation. To assess Allegro’s
generalization capabilities,we test the transferability to conformations
sampled from higher-temperature MD simulations. We use the tem-
perature transferability benchmark introduced in ref. 24: here, a series

Table 1 | MAE on the revised MD-17 dataset for energies and force components, in units of [meV] and [meV/Å], respectively

Molecule FCHL1913, 43 UNiTE26 GAP6 ANI-
pretrained48, 49

ANI-
random48, 49

ACE12 GemNet-
(T/Q)76

NequIP
(l=3)15

Allegro

Aspirin Energy 6.2 2.4 17.7 16.6 25.4 6.1 – 2.3 2.3

Forces 20.9 7.6 44.9 40.6 75.0 17.9 9.5 8.2 7.3

Azobenzene Energy 2.8 1.1 8.5 15.9 19.0 3.6 – 0.7 1.2

Forces 10.8 4.2 24.5 35.4 52.1 10.9 – 2.9 2.6

Benzene Energy 0.3 0.07 0.75 3.3 3.4 0.04 – 0.04 0.3

Forces 2.6 0.73 6.0 10.0 17.5 0.5 0.5 0.3 0.2

Ethanol Energy 0.9 0.62 3.5 2.5 7.7 1.2 – 0.4 0.4

Forces 6.2 3.7 18.1 13.4 45.6 7.3 3.6 2.8 2.1

Malonaldehyde Energy 1.5 1.1 4.8 4.6 9.4 1.7 – 0.8 0.6

Forces 10.2 6.6 26.4 24.5 52.4 11.1 6.6 5.1 3.6

Naphthalene Energy 1.2 0.46 3.8 11.3 16.0 0.9 – 0.2 0.5

Forces 6.5 2.6 16.5 29.2 52.2 5.1 1.9 1.3 0.9

Paracetamol Energy 2.9 1.9 8.5 11.5 18.2 4.0 – 1.4 1.5

Forces 12.2 7.1 28.9 30.4 63.3 12.7 – 5.9 4.9

Salicylic acid Energy 1.8 0.73 5.6 9.2 13.5 1.8 – 0.7 0.9

Forces 9.5 3.8 24.7 29.7 52.0 9.3 5.3 4.0 2.9

Toluene Energy 1.6 0.45 4.0 7.7 12.6 1.1 – 0.3 0.4

Forces 8.8 2.5 17.8 24.3 52.9 6.5 2.2 1.6 1.8

Uracil Energy 0.6 0.58 3.0 5.1 8.3 1.1 – 0.4 0.6

Forces 4.2 3.8 17.6 21.4 44.1 6.6 3.8 3.1 1.8

Results forGAP, ANI, andACEas reported in ref. 24. Best results aremarked in bold. ANI-pretrained refers to a version of ANI that was pretrained on8.9million structures andfine-tuned on the revMD-
17 dataset, ANI-random refers to a randomly initialized model trained from scratch.
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of data were computed usingDFT for the flexible drug-likemolecule 3-
(benzyloxy)pyridin-2-amine (3BPA) at temperatures 300, 600, and
1200K. Various state-of-the-art methods were trained on 500 struc-
tures from the T = 300K dataset and then evaluated on data sampled
at all three temperatures. Table 2 shows a comparison of Allegro
against existing approaches reported in ref. 24: linear ACE12, sGDML10,
GAP6, a classical force field based on the GAFF functional form46,47 as
well as twoANI parametrizations48,49 (ANI-pretrained refers to a version
of ANI that was pretrained on 8.9 million structures and fine-tuned on
this dataset, while ANI-2x refers to the original parametrization trained
on 8.9 million structures, but not fine-tuned on the 3BPA dataset). The
equivariant neural networks Allegro and NequIP are observed to gen-
eralize significantly better than all other approaches.

Quantum-chemical properties of small molecules
Next, we assessAllegro’s ability to accuratelymodel properties of small
molecules across chemical space using the popular QM9dataset50. The
QM9 dataset contains molecular properties computed with DFT of
approximately 134k minimum-energy structures with chemical ele-
ments (C, H, O, N, F) that contain up to 9 heavy atoms (C, O, N, F). We
benchmark Allegro on four energy-related targets, in particular: (a)U0,
the internal energy of the systematT =0K, (b)U, the internal energy at
T = 298.15 K, (c) H, the enthalpy at T = 298.15 K, and (d) G, the free
energy at T = 298.15 K. Unlike other experiments in this work, which
probed conformational degrees of freedom, we here assess the ability
of Allegro to describe properties across compositional degrees of
freedom. Table 3 shows a comparison with a series of state-of-the-art

methods that also learn the properties described above as a direct
mapping from atomic coordinates and species. We find that Allegro
outperforms all existing methods. Surprisingly, even an Allegromodel
with a single tensor product layer obtains higher accuracy than all
existing methods based on atom-centered message-passing neural
networks and transformers.

Li-ion diffusion in a phosphate electrolyte
In order to examine Allegro’s ability to describe kinetic properties with
MD simulations, we use it to study amorphous structure formation and
Li-ion migration in the Li3PO4 solid electrolyte. This class of solid-state
electrolytes is characterized by the intricate dependence of con-
ductivity on the degree of crystallinity51–54.

In particular, the Li3PO4 dataset used in this work consists of two
parts: a 50ps ab-initio molecular dynamics (AIMD) simulation in the
molten liquid state at T = 3000K, followed by a 50 ps AIMD simulation
in the quenched state at T = 600K. We train a potential on structures
from the liquid and quenched trajectories. The model used here is
computationally efficient due to a relatively small number of para-
meters (9058weights) and tensor products. In particular, we note that
the model used to measure the faithfulness of the kinetics and to
measure Allegro’s ability to predict thermodynamic observables is
identical to the one used in scaling experiments detailed below. This is
crucial for fair assessment of a method that simultaneously scales well
and can accurately predictmaterial properties.When evaluated on the
test set for the quenched amorphous state, which the simulation is
performed on, a MAE in the energies of 1.7meV/atomwas obtained, as
well as a MAE in the force components of 73.4meV/Å. We then run a
series of ten MD simulations starting from the initial structure of the
quenched AIMD simulation, all of length 50 ps at T = 600K in the
quenched state, in order to examine how well Allegro recovers the
structure and kinetics compared to AIMD. To assess the quality of the
structure after the phase change, we compare the all-atom radial dis-
tribution functions (RDF) and the angular distribution functions (ADF)
of the tetrahedral angle P–O–O (P central atom).We show in Fig. 2 that
Allegro can accurately recover both distribution functions. For the
aspectof ion transport kinetics, we test howwell Allegro canmodel the
Li mean-square-displacement (MSD) in the quenched state. We again
find excellent agreement with AIMD, as shown in Fig. 3. The structure
of Li3PO4 can be seen Fig. 4.

Scaling
Many interesting phenomena in materials science, chemistry, and
biology require large numbers of atoms, long timescales, a diversity of
chemical elements, or often all three. Scaling to large numbers of
atoms requires parallelization across multiple workers, which is diffi-
cult in atom-centered MPNNs because the iterative propagation of
atomic state information along the atomistic graph increases the size
of the receptive field as a function of the number of layers. This is
further complicated by the fact that access to energy-conservative

Table 2 | Energy and Force RMSE for the 3BPA temperature transferability dataset, reported in units of [meV] and [meV/Å]

ACE12 sGDML10 GAP6 FF46, 47 ANI-pretrained48, 49 ANI-2x48, 49 NequIP15 Allegro

Fit to 300K

300 K, E 7.1 9.1 22.8 60.8 23.5 38.6 3.28 (0.12) 3.84 (0.10)

300 K, F 27.1 46.2 87.3 302.8 42.8 84.4 10.77 (0.28) 12.98 (0.20)

600 K, E 24.0 484.8 61.4 136.8 37.8 54.5 11.16 (0.17) 12.07 (0.55)

600 K, F 64.3 439.2 151.9 407.9 71.7 102.8 26.37 (0.11) 29.11 (0.27)

1200 K, E 85.3 774.5 166.8 325.5 76.8 88.8 38.52 (2.00) 42.57 (1.79)

1200 K, F 187.0 711.1 305.5 670.9 129.6 139.6 76.18 (1.36) 82.96 (2.17)

Allmodelswere trained on T = 300K.Results for allmodels except for NequIP andAllegro from ref. 24. Best results aremarked inbold. ForNequIP andAllegro, we report themeanover three different
seeds as well as the sample standard deviation in parentheses.

Table 3 | Comparison of models on the QM9 dataset, mea-
sured by the MAE in units of [meV]

Model U0 U H G

Schnet25 14 19 14 14

DimeNet++77 6.3 6.3 6.5 7.6

Cormorant23 22 21 21 20

LieConv78 19 19 24 22

L1Net79 13.5 13.8 14.4 14.0

SphereNet80 6.3 7.3 6.4 8.0

EGNN40 11 12 12 12

ET38 6.2 6.3 6.5 7.6

NoisyNodes81 7.3 7.6 7.4 8.3

PaiNN27 5.9 5.7 6.0 7.4

Allegro, 1 layer 5.7 (0.3) 5.3 5.3 6.6

Allegro, 3 layers 4.7 (0.2) 4.4 4.4 5.7

Allegro outperforms all existing atom-centered message-passing and transformer-based mod-
els, in particular even with a single layer. Best methods are shown in bold.
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force fields requires computing the negative gradient of the predicted
energy, which in standard backpropagation algorithms also requires
propagating gradient information along the atom graph. Allegro is
designed to avoid this issue by strict locality. A given Allegro model
scales as:

• OðNÞ in the number of atoms in the system N, in contrast to the
OðN2Þ scaling of some global descriptor methods such as
sGDML10;

• OðMÞ in the number of neighbors per atomM, in contrast to the
quadraticOðM2Þ scaling of some deep-learning approaches such
as DimeNet14 or Equivariant Transformers38,55;

• Oð1Þ in the number of species S, unlike local descriptors such as
SOAP (OðS2Þ) or ACE (OðSbodyorder�1Þ)12.

We note, however, that the per-pair featurization of Allegro has
larger memory requirements than if one were to choose the same
number of features in a per-atom featurization. In practice, we find this
to not be a problem and see that Allegro can be scaled to massive
systems by parallelizing over modest computational resources.

In particular, in addition to scaling as OðNÞ in the number of
atoms, Allegro is strictly local within the chosen cutoff and thus easy to
parallelize in large-scale calculations. Recall that Eqs. (5) and (6) define
the total energy of a system in Allegro as a sum over scaled pairwise
energies Eij. Thus by linearity, the force on atom a

F
!

a = � ∇aEsystem = �
X
i,j

∇aEij ,

ignoring the per-species and per-species-pair scaling coefficients σZi

and σZi ,Zj
for clarity. Because each Eij depends only the atoms in the

neighborhoodof atom i, −∇aEij ≠0only when a is in the neighborhood
of i. Further, for the same reason, pair energy terms Eij with different
central atom indices i are independent. As a result, these groups of
terms may be computed independently for each central atom, which
facilitates parallelization: the contributions to the force on atom a due
to the neighborhoods of various different atoms can be computed in
parallel bywhicheverworker is currently assigned the relevant center’s
neighborhood. The final forces are then simple sum reductions over
force terms from various parallel workers.

We first demonstrate the favorable scaling of Allegro in system
size by parallelizing themethodacrossGPUs on a single compute node
as well as across multiple GPU nodes. We choose two test systems for
the scaling experiments: (a) the quenched state structures of themulti-
component electrolyte Li3PO4 and (b) the Ag bulk crystal with a
vacancy, simulated at 90% of the melting temperature. The Ag model
used 1000 structures for training and validation, resulting in energy
MAE of 0.397meV/atom and force MAE of 16.8meV/Å on a test set of
159 structures. Scaling numbers are dependent on a variety of hyper-
parameter choices, such as network size and radial cutoff, that control
the trade-off between evaluation speed and accuracy. For Li3PO4, we
explicitly choose these identically to those used in the previous set of
experiments in order to demonstrate how well an Allegro potential
scales that we demonstrated to give highly accurate prediction of
structure and kinetics. Table 4 shows the computational efficiency for
varied size and computational resources. We are able to simulate the
Ag system with over 100 million atoms on 16 GPU nodes.

The parallel nature of the method and its implementation also
allowsmultiple GPUs to be used to increase the speed of the potential
calculation for a fixed-size system. Figure 5 shows such strong scaling

Fig. 2 | Structural properties of Li3PO4. Left: radial distribution function, right: angular distribution function of tetrahedral bond angle. All defined as probability density
functions. Results from Allegro are shown in red, and those from AIMD are shown in black.

Fig. 3 | Li dynamics in Li3PO4. Comparison of the Li MSD of AIMD vs. Allegro.
Results are averaged over 10 runs of Allegro, shading indicates +/– one standard
deviation. Results from Allegro are shown in red, and those from AIMD are shown
in blue.

Fig. 4 | Structure of Li3PO4. The quenched Li3PO4 structure at T = 600K.
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results on a 421,824 atom Li3PO4 structure. The system size was kept
constant while varying the number of A100 GPUs.

Theoretical analysis
In this section, we provide a theoretical analysis of the method by
highlighting similarities and differences to the Atomic Cluster Expan-
sion (ACE) framework12. Throughout this section we omit representa-
tion indices ℓ and p from the notation for conciseness: every weight or
feature that carries ℓ and p indices previously implicitly carries them in
this section. Starting from the initial equivariant features for the pair of
atoms ij at layer L =0

Vij,L=0
n0

=wij,L=0
n0

Y
!ij ð18Þ

the first Allegro layer computes a sum over tensor products between
Vij,L=0
n0

and the spherical harmonics projection of all neighbors

k 2 N ðiÞ:

Vij,L= 1
n1

=
X
n0
1

paths

wL= 1
n1 ,n

0
1 ,path

X
k12N ðiÞ

wik1 ,L= 1
n0
1

wij,L=0
n0
1

Y
!ij

� Y
!ik1

� �
ð19Þ

=
X
n0
1

paths

wL= 1
n1 ,n

0
1 ,path

X
k12N ðiÞ

wik1 ,L= 1
n0
1

wij,L=0
n0
1

�
Y
!ij

� Y
!ik1

�
ð20Þ

which follows from the bilinearity of the tensor product. The sum over
“paths” in this equation indicates the sum over all symmetrically valid
combinations of implicit irrep indices on the various tensors present in
the equation as written out explicitly in Eq. (16). Repeating this sub-
stitution, we can express the equivariant features at layer L = 2 and
reveal a general recursive relationship:

Vij,L= 2
n2,‘2,p2

=
X
n0
2

paths

wL= 2
n2,n

0
2,path

X
k22N ðiÞ

wik2,L= 2
n0
2

Vij,L= 1
n0
2

� Y
!ik2

� �
ð21Þ

=
X
n0
1,n

0
2

paths

wL= 2
n2,n

0
2,path

wL= 1
n0
2,n

0
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X
k22N ðiÞ

X
k12N ðiÞ

wik2,L= 2
n0
2

wik1 ,L= 1
n0
1

wij,L=0
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1

Y
!ij

� Y
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!ik2
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4
3
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Vij,L
nL ,‘L ,pL

=
X

k1, . . . ,kL

n0
1, . . . ,n

0
L

paths

Y
α21,...,L

wL=α
n0
α + 1,n

0
α ,path

 ! Y
α20,...,L

wikα ,L=α
n0
α

 ! O
α20,...,L

Y
!ikα

 !" #

ð23Þ

where k0 = j, n0
L+ 1 =nL, and n0

0 =n
0
1.

The ACE descriptor BðνÞ
n1 :::nν

of body order ν + 112 can also bewritten
as an iterated tensor product, specifically of the projection An of the
local atomic density onto a spherical harmonic and radial–chemical
basis. The n index here runs over the Nfull-basis = S ×Nbasis combined
radial–chemical basis functions. Starting from this definition we may
again use the bilinearity of the tensor product to expand the ACE
descriptor:

BðνÞ
n1 :::nν

=
O

α = 1,:::,ν

Ani ð24Þ

=
O

α = 1,:::,ν

X
kα2N ðiÞ

Rnα
ðrikα

,zkα
Þ Y!

ikα

0
@

1
A ð25Þ

=
X

k1 ,:::,kν

Y
α21,:::,ν

Rnα
ðrikα

,zkα
Þ

 ! O
α21,:::,ν

Y
!ikα

 !" #
ð26Þ

Comparing Eqs. (23) and (26) it is immediately evident that an
Allegro model with Nlayer layers and an ACE expansion of body order
ν + 1 =Nlayer + 2 share the core equivariant iterated tensor products

Y
!ij

� Y
!ik1 � :::� Y

!ikNlayer . The equivariant Allegro features Vij,L
n are

analogous—but not equivalent—to the full equivariant ACE basis

functions BðL+ 1Þ
n1 :::nL+ 1

.

Table 4 | Simulation times obtainable in [ns/day] and time
required per atom per step in [microseconds] for varying
number of atoms and computational resources

Material Number
of atoms

Number
of GPUs

Speed
in ns/day

Microseconds/
(atom ⋅ step)

Li3PO4 192 1 32.391 27.785

Li3PO4 421,824 1 0.518 0.552

Li3PO4 421,824 2 1.006 0.284

Li3PO4 421,824 4 1.994 0.143

Li3PO4 421,824 8 3.810 0.075

Li3PO4 421,824 16 6.974 0.041

Li3PO4 421,824 32 11.530 0.025

Li3PO4 421,824 64 15.515 0.018

Li3PO4 50,331,648 128 0.274 0.013

Ag 71 1 90.190 67.463

Ag 1,022,400 1 1.461 0.289

Ag 1,022,400 2 2.648 0.160

Ag 1,022,400 4 5.319 0.079

Ag 1,022,400 8 10.180 0.042

Ag 1,022,400 16 18.812 0.022

Ag 1,022,400 32 28.156 0.015

Ag 1,022,400 64 43.438 0.010

Ag 1,022,400 128 49.395 0.009

Ag 100,640,512 128 1.539 0.003

Time steps of 2fs and 5fs were used for Li3PO4 and Ag, respectively.

Fig. 5 | Scaling results. Strong scaling results on a Li3PO4 structure of 421,824
atoms, performed in LAMMPS.
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The comparison of these expansions of the two models empha-
sizes, as discussed earlier in the scaling section, that the ACE basis
functions carry a full set ofnα indices (which label radial–chemical two-
body basis functions), the number of which increases at each iteration,
while the Allegro features do not exhibit this increase as a function of
the number of layers. This difference is the root of the contrast
between the OðNν

full�basisÞ scaling of ACE in the size of the
radial–chemical basisNfull-basis and theOð1Þ of Allegro. Allegro achieves
this more favorable scaling through the learnable channel mixing
weights.

A key difference between Allegro and ACE, made clear here, is
their differing construction of the scalar pairwise weights. In ACE, the
scalar weights carrying ikα indices are the radial–chemical basis func-
tions R, which are two-body functions of the distance between atoms i
and kα and their chemistry. These correspond in Allegro to the envir-
onment embedding weights wL

ikα ,n
, which—critically—are functions of

all the lower-order equivariant features Vij,L0<L
n : the environment

embedding weights at layer L are a function of the scalar features from
layer L − 1 (Eq. (14)) which are a function of the equivariant features
from layer L − 2 (Eq. (15)) and so on. As a result, the “pairwise” weights
have a hierarchical structure and depend on all previous weights:

wL
ix,n = f ðVix,L�1Þ ð27Þ

= f fwL0
ix0 ,n0 for alln0,L0 < L,x0 2 N ðiÞg

� �
ð28Þ

where f contains details irrelevant to conveying the existence of the
dependence. We hypothesize that this hierarchical nature is in part of
why Allegro performs somuch better than the ACEmodel and is a key
difference toACE and its variants, such asNICE.Wefinally note that the
expanded features of Eq. (23)—and thus the final features of any Alle-
gro model—are of finite body order if the environment embedding
weightswL

ikαn
are themselves of finite body order. This condition holds

if the latent and embedding MLPs are linear. If any of these MLPs
contain nonlinearities whose Taylor expansions are infinite, the body
order of the environment embedding weights, and thus of the entire
model, becomes infinite. Nonlinearities in the two-body MLP are not
relevant to the body order and correspond to the use of a nonlinear
radial basis in methods such as ACE. Allegro models whose only
nonlinearities lie in the two-body embedding MLP are still highly
accurate and such a model was used in the experiments on the 3BPA
dataset described above.

Discussion
A new type of deep-learning interatomic potential is introduced that
combines high prediction accuracy on energies and forces, enabled by
its equivariant architecture, with the ability to scale to large system
sizes, due to the strict locality of its geometric representations. The
Allegro method surpasses the state-of-the-art set by atom-centered
message-passing neural network models for interatomic interactions
in terms of combined accuracy and scalability. This makes it possible
to predict structural and kinetic properties from molecular dynamics
simulations of complex systems of millions of atoms at nearly first-
principles fidelity.

Our findings enable the study of molecular and materials system
with equivariant neural networks thatwerepreviously inaccessible and
raise broad questions about the optimal choice of representation and
learning algorithm for machine learning on molecules and materials.
We note that the Allegro method naturally offers a trade-off between
accuracy and computational speed, while still offering efficient parallel
scalability. Models of higher accuracy can be obtained by choosing
networks with higher capacity (including larger numbers of features
and more layers), but we also found a small, fast model to work suffi-
ciently well to capture complex structural and kinetic properties in our

example applications. It would be of great value to the community to
conduct a detailed analysis of this accuracy-speed trade-off across
different machine learning interatomic potentials and materials.

The correspondences between the Allegro architecture and the
atomic cluster expansion (ACE) formalism also raise questions about
how and why Allegro is able to outperform the systematic ACE basis
expansion. We speculate that our method’s performance is due in part
to the learned dependence of the environment embedding weights at
each layer on the full scalar latent features fromall previous layers. This
dependence may allow the importance of an atom to higher body-
order interactions to be learned as a function of lower body-order
descriptions of its environment. It stands in stark contrast to ACE,
where the importance of any higher body-order interaction is learned
separately from lower body-order descriptions of the local structure.
We believe further efforts to understand this correspondence are a
promising direction for future work. Similarly, we believe a systematic
study of the completeness of the prescribed architecture will be of
high interest.

Another important goal for future work is to obtain a better
understanding of when explicit long-range terms are required in
machine learning interatomic potentials, how to optimally incorporate
them with local models, and to what extent message-passing intera-
tomic potentials may or may not implicitly capture these interactions.
For example, it would be interesting to combine the Allegro potential
with an explicit long-range energy term. In particular, the strict locality
of the Allegro model naturally facilitates separation of the energy into
a short-range term and a physically motivated long-range term.

Methods
Software
All experiments were run with the Allegro code available at https://
github.com/mir-group/allegro under git commit a5128c2a8635076
2215dad6bd8bb42875ebb06cb. In addition,weused theNequIP code
available at https://github.com/mir-group/nequip with version 0.5.3,
git commit eb6f9bca7b36162abf69ebb017049599b4ddb09c, as
well as e3nn with version 0.4.456, PyTorch with version 1.10.057, and
Pythonwith version 3.9.7. The LAMMPS experimentswere runwith the
LAMMPS code available at https://github.com/lammps/lammps.git
under git commit 9b989b186026c6fe9da354c79cc9b4e152a-
b03af with the pair_allegro code available at https://github.com/
mir-group/pair_allegro, git commit 0161a8a8e2fe0849165-
de9eeae3fbb987b294079. The VESTA software was used to generate
Fig. 458. Matplotlib was used for plotting results59.

Reference training sets
revisedMD-17. The revisedMD-17 dataset consists of ten small organic
molecules, for which 100,000 structures were computed at DFT (PBE/
def2-SVP) accuracy using a very tight SCF convergence and very dense
DFT integration grid43. The structures were recomputed from the
original MD-17 dataset10,44,45. The data can be obtained at https://
figshare.com/articles/dataset/Revised_MD17_dataset_rMD17_/
12672038. We use 950 structures for training, 50 structures for vali-
dation (both sampled randomly), and evaluate the test error on all
remaining structures.

3BPA. The 3BPA dataset consists of 500 training structures at
T = 300K, and test data at 300K, 600K, and 1200K, of dataset size of
1669, 2138, and 2139 structures, respectively. The data were computed
using Density Functioal Theory with the ωB97X exchange-correlation
functional and the 6-31G(d) basis set. For details, we refer the reader
to24. The dataset was downloaded from https://pubs.acs.org/doi/full/
10.1021/acs.jctc.1c00647.

QM9. The QM9 data consist of 133,885 structures with up to 9 heavy
elements and consisting of species H, C, N, O, F in relaxed geometries.
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Structures are provided together with a series of properties computed
at the DFT/B3LYP/6-31G(2df,p) level of theory. The dataset was
downloaded from https://figshare.com/collections/Quantum_
chemistry_structures_and_properties_of_134_kilo_molecules/978904.
In line with previous work, we excluded the 3054 structures that failed
the geometry consistency check, resulting in 130,831 total structures,
of which we use 110,000 for training, 10,000 for validation and eval-
uate the test error on all remaining structures. Training was performed
in units of [eV].

Li3PO4. The Li3PO4 structure consists of 192 atoms. The reference
dataset was obtained from two AIMD simulations both of 50 ps dura-
tion, performed in the Vienna Ab-Initio Simulation Package (VASP)60–62

using a generalized gradient PBE functional63, projector augmented
wave pseudopotentials64, a plane-wave cutoff of 400 eV and a Γ-point
reciprocal-spacemesh. The integrationwasperformedwith a time step
of 2 fs in the NVT ensemble using a Nosé–Hoover thermostat. The first
50 ps of the simulation were performed at T = 3000K in the molten
phase, followed by an instant quench to T = 600K and a second 50ps
simulation at T = 600K. The two trajectories were combined and the
training set of 10,000 structures as well as the validation set of 1000
were sampled randomly from the combined dataset of
50,000 structures.

Ag. TheAg system is created fromabulk face-centered-cubic structure
with a vacancy, consisting of 71 atoms. The data were sampled from
AIMD simulations at T = 1111 K (90% of the melting temperature of Ag)
with Gamma-point k-sampling as computed in VASP using the PBE
exchange-correlation functional60–62. Frames were then extracted at
least 25 fs apart, to limit correlation within the trajectory, and each
frame was recalculated with converged DFT parameters. For these
calculations, the Brillouin zonewas sampled using a (2 × 2 × 3) Gamma-
centered k-point grid, and the electron density at the Fermi-level was
approximated using Methfessel–Paxton smearing65 with a sigma value
of 0.05. A cutoff energy of 520 eV was employed, and each calculation
was non-spin-polarized.

Molecular dynamics simulations
Molecular Dynamics simulations were performed in LAMMPS66 using
the pair style pair_allegro implemented in the Allegro interface,
available at https://github.com/mir-group/pair_allegro. We run the
Li3PO4 production and timing simulations under an NVT ensemble at
T = 600K, using a time step of 2 fs, a Nosé-Hoover thermostat and a
temperature damping parameter of 40 time steps. The Ag timing
simulations are run also in NVT, at a temperature of T = 300K using a
time step of 5 fs, a Nosé-Hoover thermostat and a temperature
dampingparameter of 40 time steps. The larger systemsare createdby
replicating theoriginal structures of 192 and71 atomsof Li3PO4 andAg,
respectively. We compute the RDF and ADFs for Li3PO4 with a max-
imum distance of 10Å (RDF) and 2.5Å (ADFs). We start the simulation
from the first frame of the AIMD quench simulation. RDF and ADF for
Allegrowere averaged over ten runswith different initial velocities, the
first 10 ps of the 50 ps simulation were discarded in the RDF/ADF
analysis to account for equilibration.

Training details
Models were trained on a NVIDIA V100 GPU in single-GPU training.

revMD-17 and 3BPA. The revised MD-17 models were trained with a
total budget of 1000 structures, split into 950 for training and 50 for
validation. The 3BPA model was trained with a total budget of
500 structures, split into 450 for training and 50 for validation. The
dataset was re-shuffled after each epoch. We use three layers, 128
features for both even and odd irreps and a ℓmax = 3. The 2-body latent
MLP consists of four hidden layers of dimensions [128, 256, 512, 1024],

using SiLU nonlinearities on the outputs of the hidden layers67. The
later latent MLPs consist of three hidden layers of dimensionality
[1024, 1024, 1024] using SiLU nonlinearities for revMD-17 and no
nonlinearities for 3BPA. The embedding weight projection was
implemented as a single matrix multiplication without a hidden layer
or a nonlinearity. The final edge energy MLP has one hidden layer of
dimension 128 and again no nonlinearity. All fourMLPs were initialized
according to a uniform distribution of unit variance. We used a radial
cutoff of 7.0Å for all molecules in the revMD-17 dataset, except for
naphthalene, for which a cutoff of 9.0Åwas used, and a cutoff of 5.0Å
for the 3BPA dataset. We have also included an ablation study on the
cutoff radius for the large naphthalenemoleculewhich canbe found in
Supplementary Table 1. We use a basis of eight non-trainable Bessel
functions for the basis encoding with the polynomial envelope func-
tion using p = 6 for revMD-17 and p = 2 for 3BPA. We found it particu-
larly important to use a low exponent p in the polynomial envelope
function for the 3BPA experiments. We hypothesize that this is due to
the fact that a lower exponent provides a stronger decay with
increasing interatomic distance (see Supplementary Fig. 1), thereby
inducing a stronger inductive bias that atoms j further away from a
central atom i should have smaller pair energies Eij and thus contribute
less to atom i’s site energy Ei. RevMD-17 models were trained using a
joint loss function of energies and forces:

L=
λE
B

XB
b

Êb � Eb

� �2
+

λF
3BN

XBN
i = 1

X3
α = 1

∣∣� ∂Ê
∂ri,α

� Fi,α ∣∣
2 ð29Þ

whereB,N, Eb, Êb, Fi,αdenote the batch size, number of atoms, batchof
true energies, batch of predicted energies, and the force component
on atom i in spatial direction α, respectively and λE, λF are energy and
force weights. Following previous works, for the revMD-17 data the
force weight was set to 1000 and the weight on the total potential
energies was set to 1. For the 3BPA molecules, as in ref. 68, we used a
per-atomMSE term that divides the energy term by N2

atoms because (a)
the potential energy is a global size-extensive property, and (b) we use
a MSE loss function:

L=
λE
B
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b
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 !2

+
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After this normalization, both the energy and the force term
receive aweight of 1.Modelswere trainedwith theAdamoptimizer69 in
PyTorch57, with default parameters of β1 = 0.9, β2 = 0.999, and ϵ = 10−8

without weight decay. We used a learning rate of 0.002 and a batch
size of 5. The learning rate was reduced using an on-plateau scheduler
based on the validation loss with a patience of 100 and a decay factor
of 0.8. We use an exponential moving average with weight 0.99 to
evaluate on the validation set as well as for the final model. Training
was stopped when one of the following conditions was reached: (a) a
maximum training timeof 7 days, (b) amaximumnumber of epochs of
100,000, (c) no improvement in the validation loss for 1000 epochs,
(d) the learning rate dropped lower than 1e-6. We note that such long
wall times are usually not required and highly accurate models can
typically be obtained within a matter of hours or even minutes. All
models were trained with float32 precision.

3BPA, NequIP. The NequIP models on the 3BPA dataset were trained
with a total budget of 500molecules, split into 450 for training and 50
for validation. The dataset was re-shuffled after each epoch. We use 5
layers, 64 features for both even and odd irreps and a ℓmax = 3.We use a
radial network of three layers with 64 hidden neurons and SiLU non-
linearities. We further use equivariant, SiLU-based gate nonlinearities
as outlined in ref. 15, where even and odd scalars are not gated, but
operated on directly by SiLU and tanh nonlinearities, respectively. We
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used a radial cutoff of 5.0Å and a non-trainable Bessel basis of size 8
for the basis encodingwith a polynomial envelope function using p = 2.
Again, a low p value was found to be important. We use again a per-
atom MSE loss function in which both the energy and the force term
receive a weight of 1. Models were trained with Adam with the AMS-
Grad variant in the PyTorch implementation57,69–71, with default para-
meters of β1 = 0.9, β2 = 0.999, and ϵ = 10−8 without weight decay. We
used a learning rate of 0.01 and a batch size of 5. The learning rate was
reduced using an on-plateau scheduler based on the validation loss
with a patience of 50 and a decay factor of 0.8. We use an exponential
moving average with weight 0.99 to evaluate on the validation set as
well as for the final model. Training was stopped when one of the
following conditions was reached: (a) a maximum training time of
7 days, (b) a maximum number of epochs of 100,000, (c) no
improvement in the validation loss for 1000 epochs, (d) the learning
rate dropped lower than 1e-6. We note that such long wall times are
usually not required and highly accurate models can typically be
obtained within a matter of hours or even minutes. All models were
trained with float32 precision. We use a per-atom shift μZi

via the
average per-atom potential energy over all training frames and a per-
atom scale σZi

as the root-mean-square of the components of the
forces over the training set.

Li3PO4. The Li3PO4 model was trained with a total budget of
11,000 structures, split into 10,000 for training and 1000 for validation.
Thedatasetwas re-shuffledafter each epoch.Weuseone layer, 1 feature
of even parity and ℓmax = 1. The 2-body latent MLP consists of 2 hidden
layers of dimensions [32, 64], using SiLU nonlinearities67. The later
latent MLP consist of 1 hidden layer of dimensionality [64], also using a
SiLU nonlinearity. The embedding weight projection was implemented
as a single matrix multiplication without a hidden layer or a non-
linearity. The final edge energy MLP has one hidden layer of dimension
32 and again no nonlinearity. All fourMLPswere initialized according to
a uniform distribution of unit variance. We used a radial cutoff of 4.0Å
and a basis of eight non-trainable Bessel functions for the basis
encoding with the polynomial envelope function using p =48. The
model was trained using a joint loss function of energies and forces.We
use again the per-atomMSE as describe above and a weighting of 1 for
the force term and 1 for the per-atomMSE term. Themodel was trained
with the Adam optimizer69 in PyTorch57, with default parameters of
β1 = 0.9, β2 = 0.999, and ϵ = 10−8 without weight decay. We used a
learning rate of 0.001 and a batch size of 1. The learning rate was
reducedusing anon-plateau scheduler basedon the validation losswith
apatienceof 25 andadecay factorof0.5.Weuse anexponentialmoving
average with weight 0.99 to evaluate on the validation set as well as for
the final model. Training was stopped when one of the following con-
ditions was reached: (a) a maximum training time of 7 days, (b) a
maximum number of epochs of 100,000, (c) no improvement in the
validation loss for 1000 epochs, (d) the learning rate dropped lower
than 1e-5. The model was trained with float32 precision.

Ag. The Ag model was trained with a total budget of 1000 structures,
split into 950 for training and 50 for validation, and evaluated on a
separate test set of 159 structures. The dataset was re-shuffled after
each epoch. We use 1 layer, 1 feature of even parity and ℓmax = 1. The
2-body latent MLP consists of 2 hidden layers of dimensions [16, 32],
using SiLU nonlinearities67. The later latent MLP consists of 1 hidden
layer of dimensionality [32], also using a SiLU nonlinearity. The
embedding weight projection was implemented as a single matrix
multiplication without a hidden layer or a nonlinearity. The final edge
energy MLP has one hidden layer of dimension 32 and again no non-
linearity. All four MLPs were initialized according to a uniform dis-
tribution. We used a radial cutoff of 4.0Å and a basis of eight non-
trainable Bessel functions for the basis encoding with the polynomial
envelope function using p = 48. The model was trained using a joint

loss function of energies and forces.We use again the per-atomMSE as
describe above and aweighting of 1 for the force termand 1 for theper-
atom MSE term. The model was trained with the Adam optimizer69 in
PyTorch57, with default parameters of β1 = 0.9, β2 = 0.999, and ϵ = 10−8

withoutweight decay.Weused a learning rate of 0.001 and a batch size
of 1. The learning rate was reduced using an on-plateau scheduler
based on the validation loss with patience of 25 and a decay factor of
0.5. We use an exponential moving average with weight 0.99 to eval-
uate on the validation set as well as for the finalmodel. Themodel was
trained for a total of approximately 5 h with float32 precision.

QM9. We used 110,000 molecular structures for training, 10,000 for
validation, and evaluated the test error on all remaining structures, in
line with previous approaches9,27. We note that Cormorant and EGNN
are trained on 100,000 structures, L1Net is trained on 109,000 struc-
tures while NoisyNodes is trained on 114,000 structures. To give an
estimate of the variability of training as a function of random seed, we
report for the U0 target the mean and sample standard deviation
across three different random seeds, resulting in different samples of
training set as well as different weight initialization. We report two
models, one with three layers and ℓmax = 2 and another one with 1 layer
and ℓmax = 3, both with 256 features for both even and odd irreps. The
1-layer and 3-layer networks have 7,375,237 and 17,926,533 parameters,
respectively. The 2-body latent MLP consists of four hidden layers of
dimensions [128, 256, 512, 1024], using SiLU nonlinearities67. The later
latent MLPs consist of three hidden layers of dimensionality [1024,
1024, 1024], also using SiLU nonlinearities. The embedding weight
projectionwas implemented as a singlematrixmultiplicationwithout a
hidden layer or a nonlinearity. The final edge energy MLP has one
hidden layer of dimension 128 and again no nonlinearity. All fourMLPs
were initialized according to a uniform distribution. We used a radial
cutoff of 10.0Å. We use a basis of 8 non-trainable Bessel functions for
the basic encoding with the polynomial envelope function using p = 6.
Models were trained using a MSE loss on the energy with the Adam
optimizer69 in PyTorch57, with default parameters of β1 = 0.9,
β2 = 0.999, and ϵ = 10−8 without weight decay. In addition, we use gra-
dient clipping by normwith a maximum norm of 100. The dataset was
re-shuffled after each epoch. We used a learning rate of 0.001 and a
batch size of 16. The learning rate was reduced using an on-plateau
scheduler based on the validationMAE of the energywith a patience of
25 and a decay factor of 0.8. We use an exponential moving average
with weight 0.999 to evaluate on the validation set as well as for the
final model. Training was stopped when one of the following condi-
tions was reached: (a) a maximum training time of approximately
14 days, (b) a maximum number of epochs of 100,000, (c) no
improvement in the validation loss for 1000 epochs, (d) the learning
rate dropped lower than 1e-5. All models were trained with float32
precision. Again, we note that such long wall times are not required to
obtain highly accurate models. We subtract the sum of the reference
atomic energies and then apply the linear fitting procedure described
above using every 100th reference label in the training set.

Scaling experiments
Scalability across devices is achieved by implementing an Allegro
extension to the LAMMPSmolecular dynamics code66. The local nature
of the Allegro model is compatible with the spatial decomposition
approach used in LAMMPS and thus all communication between MPI
ranks is handled by existing LAMMPS functionality. The Allegro
extension simply transforms the LAMMPS neighbor lists into the for-
mat required by the Allegro PyTorch model and stores the resulting
forces and energies in the LAMMPS data structures. These operations
areperformedon theGPUanduse theKokkosperformanceportability
library72 to entirely avoid expensive CPU work or CPU-GPU data
transfer. The scaling experiments were performed on NVIDIA DGX
A100s on the ThetaGPU cluster at the Argonne Leadership Computing
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Facility, where eachnode contains 8GPUs and a total of 320GBof GPU
memory. For the Li3PO4 simulation, we use a time step of 2 fs, identical
to the reference AIMD simulations, float32 precision, and a tempera-
ture of T = 600K on the quenched structure, identical to the produc-
tion simulations used in the quench simulation. For Ag, we use a time
step of 5 fs, a temperature of T = 300K and again float32 precision.
Simulations were performed for 1000 time steps after initial warm-up.

Atom-density representations
The Atomic Cluster Expansion (ACE) is a systematic scheme for
representing local atomic environments in a body-ordered expansion.
The coefficients of the expansion of a particular atomic environment
serve as an invariant description of that environment. To expand a
local atomic environment, the local atomic density is first projected
onto a combination of radial basis functions R and spherical harmonic
angular basis functions Y

!
:

Azn‘ =
X

j2N ðiÞs.t. zj = z
Rn‘ðrijÞ Y

!m

‘ ðr̂ijÞ ð31Þ

where z runs over all atom species in the system, zj is the species of
atom j,N ðiÞ is the set of all atoms within the cutoff distance of atom i,
also known as its “neighborhood”, and the n index runs over the radial
basis functions. The m index on A is implicit. The basis projection of
body order ν + 1 is then defined as:
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Only tensor products outputting scalars—which are invariant, like the
final target total energy—are retained here. For example, in Eq. (33),
only tensor products combining basis functions inhabiting the same
rotation order ℓ1 = ℓ2 can produce scalar outputs. The final energy is
then fit as a linear model over all the scalars B up to some chosen
maximum body order ν + 1.

It is apparent from Eq. (35) that a core bottleneck in the Atomic
Cluster Expansion is the polynomial scaling of the computational cost
of evaluating the B termswith respect to the total number of two-body
radial–chemical basis functions Nfull-basis as the body order ν + 1
increases: OðNν

full�basisÞ. In the basic ACE descriptor given above,
Nfull-basis =Nbasis × S is the number of radial basis functions times the
number of species. Species embeddings have been proposed for ACE
to remove the direct dependence on S73. It retains, however, the
OðNν

full�basisÞ scaling in the dimension of the embedded basis Nfull-basis.
NequIP and some other existing equivariant neural networks avert this
unfavorable scaling by only computing tensor products of a more
limited set of combinations of input tensors. The NICE framework74 is
an idea closely related to ACE that aims to solve the problem of
increasing numbers of features by selecting only certain features at
each iteration based on principal component analysis.

Normalization
Internal normalization. Thenormalizationofneuralnetworks’ internal
features is known to be of great importance to training. In this workwe
follow the normalization schemeof thee3nn framework75, inwhich the

initial weight distributions and normalization constants are chosen so
that all components of thenetworkproduceoutputs that element-wise
have approximately zeromean andunit variance. Inparticular, all sums
overmultiple features are normalized by dividing by the square root of
the number of terms in the sum, which follows from the simplifying
assumption that the terms are uncorrelated and thus that their var-
iances add. Two consequences of this scheme that merit explicit
mention are the normalization of the embedded environment and
atomic energy. Both the embedded environment (Eq. (4)) and atomic
energy (Eq. (6)) are sums over all neighbors of a central atom. Thus we
divide both by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h∣N ðiÞ∣i

p
where h∣N ðiÞ∣i is the average number of

neighbors over all environments in the entire training dataset.

Normalization of targets. We found the normalization of the targets,
or equivalently the choice of final scale and shift parameters for the
network’s predictions (see Eq. (5)), to be of high importance. For sys-
tems of fixed chemical composition, our default initialization is the
following: μZ is set for all species Z to the average per-atom potential
energy over all training frames

Econfig

N

D E
; σZ is set for all species Z to the

root-mean-square of the components of the forces on all atoms in the
training dataset. This scheme ensures size extensivity of the potential
energy, which is required if one wants to evaluate the potential on
systems of different size than what it was trained on. We note that the
widely used normalization scheme of subtracting the mean total
potential energy across the training set violates size extensivity.

For systems with varying chemical composition, we found it
helpful to normalize the targets using a linear pre-fitting scheme that
explicitly takes into account the varying chemical compositions: μZ is
computedby ½Nconfig,Z ��1½Econfig�, where ½Nconfig,Z � is amatrix containing
the number of atoms of each species in the reference structures, and
½Econfig� is a vector of reference energies. Details of the normalization
calculations and the comparison between different schemes can be
found in ref. 68.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Li3PO4 and Ag data generated in this study have been deposited in
the MaterialsCloud database at https://archive.materialscloud.org/
record/2022.128. The revMD-17, 3BPA, and QM9 datasets are publicly
available (see “Methods”).

Code availability
An open-source software implementation of Allegro is available at
https://github.com/mir-group/allegro together with an implementa-
tion of the LAMMPS software interface at https://github.com/mir-
group/pair_allegro.
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