
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998 1067

Learning Local Languages and Their
Application to DNA Sequence Analysis

Takashi Yokomori, Member, IEEE, and Satoshi Kobayashi

Abstract—This paper concerns an efficient algorithm for learning in the limit a special type of regular languages called strictly
locally testable languages from positive data, and its application to identifying the protein a-chain region in amino acid sequences.
First, we present a linear time algorithm that, given a strictly locally testable language, learns (identifies) its deterministic finite state
automaton in the limit from only positive data. This provides us with a practical and efficient method for learning a specific concept
domain of sequence analysis. We then describe several experimental results using the learning algorithm developed above.
Following a theoretical observation which strongly suggests that a certain type of amino acid sequences can be expressed by a
locally testable language, we apply the learning algorithm to identifying the protein a-chain region in amino acid sequences for
hemoglobin. Experimental scores show an overall success rate of 95 percent correct identification for positive data, and 96 percent
for negative data.

Index Terms—Local languages, deterministic automata, hemoglobin a-chain, DNA sequence analysis, machine learning.

——————————���F���——————————

1 INTRODUCTION

RAMMATICAL inference can be vaguely described as the
process of extracting from large quantities of data a

grammatical representation for explaining those data. This
is known as a subproblem of more general problem called
inductive learning (or inductive inference) where instead of
grammatical representations any type of concept represen-
tation devices is employed. One typical protocol of this
learning paradigm, called identification in the limit, requires
the class of objects (languages), the presentation of training
data (an infinite sequence of examples) of an object in the
class. The goal is to design an algorithm which produces a
sequence of representations (grammars) for the object,
eventually converging to a fixed representation correct for
the targeted object. (See [4], [10] for excellent surveys of this
area.)

In the study of inductive inference of formal languages,
Gold [15] showed that the class of languages containing all
finite sets and at least one infinite set is not learnable in the
limit from positive data only. This fact was shocking in a
sense because a simple implication is that even the class of
regular languages is not learnable in the limit from positive
data. Angluin [2] has given several conditions for the class of
languages to be learnable in the limit from positive data, and
presented some examples of learnable classes. She has also
proposed subclasses of regular languages called k-reversible
languages for each k ≥ 0 and shown these classes are learn-
able in the limit from positive data with the conjectures up-

dated in polynomial time [3]. Here, the learnability from
only positive data as well as polynomial-time efficiency is
of great importance from the practical viewpoint.

On the other hand, the notion of a splicing system was
introduced by Head in [18] as a mathematical model of re-
striction enzyme digestion and subsequent religation in the
recombination of DNA molecules. He showed an interest-
ing relationship between splicing languages generated by
splicing systems and regular languages. In particular, one
of the most significant results for our purpose is the
equivalence relation between a certain type of splicing lan-
guages, called persistent splicing languages, and a subclass
of regular languages called strictly locally testable languages.
This result is crucially important in that, as we will show, it
can bridge the gap between mathematical analysis in mo-
lecular biology and formal language theory in computer
science. More specifically, in the usual problem setting of
sequence analysis in genome informatics, the identification
of protein sequence families is performed by the homology
search technique to construct a “template” which gives a
favorable score (e.g., [16], [32]). Our method is unique in
that the learning algorithm in this paper may provide an
automatic way of deriving such a template from sample
data.

In this article, we will first show that, using Determinis-
tic Finite State Automata (DFAs), for each k ≥ 1, the class of
strictly k-testable languages is learnable in the limit from
positive data with the conjectures updated in linear time. It
is also established that, for each k ≥ 1, the class of strictly
k-testable languages is a proper subclass of the class of (k + 1)-
reversible regular languages but incomparable to the class
of zero-reversible languages. The class of strictly locally
testable languages consists of all classes of strictly k-testable
languages for every k ≥ 1.

Then, motivated by a theoretical result due to Head [18]
mentioned above which strongly suggests that a certain

0162-8828/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� T. Yokomori is with the Department of Mathematics, School of Education,
Waseda University, 1-6-1 Nishi-waseda, Shinjuku-ku, Tokyo 169-8050, Japan.
�E-mail: yokomori@mn.waseda.ac.jp.

•� S. Kobayashi is with the Department of Information Sciences, Faculty of
Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho,
Hiki-gun, Saitama 350-0394, Japan. E-mail: satoshi@j.dendai.ac.jp.

Manuscript received 12 Sept. 1994; revised 18 June 1998. Recommended for accep-
tance by S. Dunn.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 107053.

G

1068 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998

type of amino acid sequences can be expressed by a strictly
locally testable language, we describe several experimental
results via a machine identification system based on the
learning algorithm developed above. We apply the system
to identifying the protein a-chain region in amino acid se-
quences for hemoglobin. Some experimental data show that
the system achieved an overall success rate of 95 percent
correct identification for positive data, and 96 percent for
negative data. As a result, we have specific DFAs which
have been obtained through the learning process from the
DNA sample data. Thus, the main experimental result
stated in the present paper suggests a great potential of a
successful formal method based on the automata-theoretic
approach to DNA sequence analysis in general.

This article is organized as follows. After preparing basic
definitions and notations in Section 2, we introduce the no-
tion of a strictly k-testable language and study its formal
properties in Section 3. A problem of learning strictly k-
testable languages in the limit from positive data is formal-
ized and a linear time algorithm for solving the problem is
presented. Section 4 in turn deals with an application issue
of the algorithm developed in the previous section. First,
we state a theoretical result on relationship between two
formal models: one for describing the behaviors of recom-
bination of DNA molecules, called splicing system, and the
other for a strictly k-testable language. Then, we apply the
learning algorithm to an identification problem of protein
a-chain region in amino acid sequences, to obtain high
scores of overall success rates in several experiments. Fi-
nally, discussion on related works and concluding remarks
follow in Section 5.

2 PRELIMINARIES

2.1 Basic Definitions and Notations for Formal
Languages

We assume the reader to be familiar with the rudiments of
automata and formal language theory. (For notions and
notations not stated here, see, e.g., [17].)

Let S be a fixed finite alphabet and S* be the set of all fi-
nite-length strings over S. Further, let S+ = S* - {l}, where l
is the null string. By lg(u), we denote the length of string u.
A language over S is a subset of S*. The cardinality of a set S
is denoted by |S|.

Let Lk(w) and Rk(w) be the prefix and the suffix of w of
length k, respectively. Further, let Ik(w) be the set of interior
solid substrings of w of length k. These are defined only
when w has length k or more. If w has length k, then Lk(w) =
Rk(w) = w, while if w has length k or k + 1, then Ik(w) is
empty. Let x be a string over S and L be a language over S.
The left-quotient of L and x, denoted by x\L, is defined by
x\L = {y Œ S*|xy Œ L}.

A deterministic finite state automaton (DFA) is a five-
tuple M = (Q, S, d, p0, F), where Q is a finite set of states, S is
a finite alphabet of input symbols, p0 (Œ Q) is the initial
state, F(Õ Q) is the set of final (accepting) states, and d is a
state transition mapping such that for all p Œ Q and a Œ S,
d(p, a) is in Q or undefined. A mapping d is extended to
Q ¥ S* as follows: For all p Œ Q, d(p, l) = p, and for all p Œ Q,

x Œ S*, and a Œ S, d(p, xa) = d(d(p, x), a). A string w over S is
accepted by M if and only if (iff, for short) d(p0, w) Œ F. A
language L is accepted by M, denoted by L = L(M), iff L is
exactly the set of all strings accepted by M.

2.2 Learning in the Limit From Positive Data
Let & be a subclass of regular languages to be learned over
a fixed alphabet S and let 0 be a class of DFAs with the
property that for each L Œ & there exists M Œ 0 such that
M accepts L (i.e., L(M) = L).

For a given M Œ 0, a positive presentation of L(M) is any
infinite sequence of examples such that every w Œ L(M)
occurs at least once in the sequence and no other examples
not in L(M) appear in the sequence.

Let L be a language in & such that L = L(M) for some
M Œ 0. An algorithm $ is said to learn a language L in the
limit from positive data (using 0) iff for any positive pres-
entation of L, the infinite sequence of DFAs Mi in 0 pro-
duced by $ satisfies the property that there exists a DFA M¢
in 0 such that for all sufficiently large i, the ith conjecture
(DFA) Mi is identical to M¢ and L(M¢) = L(M). A class of lan-
guages & is learnable in the limit from positive data iff there
exists an algorithm $ that, given an L in &, learns L in the
limit from positive data.

Let $ be an algorithm for learning a language class & in
the limit from positive data. A class & is learnable in the limit
from positive with the conjectures updated in polynomial time iff
there exists an algorithm $ for learning & in the limit from
positive data with the property that there exist a polyno-
mial p such that for any n, for any L in & for which a correct
DFA is of size n, and for any positive presentation of L, the
time used by $ between receiving the ith example wi and
outputting the ith conjectured representation ri is at most
p(n, m1 + L + mi), where mj = lg(wj)(1 £ j £ i).

3 LEARNING LOCALLY TESTABLE LANGUAGES

In this section, we discuss in some detail the problem of
learning a subclass of regular languages, called strictly lo-
cally testable languages, and present an algorithm for
learning the class of languages in the limit from positive
data. The learning algorithm is proven to be efficient
enough to be applied to a practical problem domain, and in
fact it is applied to an identification problem of amino acid
sequences for hemoglobin in the next section.

3.1 Strictly Locally Testable Languages
Let k be a positive integer. A language L over S is strictly k-
testable iff there exist finite sets A, B, and C such that A, B,
C Õ Sk, and for all w with lg(w) ≥ k, w Œ L iff Lk(w) Œ A, Rk(w)
Œ B, and Ik(w) Õ C. (In this case, (A, B, C) is called a triple for
L.) A language L is strictly locally testable iff there exists an
integer k ≥ 1 such that L is strictly k-testable [24]. Note that
if L is strictly k-testable, then L is strictly k¢-testable for all
k¢ > k. Further, the definition of “strictly k-testable” says
nothing about the strings of length k - 1 or less.

For some analyses on the formal language theoretic
characterizations of strictly locally testable languages, see
the Appendix which establishes the relationships to other
subclasses of regular languages.

YOKOMORI AND KOBAYASHI: LEARNING LOCAL LANGUAGES AND ITS APPLICATION TO DNA SEQUENCE ANALYSIS 1069

Now, let us define a binary relation p on 2 2 2Σ Σ Σk k k
× ×

as follows:

(A, B, C) a (A¢, B¢, C¢) iff A Õ A¢, B Õ B¢, and C Õ C¢.

It is easy to see that a relation a is a partial order.
Let L be a strictly k-testable language over S and let

(A, B, C) be a triple for L. A triple (A, B, C) for L is called
minimum if (A, B, C) is the minimum element with respect
to a among all triples for L.

LEMMA 1. Let L be a strictly k-testable language such that L Õ SkS*.
Then, there exists a triple (A, B, C) for L which is minimum.

PROOF. Suppose that there exist triples (Ai, Bi, Ci) for L
which are pairwise incomparable with respect to the or-
der a. Consider a triple (A, B, C), where A = >iAi, B = >iBi,
C = >iCi. Then,

w L i L w A R w B I w C

L w A R w B I w C
k i k i k i

k i
i

k i k i
ii

∈ ⇔ ∀ ∈ ∈ ⊆

⇔ ∈ ∈ ⊆

0 5 0 5 0 5 0 5
0 5 0 5 0 5

, ,

, ,I II

Thus, (A, B, C) is a triple for L and clearly for all i, (A, B, C)
a (Ai, Bi, Ci). u

LEMMA 2. Let L be a language such that L Õ SkS*. Then, L is
strictly k-testable iff there exists a triple [A¢,B¢,C¢] such that
A¢, B¢, C¢ Õ Sk and L= A¢S* > S*B¢ - S+C¢S+.

PROOF. Suppose that there exists a triple (A, B, C) for L
which is minimum. Then,

w L L w A R w B I w C

w A B C

A A B B C C

k i k i k

k

∈ ⇔ ∈ ∈ ⊆

⇔ ∈ ′ ∩ ′ ∩ − ′

′ = ′ = ′ = −

+ +

0 5 0 5 0 5
4 9

4 9

, ,

, ,

* * *Σ Σ Σ Σ Σ

Σwhere and

Thus, there exists a triple [A¢, B¢, C¢] such that A¢, B¢, C¢ Õ
Sk and L = A¢S* > S*B¢ - S+C¢S+.

The converse is proved in the same manner as above. u

3.1.1 Conventions

1)�First, recall that the definition of strictly k-testability
says nothing about the strings of length k - 1 or less.
Since we are interested in the property on the essen-
tial part of strictly k-testable languages, we assume
that all languages we will deal with in this section are
subsets of SkS*. Further, note that a strictly k-testable
language may possibly be strictly k¢-testable for some
k¢ less than k. In the present paper, we are concerned
with the class of strictly k-testable languages where k
is critical in the sense that no smaller k can specify the
class. Hence, from Lemma 2, in what follows, we
adopt the following definition for a strictly k-testable
language: L is strictly k-testable iff

a) there exists a triple S = [A, B, C] such that A, B, C
Õ Sk and L = L(S), and

b) for no k¢ less than k, L is strictly k¢-testable, where
L(S) = AS* > S*B - S+CS+.

2) Second, a triple [A, B, C] for L (in this new defini-
tion) is called minimum iff so is a triple (A, B, Sk - C)

for L (in the original definition).
3) Third, we may assume that all triples [A, B, C] con-

sidered and used in the proof are minimum.

3.2 Strictly k-Testable Language Associated With a
Finite Set

In this subsection, we will show that given a finite set of
strings T, we can effectively construct a strictly k-testable
language LT which is the smallest strictly k-testable lan-
guage containing T.

Let T be a finite subset of SkS*. Then, construct finite sets
AT, BT, and CT as follows:

AT = {Lk(w) | w Œ T}

BT = {Rk(w) | w Œ T}

CT = {x | lg(x) = k, "y, y¢ Œ S+(yxy¢ œ T)].

Consider a triple ST = [AT, BT, CT] and a language

L(ST) = ATS* > S*BT - S+CTS+.

Then, obviously, AT, BT, CT Õ Sk. A set L(ST) is called a
strictly k-testable language associated with T.

We assume that T and T¢ are finite subsets of SkS*

throughout this section.

LEMMA 3.

1)�T Õ L(ST) holds.
2)�Let L be a strictly k-testable language such that L Õ SkS*

and L = AS* > BS* - S+CS+, for some triple [A, B, C].
Then, w is in L implies that Ik(w) > C = ∆.

3)� If T Õ T¢, then L(ST) Õ L(ST¢) holds.

PROOF. Statements 1 and 2 are obvious from the definition,
and it suffices to prove Statement 3.

From the way of constructing AT, BT of ST, it is obvi-

ous that AT Õ AT¢, BT Õ BT¢. Now, suppose that CT¢ À CT.
Then,

∃ ∈ − ⇒ ∀ ′ ′ ∉ ′ ∃ ′ ′ ∈

⇒ ∃ = ′ ∈ − ′
⇒ ⊆ ′

′x C C y y yxy T x z zxz T

w zxz T T

T T

T T , ,

/

1 6 0 5
0 5

0 5

and

contradiction

Thus, it must hold that CT¢ Õ CT. Hence, from the argu-
ment above, it is obvious that

ATS* Õ AT¢S
*

S*BT Õ S*BT¢

S* - S+CTS+ Õ S* - S+CT¢S
+.

Hence, we have:

L(ST) = ATS* > S*BT > (S* - S+CTS+)

 Õ AT¢S
* > S*BT¢ > (S* - S+CT¢S

+)

 = L(ST¢).

Thus, it holds that L(ST) Õ L(ST¢). u

1070 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998

Note: If T¢ À L(ST), then L(ST) Ã L(ST¢) holds.

LEMMA 4. Let L be an arbitrary strictly k-testable language such
that L Õ SkS*. Then, T Õ L implies that L(ST) Õ L.

PROOF. Let L = AS* > S*B - S+CS+ for some triple [A, B, C].
Assume that T Õ L, then it is obvious that (AT Õ A) and
(BT Õ B). Now, suppose that C À CT. Then,

∃ ∈ − ⇒ ∃ ∈ ∃ ′ ∈ ′ ∈+α α αC C C y y y y TT , , Σ 1 6 .

Since T Õ L, the string yay¢ is in L. Thus, by (2) of Lemma
3, Ik(yay¢) > C = ∆. But, since a Œ C and a Œ Ik(yay¢) > C,
we have a contradiction. Thus, it holds that C Õ CT.
Hence, in the same manner as in the proof for (3) of
Lemma 3, we have that L(ST) Õ L. u

From Lemma 4, we note that L(ST) is the smallest strictly
k-testable language containing T.

3.3 Characteristic Sample for Strictly k-Testable
Language

We now consider a finite set R of a strictly k-testable lan-
guage L with the property that L can be completely charac-
terized by R.

Let L be a strictly k-testable language such that L Õ SkS*.
A finite subset R of SkS* is called a characteristic sample for L
iff L is the smallest strictly k-testable language containing R.

LEMMA 5. Suppose that R Õ T Õ L, where R and T are finite, L is
a strictly k-testable language such that L Õ SkS*. If R is a
characteristic sample for L, then L = L(SR) = L(ST) holds.

PROOF. From (1) of Lemma 3, it follows that R Õ L(SR).
Hence, by the definition of characteristic sample for L, it
must hold that L Õ L(SR). On the other hand, from
Lemma 4, it holds that L(SR) Õ L. Thus, we have

L = L(SR). (1)

Since L(ST) is the smallest strictly k-testable language
containing T, T Õ L implies that

L(ST) Õ L. (2)

Further, by (3) of Lemma 3, R Õ T implies that

L(SR) Õ L(ST). (3)

From (1), (2), and (3), we have that L = L(SR) = L(ST)
holds. u

Now, we will show that there effectively exists a charac-
teristic sample for any strictly k-testable language.

3.3.1 Constructing a DFA Associated With a Triple
Let L be a strictly k-testable language such that L = L(S)
(=AS* > S*B - S+CS+), for some triple S = [A, B, C]. We will
show that there effectively exists a characteristic sample for L.

First, consider a DFA MS = (Q, S, d, p0, F) constructed
from S = [A, B, C] in the following way:

Q
Q x x A B C A B C
Q

= ∪ ∈ ∩ ∩ ∩ ∩ ≠ ∅%&K'K
1

1

$< A 2 7
0 5
if
otherwise

where

Q1 = {[l], [a1], [a1a2], ..., [a1 ◊◊◊ ak-1]| a = a1 ... ak Œ A}

 < {[x] | x Œ (Sk - C) < A < B},

 p0 = [l].

F and d are defined as follows:

F
B x x A B C A B C

B
=

∈ ∪ ∈ ∩ ∩ ∩ ∩ ≠ ∅
∈

%
&K
'K

β β
β β

< A < A 2 7
< A 0 5

$ if

otherwise

(1) for "a = a1 ... ak Œ A,

δ

δ

δ α α
α

p a a

w a w a w a a i k

w a
B C

w a a

i i i i i i

k k k k

0 1 1

1 1 1

1 1 1 1

1 2

,

, . . .

,
$

. . .

2 7
3 8 1 62 7

3 8 2 7
0 5 2 7

=

= = ≤ ∀ ≤ −

= ∈ ∩%&'
=

+ +

− − −

where

if
otherwise

where

(2) for "[ax], [xb] Œ Q s.t. lg(x) = k - 1, ax Œ A, xb Œ (Sk - C) < B,

d

d

ax b xb ax B C

ax b xb

ø�
!

"
$#

�
��

�
�� = Œ «

=

,

,

if

otherwise

2 7
2 7 0 5

(3) for "[ax], [xb] Œ Q s.t. lg(x) = k - 1, ax Œ (Sk - C), xb Œ
(Sk-C) < B

d([ax], b) = [xb].

We call MS the canonical DFA associated with S (see
Fig. 1). It should be noted that the terminology canonical is
used here in a manner different from the usual sense.

EXAMPLE 1. Consider a strictly two-testable language L de-
fined by a triple S = [A, B, C] as follows: L = AS* > S*B
- S+CS+, where S = {a, b}, A = B = C = {aa}. Note that L is
the language denoted by a regular expression: aa +
aa(b+a)*a.

We construct the canonical DFA MS = (Q, S, p0, d, F)
associated with S = [A, B, C] as follows:

Fig. 1. Canonical DFA associated with S.

YOKOMORI AND KOBAYASHI: LEARNING LOCAL LANGUAGES AND ITS APPLICATION TO DNA SEQUENCE ANALYSIS 1071

 Q Q aa= » �
!

"
$#

%&'
()*1

ø

where

Q1 = {[l], [a], [aa], [ab], [ba], [bb]}

 p0 = [l]

 F aa aa= �
!

"
$#

%&'
()*

ø , .

d is defined by

d l d d

d d d

d d d

d

, , , , , ,

, , , , , ,

, , , , , ,

,

a a a a aa aa a aa

aa b ab ab a ba ab b bb

ba a aa ba b ab bb a ba

bb b bb

2 7 2 7

2 7 2 7
2 7 2 7 2 7
2 7

= = �
!

"
$#

�
!

"
$#

�
��

�
�� =

�
!

"
$#

�
��

�
�� = = =

= = =

=

ø ø

ø

The state-transition graph of MS is given in Fig. 1.

LEMMA 6. MS exactly accepts L, that is, it holds that for any w Œ
SkS*, w is in L iff it is accepted by MS.

PROOF. Let lg(w) = k, then from the definition of L and MS,

w L w A B

w w F w A B C

w w F

∈ ⇔ ∈ ∩

⇔
= ∈ ∈ ∩ ∩
= ∈

%
&K
'K
δ λ
δ λ

, $

,
2 7 2 7
2 7 0 5

if

otherwise

Let lg(w) = k + 1 and w = axb(where a, b Œ S, lg(x) = k - 1).
Then,

w L ax A xb B

ax ax ax b

xb F ax B C

ax ax ax b xb F

axb xb F

Œ ¤ Œ Œ

¤ = �
!

"
$#

�
!

"
$#

�
��

�
�� =

Œ Œ «

= = Œ

¤ = Œ

and

and

if

or and otherwise

d l d

d l d

d l

, ,

, ,

,

2 7
2 7

2 7 2 7 0 54 9
2 7

ø ø

Now, assume that lg(w) ≥ k + 2 and w = a1 ... an(n ≥ k + 2).
Then, Lk(w) = a1 ... ak, Rk(w) = an-k+1 ... an, and Ik(w) =
{in2(w), ..., inn-k(w)}, where inj(w) = aj ... aj+k-1 (2 £ "j £ n - k).
Then,

w L L w A R w B I w C

L L a

in L B C

L L a

in

k k k
k

L w w w

w w

L w w w

w

in w a in w j n k

in w

k k k k

k

k k k k

j j k j

n k

Œ ¤ Œ Œ Õ -

¤ = =

Œ «

= =

=

= �
!

"
$#

�
!

"
$#

�
��

�
��

=

£ " £ - -

+

+

+ +

-

0 5 0 5 0 5
0 52 7 0 5 0 5

0 5 0 51 6
0 52 7 0 5 0 52 7

0 5 0 5
0 54 9 0 5 1 6

0

,

, ,

(, ,

)

,

and

if

or

otherwise

and

S

d d

d d

d

d

l

l

ø ø
1

2

1

2

1 2 1

53 8 0 5
2 7 0 5

,

,

a R w F

w R w F

n k

k

= Œ

¤ = Œd l

Thus, it is proved that for any w Œ SkS*, w Œ L iff w is ac-
cepted by MS. u

3.3.2 Constructing a Characteristic Sample
We observe that, for a given triple S for a strictly k-testable
language L, the canonical DFA MS = (Q, S, d, p0, F) associ-
ated with S is not always minimum.

Let ML = (QL, S, dL, p0, FL) be the minimum DFA exactly
accepting L, which is obtained from MS by an appropriate
state minimization algorithm.

For every state q Œ QL, let pre(q) and post(q) be any
strings of the minimum possible lengths such that dL(p0,
pre(q)) = q and dL(q, post(q)) Œ FL, respectively. Further, for q
Œ QL and a k-leader u of q, let s(q, u) denote a string v of the
minimum possible length such that dL(p0, vu) = q.

Let ′ = ∈ =Q x Q lg x kL L 0 5= B. Then, consider a finite set:

R x x x Q Q

s x x x x x Q x k x

s x x x b y x Q x b y x k x

L k L L

L

L

,

, , :

, , , , :

= ∈ − ′

∪ ′ ′ ∈ ′ ′

∪ ′ ′ ∈ ′ = ′

−

−

pre post

post leader of

post leader of

0 5 0 5< A
1 6 0 5< A
1 6 1 6 1 6< Aδ

We remark that the manner of constructing RL,k from ML

faithfully follows that of constructing a characteristic sam-
ple for a k-reversible language L from the minimum DFA
exactly accepting L [3].

LEMMA 7. For any strictly k-testable language L, RL,k+1 is a char-
acteristic sample for L.

PROOF. From Lemma 13 and the remark above, since L is
(k + 1)-reversible, RL,k+1 is a characteristic sample for L
as a (k + 1)-reversible language. Let L¢ be any strictly
k-testable language containing RL,k+1. Since L¢ is a (k + 1)-
reversible language, we have that L Õ L¢. u

EXAMPLE 2. Consider the following strictly two-testable
language L: L = AS* > S*B - S+CS+, where S = {a, b, c}, A =
{ab}, B = {bc}, and C = {aa, bb, cc}. We construct the canoni-
cal DFA MS = (Q, S, p0, d, F) associated with S = [A, B, C] as
follows:

Q = {[l], [a], [ab], [ac], [ba], [bc], [ca], [cb]}

 p0 = [l]

 F = {[bc]}

 d([l], a) = [a]

 d([a], b) = [ab]

 d([xy], z) = [yz] (where x π y, y π z, x, y, z Œ S).

The state-transition graph of MS is given in Fig. 2a. After
minimizing MS, we have the minimum DFA ML depicted
in Fig. 2b.

Note that since A > B > C = ∆, L is two-reversible.
Actually, ML in Fig. 2b satisfies the definition of k-
reversible acceptor given in [3].

1072 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998

3.4 Learning Algorithm
We now present a learning algorithm (LA). The learning
protocol for LA consists of only the positive presentation of
an unknown strictly k-testable language U over the fixed
alphabet S.

Suppose that a positive integer k and a positive presen-
tation of a target language U are given. Then, the run of the
algorithm LA is outlined as follows: After initializing nec-
essary parameters, LA starts with producing the initial ac-
ceptor ME0

 accepting E0(= ∆). Each time of receiving a new

positive example wi+1, LA checks if the current conjectured
DFA MEi

, constructed from the current set of examples Ei,

accepts wi+1 or not. If this is true, then LA simply produces
MEi

 itself as the latest conjecture MEi+1
. Otherwise, by ex-

aming wi+1 and computing each of Lk(wi+1), Rk(wi+1), and
Ik(wi+1), LA updates the current triple SEi

 so as to produce a

new conjecture MEi+1
 that is obtained from the updated

triple SEi+1
.

We show that LA given in Fig. 3 eventually learns in the
limit a DFA ME such that U = L(ME), where L(ME) is the lan-
guage accepted by ME.

LEMMA 8. Let M M ME E Ei0 1
, , . . . , . . . be the sequence of DFAs

produced by LA, where Ei is the set of positive data at the ith
stage. Then,

1)� for "i ≥ 0, L M L M UE Ei i4 9 4 9⊆ ⊆
+1

, and

2)� there exists r ≥ 0 such that for ∀ ≥ =
+

i M ME Er r i
0, and

L M UEr4 9 = .

PROOF. Since Ei Õ Ei+1, from (3) of Lemma 3, it holds that

L S L SE Ei i4 9 4 9⊆
+1

, hence L M L ME Ei i4 9 4 9⊆
+1

. Further, by

Lemma 4, we have that for "i ≥ 0, L S UEi4 9 ⊆ , that is,

L M UEi4 9 ⊆ .

Consider a sufficiently large integer n0 > 0 such that
R EU n⊆

0
, where RU is a characteristic sample for U.

(Since RU is a finite subset of U and from the definition of
positive presentation, this is always possible.) Then,

from Lemma 5, it follows that U L S L SR EU n
= = �� ��4 9

0
,

hence U L M L MR EU n
= = �� ��4 9

0
. Further, once MEn0

 is

output, since any input w given afterward is consistent
with MEn0

, it is obvious that ∀ ≥ =i n M ME Ei n0
0

2 7 . u

Thus, we have Theorem 9.

THEOREM 9. Given an unknown strictly k-testable language U, the
algorithm LA learns in the limit a DFA ME such that U = L(ME).

(a)

(b)

Fig. 2. (a) State-transition graph of MS. (b) Minimum DFA ML.

Input: a positive integer k and a positive
 presentation of a target strictly k-testable
 language U
Output: a sequence of DFAs for strictly
 k-testable languages

Procedure
 initialize E0 = ∆ ;
 let SE

k
0

= ∅ ∅, , Σ be the initial triple ;

 construct DFA ME0
 accepting E0(= ∆) ;

 repeat (forever)
 let M Q p FE E E Ei i i i

= , , , ,Σ δ 04 9 be

 the current DFA ;
 read the next positive example wi+1;
 if w L Mi Ei+ ∈1 4 9 , then output MEi+1

 = MEi4 9;
 else
 scan wi+1 to compute
 Lk(wi+1), Rk(wi+1), Ik(wi+1) ;
 construct the canonical DFA
 MEi+1

 associated with

 S A B CE E E Ei i i i+ + + +
=

1 1 1 1
, , ;

 (where A A L wE E k ii i+
= ∪ +1 12 7= B ,

 B B R wE E k ii i+
= ∪ +1 12 7= B ,

 C C I wE E k ii i+
= − +1 12 7

 and Ei+1 = Ei < {wi+1})
 output MEi+1

;

Fig. 3. Learning algorithm (LA).

YOKOMORI AND KOBAYASHI: LEARNING LOCAL LANGUAGES AND ITS APPLICATION TO DNA SEQUENCE ANALYSIS 1073

3.5 Time Analysis of LA
Let S0 = [A0, B0, C0] be the minimum triple for U and let M0 =
(Q0, S, d0, p0, F0) be the canonical DFA associated with S0.
Further, let MU = (QU, S, dU, p0, FU) be the minimum DFA
obtained from M0, where U = L(S0) = L(M0) = L(MU). (Note
that given U, MU is unique up to isomorphism.) We analyze
the time complexity of the algorithm LA.

We may assume a |S|-branching complete tree TS with
depth k as a data structure for storing and handling k-
length segments. Also, for every i ≥ 0, the canonical DFA

M Q p FE E E Ei i i i
= , , , ,Σ δ 04 9 obtained from a triple SEi

 is rep-

resented by a set of pairs dom QEi
δ4 92 7⊆ ×0 Σ . (This is possi-

ble because of the incremental nature of the constructed
canonical DFAs. To indicate final states, we associate a label
“f” with a state [x] like [x]f.)

For every i ≥ 0, each time a new positive example wi+1 is
provided, updating a conjecture MEi

 requires at most

O(k|S|lg(wi+1)). This is achieved as follows:

1)� In the first phase, testing whether or not

w L Mi Ei+ ∈1 4 9 is done in time O(lg(wi+1)).

2)� In the second phase, computing Lk(wi+1), Rk(wi+1), and

Ik(wi+1) is done in time O(k lg(wi+1)) by operating on TS.

At the same time, dom Ei
δ4 9 is updated in time

O(k|S|lg(wi+1)).

In the actual implementation, however, no triple is con-

structed, but dom Ei
δ4 9 is directly incremented. (Note that

the “true” updating dom Ei
δ4 9 occurs in the second phase

only when the first phase proves wi+1 to be inconsistent with
the current conjecture. Further, because of the monotoni-
cally incremental feature of the output sequence of DFAs,

the set dom Ei
δ4 9 increases itself just by adding either some

elements of transitions or final states in a monotonical
fashion.) Thus, we have Theorem 10.

THEOREM 10. The algorithm LA requires at most O(|S|km) time
for updating a conjecture, where m is the maximum length
among all positive data provided in the learning process.

Note: If we are required to learn the minimum DFA, then

it may take at most Q QE Ei i
log additional time per update,

using an efficient algorithm for this purpose [21], which is
bounded by |Q0| log |Q0|.

4 APPLYING LA TO BIOLOGICAL DATA—
EXPERIMENTAL RESULTS

In the first half of the present paper, we have developed an
efficient algorithm LA for learning strictly locally testable
languages in the limit from positive data and discussed
some of the formal aspects of both the language class and
the learning algorithm LA.

The second half of this section will discuss a possible
application of such theoretical results to a practical prob-
lem in the domain of DNA sequence analysis. In the se-
quel, we first introduce a formal model for splicing DNA
sequences and call one’s attention to a theoretical fact that
the language class characterized by a special type of the
formal models is exactly the class of strictly locally test-
able languages. This immediately leads us to a kind of
justification to apply our learning algorithm LA to the
identification problem for biological data. In fact, we will
present some experimental results which strongly suggest
that this theoretical analysis is valid for a certain kind of
amino acid sequences.

4.1 A Formal Model for DNA Splicing Sequences
In [18], Head proposed a formal system called a splicing
system and studied the relationship between formal lan-
guage theory and computational molecule biology.

A splicing system is a four-tuple S = (S, I, B, C), where S is
an finite alphabet, I is a finite set of initial strings, B and C
are finite sets of triples (a, x, b), called patterns, with a, x, b Œ
S*. For each such a triple, the string axb is called a site and
the string x is called a crossing. Patterns in B and C are
called the left (resp., right) patterns. For uaxbv and wcxdz in
S* with patterns (a, x, b) and (c, x, d) in the same hand (ei-
ther B or C), two new strings uaxdz and wcxbv are con-
structed by splicing at the crossing x. (In a biological inter-
pretation, one may take I as the initial set of DNA molecule
sequences, B and C as the sets of splicing rules, specified by
restricted enzymes and a ligase, that produce 5¢ overhangs
or blunt ends, and produce 3¢ overhangs, respectively.)

The language L = L(S) generated by S consists of the
strings in I and all strings that can be obtained by adjoining
to L uaxdz and wcxbv, whenever uaxbv and wcxdz are in L
and both patterns (a, x, b) and (c, x, d) are in the same hand.
(In other words, L(S) is the smallest subset of S* which con-
tains I and is closed under the operation of splicing.) A lan-
guage L over S is a splicing language iff there exists a
splicing system S such that L = L(S).

Here we are concerned with a specific type of splicing
systems. A splicing system is said to be persistent iff for each
pairs of strings uaxbv and wcxdz in S* with (a, x, b) and (c, x, d)
from the same hand, if y is a subsegment of uax(resp., xdz)
that is the crossing of a site in uaxbv(resp., wcxdz), then this
same subsegment y of uaxdz contains an occurrence of the
crossing of a site in uaxdz. (Intuitively, in a persistent splic-
ing system, it is possible to apply consecutive splicing op-
erations infinitely many times.)

It is known that if we specify B and C by choosing re-
striction enzymes from actual biological world, then the
resulting systems are often persistent [18]. (For example,
in order to obtain persistent splicing systems, one may
choose restriction enzymes from the [35, Appendix].
Further, any splicing system containing only one restric-
tion enzyme is always persistent, even if the single en-
zyme is HgiAI.)

An important result for our purpose is Theorem 11.

THEOREM 11 [18]. For a language L, the followings are equivalent:

1)�L is a strictly locally testable language,
2)�L is generated by a persistent splicing system.

1074 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998

EXAMPLE 3 [18].

1)�Consider a splicing system S = ({a, b}, {ababa}, {(a, b, a)},
∆). It is easy to see that S is persistent and L(S) =
{aba(ba)n|n ≥ 0}. Note that a string aba is obtained from
ababa and its copy by using a pattern (a, b, a). A bio-
chemical interpretation of this system is that taking
a = [A/T] [T/A] and b = [C/G] [G/C], the resulting
language L(S) consists of all molecules that can be
potentially arisen from the action of ClaI (with an ap-
propriate ligase) on (copies of) the molecule:

A
T

T
A

C
G

G
C

A
T

T
A

C
G

G
C

A
T

T
A ababa

�
!

"
$#
�
!

"
$#
�
!

"
$#
�
!

"
$#
�
!

"
$#
�
!

"
$#
�
!

"
$#
�
!

"
$#
�
!

"
$#
�
!

"
$# =1 6 .

A language L(S) is, in fact, a strictly two-testable
language that is accepted by a DFA pictured in Fig. 4.

2) Let S = ({a, c, g, t}, I, B, C), where a =[A/T], t = [T/A],
c = [C/G], g = [G/C], I is unspecified here, B consists
of the patterns specified by EcoRI, TaqI, and AluI, and
C contains the single pattern by HhaI. The patterns
provided by these four enzymes are as follows:

 (g, aatt, c) for EcoRI, (t, cg, a) for TaqI

 (ag, l, ct) for AluI, (g, cg, c) for HhaI.

A careful examination proves that this system is persistent.

We call {a, c, g, t} the standard four-letter alphabet and de-
note it by S4. Note that in order to have a strictly two-
testable language L(S), we make use of a symbolic replace-
ment in (1) of Example 3 above.

Such a translation is frequently used in analyzing DNA
sequences. In fact, we will describe several experimental
results in the next section where a letter-to-letter translation
(i.e., a coding) is used to reduce the size of the problem in
question smaller, leading to a feasible solution.

4.2 Protein a-Chain Identification
From Theorem 11, it may be justified that we assume the
following Working Assumption.

A Working Assumption: Some types of amino acid se-
quences are generated by persistent splicing systems, and,
hence, they are characterized by strictly locally testable
languages.

Under this assumption, in this section, we describe some
experimental results that concern identifying a protein a-
chain region. We have implemented the learning algorithm
for strictly locally testable languages developed in the pre-
vious section on a workstation, and applied it to the prob-
lem of identifying the a-chain region in amino acid se-
quences for hemoglobin.

Hemoglobin, as one of the most familiar proteins, pro-
vides an example of a protein consisting of more than one

type of polypeptide chain: A heme group is associated with
two a-subunits (a-chains) and two b-subunits (b-chains),
where each type of subunit comprising a different poly-
peptide chain is represented by its own gene. Historically, it
is believed that all globin genes are derived from a single
ancestral gene, so that by tracing the development of indi-
vidual globin genes we may learn about the mechanisms
involved in the evolution of gene families. Here, we tar-
geted the amino acid sequences for a-chains of hemoglobin,
hoping to discover some formal language theoretic charac-
terization property common in all of the amino acid se-
quences of this particular region.

1)�Goal: The purpose of this experiment is to find a DFA
that identifies the a-chain region in amino acid se-
quences for hemoglobin. (As mentioned above, one
hemoglobin molecule comprises two a-chains and
two b-chains, and the a-chain is a polypeptide nor-
mally comprising 141 amino acids.)

2)�Method: The positive data of a-chain in amino acid
sequences for hemoglobin have been drawn from PRF
protein sequence database [26]. Let us denote the set
of those raw positive data by POSraw that is a finite set
of strings over the alphabet of 20 symbols, A20, each of
which represents each amino acid residue.

We used two kinds of letter-to-letter translations: One
is from A20 to the six-letter alphabet D6 (= {a, b, c, d, e, f})
specified by Dayhoff’s coding method, the other from A20

to a binary alphabet B (= {0, 1}) used in [5], shown in
Table 1. (A sample of a raw positive data and its transla-
tion results via Dayhoff’s coding and binary coding are
given in Fig. 5.)

We now describe the details of our experiments. Let’s
denote by POS the set of positive data obtained from POSraw

in terms of a translation via either Dayhoff’s coding or bi-
nary coding in Table 1. In our experiments, the cardinality
of POS was 123.

We have also prepared a set of negative data NEG, consist-
ing of 2,567 sequences. NEG was constructed by randomly

Fig. 4. A DFA accepting a strictly two-testable language denoted by a
regular expression aba(ba)*.

TABLE 1
TRANSLATION TABLES
DAYHOFF’S CODING [9]

Amino Acids Properties New
Symbols

C sulfur polymerization a
S, T, P, A, G small b
N, D, E, Q acid & amide c
H, R, K basic d
M, I, L, V hydrophobic e
F, Y, W aromaticity f

(a)

BINARY CODING [25]

Amino Acids Hydropathy
Index

New
Symbols

A, C, F, G, I, L, M, N,
S, T, V, W, Y

High 0

D, E, H, K, P, Q, R Low 1
(b)

YOKOMORI AND KOBAYASHI: LEARNING LOCAL LANGUAGES AND ITS APPLICATION TO DNA SEQUENCE ANALYSIS 1075

choosing from all protein data but hemoglobin data in PRF
database. The length of data ranges from 138 to 142 for
NEG and 141 or 142 for POS.

By Exp(k, x), we denote an experiment performed by the
method described below, where k is the parameter for
strictly k-testability and x is the cardinality of Sample, a set
of training data randomly selected from POS.

4.2.1 Experiments Based on Dayhoff’s Coding
We now have the new set of positive data POS over D6,
where a parameter k is fixed as k = 2.

An experiment Exp(2,x): For each x (= 10, 15, 20, 25, 30),
we constructed Sample consisting of x sequences that were
randomly selected from POS. Then, using Sample, the
learning algorithm LA described in Section 3 produced a
DFA M2,x that specifies a strictly two-testable language
containing all training data in Sample. We then evaluated
the performance of the obtained DFA, using the set of test
data Test and NEG, where POS = Sample < Test (disjoint
union). The success rates of correct identification for posi-
tive and negative data are defined by:

5 5pos
x

neg

xL M L M
=

∩
=

∩Test

Test

NEG

NEG
2 2, ,

,
3 8 3 8

, (4)

respectively, where L M x2,3 8 denotes the complement of

L(M2,x) with respect to D6
* (that is, the set of strings over D6

rejected by M2,x).
For each x = 10, 15, 20, 25, 30), we have iteratively made

an experiment Exp(2, x) 100 times. Fig. 6 illustrates a series
of experiments Exp(2, x) where the figures indicate the aver-
age scores on each experiment. Table 2 summarizes the ex-
perimental results. Table 2a shows that the DFA M2,30

achieved a success rate of 93 percent correct identification
for (positive) test data and 99 percent for negative data.

4.2.2 Experiments Based on Binary Coding
Using a binary coding in [25], we have a set of positive data
POS over B which is obtained from POSraw.

By fixing x = 20, we first made experiments Exp(k, 20) for
each k = 2, 3, 4, 5, and 6. In each case, Exp(k, 20) has been
iteratively performed 100 times. The final results are pre-
sented in Table 2b, where Rpos and Rneg are defined in the
same manner as in (4), and all figures indicate the average

scores. For example, we observe that an experiment Exp(3,
20) achieves the overall best score: a success rate of 96 per-
cent correct identification for (positive) test data and 92
percent correct identification for negative data.

Based on this observation, we then made experiments
Exp(3, x) for each x = 6, 7, 8, 9, and 10. Again, for each x,
Exp(3, x) has been performed 100 times. Fig. 7 illustrates the
results of a series of Exp(3, x), where the figures indicate the
average scores.

4.3 Experimental Results
First, we will mention some theoretical consideration and
its molecule biological implication that are immediately
derived from our previous results.

Suppose that a representation relation L = h(L¢) holds,
where L is a strictly k-testable language over D6 and h is a
letter-to-letter coding from A20 to D6. Then, we note that L¢ is
contained in a k-testable language over A20. Further, if a set
of amino acid sequences is a strictly k-testable language
over A20, then it is regarded as 3k-testable language over the
standard four-letter alphabet S4 (= {a, c, g, t}).

From these considerations, Theorem 12 holds.

THEOREM 12. If L is a strictly k-testable language over D6, then a
language L¢ such that L = h(L¢) is contained in a 3k-testable
language over S4.

Fig. 5. Raw data of amino acid sequence from human hemoglobin is
coded into new data over D6 and B.

Fig. 6. In experiments Exp(2, x) over D6, where x ranged from 10 to 30,
the best score was attained in Exp(2, 30). The scores indicate the
average rates of 100 random experiments.

TABLE 2
EXPERIMENTAL RESULTS—BEST SCORES VIA DAYHOFF CODING

(k = 2) Exp(2, 30)
Rpos 93%

Rneg 99%

(a)

VIA BINARY CODING BASED ON HYDROPATHY INDEX

Exp(k, 20) k = 2 k = 3 k = 4 k = 5 k = 6
Rpos 97.4% 96,2% 92.6% 87.9% 81.5%

Rneg 83.3% 92.3% 93.6% 94.9% 99.2%

(b)

1076 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998

Thus, for example, from a result obtained in Exp(2, 30)
with k = 2, one may make a conjecture that a set of DNA se-
quences for a-chain region of hemoglobin is contained in a
strictly six-testable language over S4, which is strongly sup-
ported by the theoretical discussion made in Section 4.1.

4.4 a-Chain Automata
Through the experiments, several DFAs have been identi-
fied from sets of training data that have been selected in a
random manner from a set of positive data POS. It might
be expected that these DFAs have some common feature,
because they all have been obtained as the best candidate
DFA for specifying the same virtual target of a strictly lo-
cally testable language (i.e., a persistent splicing language).

Let us first focus on the series of DFAs over B, Mk,20 (k =
2, 3, 4, 5, 6), obtained in Exp(k, 20). Provided that the overall
performance score of a DFA is evaluated by a simple sum-
mation, Rpos + Rneg, we observe that M3,20 may be called the
best DFA over B. We also note from Fig. 7 that all DFAs M3,x

(for x = 6, 7, 8, 9, 10) equally achieve high scores in overall
performance evaluation. This suggests one aspect of the
stability of the obtained DFA family. Further, it is somehow
surprising that only six (and at most 10) training data ran-
domly selected are sufficient for constructing such a good
DFA characterizing a-chain region in binary representation.
More remarkable is that among 100 times of random ex-
periments in Exp(3, 6), we have obtained more than 70
times the identical DFA M3,6, accepting 000(0 + 1)*101,
shown in Fig. 9. Thus, an interesting fact is that with high
probability of 95 percent, the structure of a-chain region of
amino acid sequence can be characterized by only its prefix
and suffix of length three, in binary representation in terms
of hydropathy index.

Similarly, we have observed from the series of experi-
ments in Exp(2, x) over D6 (for x = 10, 15, 20, 25, 30) that the
best score was achieved in Exp(2, 30) (see Fig. 6), where the
best DFA M2,30 shown in Fig. 8 was obtained 10 times out of
100 random experiments. This DFA is characterized by the
fact that each acceptable string starts with either be or ee
and ends with fd, in the meanwhile, no aa appears as an
internal substring.

One might think of comparing two DFAs M3,6 over B and
M2,30 over D6 obtained above. However, we find it difficult
to discuss one’s superiority over the other, because these
experiments have been performed based on the distinct
training data sets randomly chosen under the different cod-
ing methods. Further, two codings we used are basically
independent of each other. Thus, it seems that, at present,
we have no justifiable way to select one DFA as the best
automaton for explaining a-chain in amino acid sequences.

In summing up, using the proposed method for learning
strictly locally testable languages, we could obtain a specific
type of DFA Ma that one may call an a-chain DFA for hemo-
globin. A DFA Ma so obtained is applicable to identifying
the a-chain region for unknown amino acid sequences with
a very high success rate.

Finally, from the other supplemental experiments, we
conjecture that a DFA with a similarly high score could be
obtained from a set of positive raw data over A20, i.e., POSraw

if the training set is sufficiently large. Here, we could
eventually collect only 123 positive raw data in total from
the PRF database, and, as a result, we could not help using
two codings to obtain our main results.

5 DISCUSSION

5.1 Related Works
In [3], Angluin presents an algorithm that, given k ≥ 1,
learns k-reversible DFAs in the limit from positive data

Fig. 7. In experiments Exp(3, x) over B, where x ranged from six to 10,
the best score was attained in Exp(3, 6). The scores indicate the aver-
age rates of 100 random experiments.

Fig. 8. A DFA M2,30 most frequently obtained in experiments Exp(2, 30)

over D6. This DFA was obtained more than 70 among 100 times of
random experiments.

Fig. 9. A DFA M3,6 most frequently obtained in experiments Exp(3, 6)
over B. This DFA was obtained more than 10 among 100 times of ran-
dom experiments.

YOKOMORI AND KOBAYASHI: LEARNING LOCAL LANGUAGES AND ITS APPLICATION TO DNA SEQUENCE ANALYSIS 1077

where a conjecture is updated in O(kN3) time, where N is
the sum of lengths of data provided. For the relationship
between strictly locally testable languages and reversible
languages, see the Appendix. There are some works by
Garcia and others [12], [11] devoted to the study of the
identification problem of strictly k-testable languages,
where the definition of strictly k-testability is slightly differ-
ent from the one in this paper. In [11], a language L is
strictly k-testable iff there exists a triple [A, B, C] such that

A B i

i

k

, ⊆
=

−

Σ
1

1

U ,

C Õ Sk,

and

L = AS* > S*B - S*CS*.

This definition of strictly k-testability leads to another class
of strictly k-testable languages. (For example, a strictly one-
testable, and therefore, two-testable language L = {abna|n ≥ 0}
in our definition is neither strictly one-testable nor two-
testable in their definition.) They present an algorithm
which is quite similar to the LA in this paper and runs in
time O(kN log |Q0|), where Q0 is the state set of the canoni-
cal DFA associated with a triple for the target language. The
work is, however, achieved from the viewpoint different
from the one in this paper in that their efforts mainly put
stress on the construction of the canonical DFA associated
with a triple from a given sample set. They also apply their
learning algorithm to the syntactic pattern (speech) recog-
nition problem [11].

There exist a few subclasses of regular languages known
to be learnable in the limit from positive data in polynomial
time in some sense, such as the class of k-reversible lan-
guages, the class of regular pattern languages [29], the class
of k-bounded regular languages [22]. One of the papers by
Shinohara [30] also suggests another subclass of regular
languages of special type [34], [36] polynomial-time learn-
able in the limit from positive data. It seems that further
research in this direction should be made for enlarging the
boundary of polynomial-time learnability from positive
data.

Since the notion of a splicing system was introduced by
Head in [18] as a mathematical model of restriction enzyme
digestion and subsequent religation in the recombination of
DNA molecules, there have been reported an enormous
number of works concerning the formal characterizations of
splicing systems and their learning problem [8], [13], [14],
[19], [31], [33], [38]. Among others, one of the most signifi-
cant results for our purpose is the equivalence relationship
between persistent splicing languages and strictly locally
testable languages established in [18]. This equivalence re-
lation encouraged and provided us with a kind of justifica-
tion to apply our learning algorithm to the identification
problem of biological data.

In the area of machine learning (ML), there have been
made many attempts to classify, identify and predict the
biological properties of DNA and protein sequences. It
should be remarked, however, that in the usual problem
setting of DNA or protein sequence analysis in the ML

community, the identification of protein sequence families
is often performed by the homology search technique to
construct a “template” which gives a favorable score (e.g.,
[16], [32]). Among others, there are some works motivated
by the linguistic characterizations of DNA and protein se-
quence analysis: Searls [28] champions the use of formal
languages and gives an intensive investigations on com-
putational linguistics for biological sequences. Also, one
can find a variety of proposals for the use of pattern lan-
guages (e.g., [20], [25]) and of probabilistic context-free
grammars and/or its extensions (or variants) for modeling
biological sequences (e.g., [1], [6], [27], [23], [37]). However,
none of those works has attempted to deal with learning
issues of the biological template. In this regard, our method
is unique, that is, the learning algorithm in this paper may
provide an automatic way of deriving such a template from
sample data.

5.2 Concluding Remarks
We have shown that the class of strictly k-testable languages
is learnable in the limit from positive data and presented an
algorithm which learns any strictly k-testable language in
the limit from positive data using DFAs.

It should be noted that similar arguments might work
for the class of locally testable languages, which is a larger
subclass of regular languages, and lead us to the similar
results. As Angluin suggested [3], it is interesting to study
on the relationship between the learnability and the alge-
braic properties of the subclasses of regular languages. The
class of noncounting regular languages is identical to the
smallest class of languages that contains all locally testable
languages and closed under Boolean operations and con-
catenation [24]. Alternative characterizations for non-
counting regular languages are due to the group-freeness
and the permutation-freeness on their syntactic monoids.
These algebraic properties also have some connections to a
certain subclass of first-order logic.

Motivated by a result due to Head [18], which strongly
suggests that a certain type of amino acid sequences can be
expressed by a strictly locally testable language, we have
described some experimental results via a machine identifi-
cation system based on the learning algorithm developed
above. We applied the system to the problem of identifying
the protein a-chain in amino acid sequences for hemoglo-
bin. The main experimental data showed that the system
achieved an overall success rate of 95 percent correct identi-
fication for positive data and 96 percent for negative data.
Under the same working assumption made here, the pre-
diction problem of other domains such as protein a-helix
region in amino acid sequences could be also attacked in
terms of the same identification strategy.

Finally, as is mentioned above, strictly locally testable lan-
guages have some connections to a certain subclass of first-
order logic formulas. In other words, they can provide a cer-
tain class of logical formulas for describing the genetic in-
formation. In this sense, the main experimental result stated
in this article has a deep implication to the bio-informatics
aspect of DNA sequences and also suggests a great potential
of a successful formal method based on the automata-
theoretic approach to DNA sequence analysis in general.

1078 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998

APPENDIX

In order to discuss the relationship between the class of
strictly locally testable languages and that of reversible lan-
guages, we give the definition of reversible languages
based on the language-theoretic characterizations [3]. Let k
be a nonnegative integer. A regular language L is k-reversible
iff whenever u1vw and u2vw are in L and lg(v) = k, it holds
that u1v\L = u2v\L. (When k = 0, we write “zero-reversible”
rather than “0-reversible.”) A regular language is reversible
iff it is k-reversible for some k ≥ 0.

EXAMPLE 4. Consider a language L consisting of all finite-
length strings over S(= {a, b}) that begin with a, end with
a, and contain no occurrence of a as a strictly interior
subword, that is, L is the language denoted by the regu-
lar expression a + ab*a.

Let
A = B = {a}, and C = {b}.

Then, it is easily seen that for "w Œ S* with lg(w) ≥ 1, w Œ L
iff L1(w) Œ A, R1(w) Œ B, and I1(w) Õ C. Hence, L is strictly
one-testable. It is seen that L is not a zero-reversible
language.

On the other hand, the language denoted by the regular
expression a(bb)* is not strictly k-testable for any k ≥ 1, but is
zero-reversible. Further, there are some languages (e.g.,
{abn|n ≥ 1}) which are strictly one-testable as well as zero-
reversible. Hence, the class of strictly k-testable languages is
incomparable to the class of zero-reversible languages.
(There exists another definition for strictly k-testability [7],
[12], [11] that is slightly different from the one given in the
present paper. This has been discussed in the Section 5.1.)

In fact, we can show the following characterization of
strictly k-testable languages which is similar to but different
from Theorem 7.1 in [12], and the proof is also performed in
a similar fashion.

LEMMA 13. For each k ≥ 1, a strictly k-testable language L is a
(k + 1)-reversible language.

PROOF. Let (A, B, C) be a triple for L over S. It suffices to
show that whenever u1vw and u2vw are in L and lg(v) =
k + 1, it holds that u1v\L = u2v\L.

Suppose that u1vw, u2vw are in L and lg(v) = k + 1.
Then, we have that Lk(uiv) = Lk(uivw) Œ A, Rk(vw) =
Rk(uivw) Œ B, and Ik(uivw) = Ik(uiv) < Ik(vw) Õ C(i = 1, 2).
In particular, it holds that for i = 1, 2, Ik(uiv) Õ C. Then,
for "x Œ S*,

I u vx C I u v I vx C

I u v I vx C

I u vx C

k k k

k k

k

1 1

2

2

2 7 2 7 0 5
2 7 0 5
2 7

⊆ ⇔ ∪ ⊆

⇔ ∪ ⊆

⇔ ⊆

Using these relations, we can show that for "x Œ S*, u1vx
is in L iff u2vx is in L. Actually, for "x Œ S*,

u vx L L u vx A R u vx B I u vx C

L u vx A R u vx B I u vx C

u vx L

k k k

k k k

1 1 1 1

2 2 2

2

∈ ⇔ ∈ ∈ ⊆

⇔ ∈ ∈ ⊆
⇔ ∈

2 7 2 7 2 7
2 7 2 7 2 7

, ,

, ,

Hence, we have that u1v\L = u2v\L. u

Note: For each k ≥ 1, there exists a strictly k-testable lan-
guage L(k) that is not k-reversible. For example, let A = B =
{ak} and C = Sk - {ak}, where S = {a, b}, and let L(k) be a lan-
guage defined by a triple (A, B, C). Then, {ak, ak+1} Õ L(k) and
{ak+i|i ≥ 2} > L(k) = ∆. Let u1 = l, u2 = a, v = ak, w = l, then
both u1vw = ak and u2vw = ak+1 are in L(k). However, u1v\L(k)
 {l, a}, while u2v\L(k) = {l}, thus, u1v\L(k) π u2v\L(k).
Hence, L(k) is not k-reversible.

Thus, we have Theorem 14.

THEOREM 14. For each k ≥ 1, the class of strictly k-testable lan-
guages is properly included in the class of (k + 1)-reversible
languages, but incomparable to the class of zero-reversible
languages.

We present another characterization of strictly k-testable
languages which provides us with deeper understanding of
strictly k-testable languages.

Let MS = (Q, S, d, p0, F) be the canonical DFA associated
with S, exactly accepting L = L(S). For each q Œ Q, a string u
is said to be a k-leader of q iff lg(u) = k and there exists pu in
Q such that d(pu, u) = q.

THEOREM 15. Let L be a strictly k-testable language such that
L = L(S) for some S = [A, B, C]. Then,

1)�L is k-reversible iff A > B > C = ∆,
2)�a language L - (A > B > C) is k-reversible.

PROOF.
First, suppose that A > B > C π ∆. Then, there exists a
string w Œ A > B > C such that lg(w) = k. Clearly w is in
L. Further, we have that a string ww¢ is in L, where w¢ is
the shortest string such that Rk(ww¢) = w. (Note that for
no z Œ S+, ww¢z is in L.) Let u1 = z = l, v = w, and let u2 be
a prefix of ww¢ such that u2w = ww¢. Then, both u1vz(= w)
and u2vz(= ww¢) are in L, where lg(v) = k. However, u1v\L
= w\L {l, w¢}, while u2v\L = ww¢\L = {l}, which im-
plies that L is not k-reversible.

Conversely, suppose that A > B > C = ∆. Then,
from the way of constructing the canonical DFA MS =
(Q, S, d, p0, F) associated with S where A > B > C = ∆,
we observe that the k-leader of any state [x] in Q is x
itself. This implies that MS satisfies the requirement of
determinacy with lookahead k for k-reversibility [3].
Hence, MS is a k-reversible acceptor and L is k-
reversible.

Second, we may assume that A > B > C π ∆ and let
L¢ = L - (A > B > C). From the way of constructing the
canonical DFA MS = (Q, S, d, p0, F) associated with S
where A > B > C π ∆, it is seen that for each x Œ A > B
> C, the existence of two states [x] and $x having a

common k-leader x only violates the k-reversibility of MS.
Hence, for all x Œ A > B > C, by deleting final states $x

from MS, we obtain a DFA ′MS which satisfies the k-
reversibility, and it holds that ′MS exactly accepts L¢.
Hence, L¢ is k-reversible. u

YOKOMORI AND KOBAYASHI: LEARNING LOCAL LANGUAGES AND ITS APPLICATION TO DNA SEQUENCE ANALYSIS 1079

ACKNOWLEDGMENTS

A preliminary version of this paper appeared in the Pro-
ceedings of 27th Hawaii International Conference on System Sci-
ences, Maui, Hawaii, Jan. 1994. This work is supported in
part by Grants-in-Aid for Scientific Research No. 04229105
from the Ministry of Education, Science and Culture, Japan.

The authors are grateful to anonymous referees for their
useful suggestions which greatly improved the draft of this
paper.

REFERENCES

[1]� N. Abe and H. Mamitsuka, “Prediction of Beta-Sheet Structures
Using Stochastic Tree Grammars,” Proc Genome Informatics Work-
shop 5, pp. 12–28, 1994.

[2]� D. Angluin, “Inductive Inference of Formal Languages From
Positive Data,” Information and Control, vol. 45, pp. 117–135, 1980.

[3]� D. Angluin, “Inference of Reversible Languages,” J. ACM, vol. 29,
pp. 741–765, 1982.

[4]� D. Angluin and C.H. Smith, “Inductive Inference: Theory and Meth-
ods,” ACM Computing Surveys, vol. 15, no. 3, pp. 237–269, 1983.

[5]� S. Arikawa, S. Kuhara, S. Miyano, Y. Mukouchi, A. Shinohara,
and T. Shinohara, “A Machine Discovery From Amino Acid Se-
quences by Decision Trees Over Regular Patterns,” New Genera-
tion Computing, vol. 11, pp. 361–375, 1993.

[6]� K. Asai, S. Hayamizu, and K. Onizuka, “Hmm With Protein
Structure Grammar,” Proc. 26th Hawaii Int’l Conf. System Sciences,
pp. 783–791, 1993.

[7]� J.A. Brzozowski and I. Simon, “Characterizations of Locally Test-
able Events,” Discrete Mathematics, vol. 4, pp. 243–271, 1973.

[8]� K. Culik II and T. Harju, “Dominoes and the Regularity of DNA
Splicing Languages,” K. Mehlhorn, ed., Proc. ICALP ’89, pp. 222–
233. New York: Springer-Verlag, 1989.

[9]� H. Dayhoff and H. Calderone, “Composition of Proteins,” Altas of
Protein Sequence and Structure, vol. 5, no. 3, pp. 363–373, 1978.

[10]� K.S. Fu and T.L. Booth, “Grammatical Inference: Introduction and
Survey, Part 1 and 2,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 5, pp. 95–111 and 409–423, 1975.

[11]� P. Garcia and E. Vidal, “Inference of k-Testable Languages in the
Strict Sense and Application to Syntactic Pattern Recognition,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 9,
pp. 920–925, Sept. 1990.

[12]� P. Garcia, E. Vidal, and J. Oncina, “Learning Locally Testable Lan-
guages in the Strict Sense,” Algorithmic Learning Theory (Proc. First
Int’l Workshop Algorithmic Learning Theory), pp. 325–338. Ohmsha
Ltd. and Springer, 1990.

[13]� R.W. Gatterdam, “Splicing Systems and Regularity,” Int’l J. Com-
puter Mathematics, vol. 31, pp. 63–67, 1989.

[14]� R.W. Gatterdam, “Algorithms for Splicing Systems,” SIAM J.
Computing, vol. 21, pp. 507–520, 1992.

[15]� E.M. Gold, “Language Identification in the Limit,” Information and
Control, vol. 10, pp. 447–474, 1967.

[16]� M. Gribskov, A.D. McLachlan, and D. Eisenberg, “Profile Analy-
sis: Detection of Distantly Related Proteins,” Proc. Nat’l Academy
Sciences USA, vol. 84, pp. 4,355–4,358, 1987.

[17]� M.A. Harrison, Introduction to Formal Language Theory. Reading,
Mass.: Addison-Wesley, 1978.

[18]� T. Head, “Formal Language Theory and DNA: An Analysis of the
Generative Capacity of Specific Recombinant Behaviors,” Bull.
Mathematical Biology, vol. 49, pp. 737–759, 1987.

[19]� T. Head, “Splicing Schemes and DNA,” Lindenmayer Systems,
G. Rozenberg and A. Salomma, eds., pp. 371–383. New York:
Springer-Verlag, 1992.

[20]� C. Helgesen and P.R. Sibbald, “Palm—A Pattern Language for
Molecular Biology,” Proc. First Int’l Conf. Intelligent Systems for
Molecular Biology, pp. 172–180, 1993.

[21]� J.E. Hopcroft, “An n log n Algorithm for Minimizing States in a
Finite Automaton,” Theory of Machine and Computation, A. Kohavi
and A. Paz, eds., pp. 189–196, 1971.

[22]� O.H. Ibarra and T. Jiang, “Learning Regular Languages From
Counterexamples,” Proc. First Workshop on Computational Learning
Theory, pp. 337–351, 1988.

[23]� S. Kobayashi and T. Yokomori, “Modeling RNA Secondary
Structures Using Tree Grammars,” Proc. Fifth Genome Informatics
Workshop, Universal Academy Press, pp. 29–38, 1994.

[24]� R. McNaughton and S. Papert, Counter-Free Automata. Cambridge,
Mass.: MIT Press, 1971.

[25]� S. Miyano, A. Shinohara, S. Arikawa, S. Shimozono, T. Shinohara,
and S. Kuhara, “Knowledge Acquisition From Amino Acid Se-
quences by Decision Trees and Indexing,” Proc. Third Genome In-
formatics Workshop, pp. 69–72, 1992.

[26]� Protein Database. Osaka, Japan: Protein Research Foundation.
[27]� Y. Sakakibara, M. Brown, R. Hughey, I.S. Mian, K. Sjolander, R.C.

Underwood, and D. Haussler, “Stochastic Context-Free Gram-
mars for tRNA Modeling,” Nucleic Acids Research, vol. 22, pp.
5,112–5,120, 1994.

[28]� D.B. Searls, “The Computational Linguistics of Biological Se-
quences,” L. Hunter, ed., Artificial Intelligence an Molecular Biology,
Chapter 2, pp. 47–120. AAAI Press, 1993.

[29]� T. Shinohara, “Polynomial Time Inference of Extended Regular
Pattern Languages,” Proc. RIMS Symp. Software Science and Eng.,
pp. 115–127. New York: Springer-Verlag, 1983.

[30]� T. Shinohara, “Inductive Inference From Positive Data Is Power-
ful,” Proc. Third Workshop on Computational Learning Theory, pp.
97–110, 1990.

[31]� R. Siromoney, K.G. Subramanian, and V.R. Dare, “Circular DNA
and Splicing Systems,” Proc. Int’l Conf. Parallel Image Analysis, pp.
260–273. New York: Springer-Verlag, 1992.

[32]� G.D. Stormo and G.W. Hartzell III, “Identifying Protein-Binding
Sites From Unaligned DNA Fragments,” Proc. Nat’l Academy Sci-
ences USA, vol. 86, pp. 1,183–1,187, 1989.

[33]� Y. Takada and R. Siromoney, “On Identifying DNA Splicing Sys-
tems From Examples,” P.K. Jantke, ed., Proc. AII ’92, pp. 305–319.
New York: Springer-Verlag, 1992.

[34]� N. Tanida and T. Yokomori, “Polynomial-Time Identification of
Strictly Regular Languages in the Limit,” IEICE Trans. Information
and Systems, vol. 75-D, pp. 125–132, 1992.

[35]� J.D. Watson, J. Tooze, and D.T. Kurtz, Recombinant DNA: A Short
Course. New York: Freeman, 1983.

[36]� T. Yokomori, “On Polynomial-Time Learnability in the Limit of
Strictly Deterministic Automata,” Machine Learning, vol. 19,
1995.

[37]� T. Yokomori and S. Kobayashi, “DNA Evolutionary Linguistics and
RNA Structure Modeling: A Computational Approach,” Proc. IEEE
Symp. Intelligence in Neural and Biological Systems, pp. 38–45, 1995.

[38]� T. Yokomori and S. Kobayashi, “On the Power of Circular Splicing
Systems and DNA Computability,” Proc. IEEE Int’l Conf. Evolu-
tionary Computation, pp. 219–224, 1997.

Takashi Yokomori received the BS, MS, and
PhD degrees from the University of Tokyo in
1974, 1976, and 1979, respectively. After work-
ing for the Department of Informatics at Sanno
College and for IIAS-SIS, Fujitsu Limited, he
joined the Department of Computer Science,
University of Electro-Communications in 1989.
Since April 1998, he has been a professor in the
Department of Mathematics, Faculty of Educa-
tion, Waseda University. He was a postdoctoral
fellow at McMaster University, Canada, in 1981-

1982 and was a visiting scholar at the University of Waterloo, Canada,
in 1995-1996. His current research interests include formal language
theory, computational learning theory, and bioinformatics. Dr. Yokomori
is a member of the IEEE, ACM, EATCS, IEICE, IPSJ, and JSAI.

Satoshi Kobayashi received the BE, ME, and
DE degrees from the University of Tokyo in 1988,
1990, and 1993, respectively, and joined the
Department of Computer Science and Informa-
tion Mathematics, University of Electro-
Communications as a research associate in
1993. He has been an assistant professor at
Tokyo Denki University since April 1998. His
current research interests include computational
learning theory, formal language theory, genome
informatics, and molecular computation. Dr.

Kobayashi is a member of the EATCS, IEICE, IPSJ, and JSAI.

