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Abstract

Person Re-Identification (ReID) aims to recognize a

person-of-interest across different places and times. Ex-

isting ReID methods rely on images or videos collected us-

ing RGB cameras. They extract appearance features like

clothes, shoes, hair, etc. Such features, however, can change

drastically from one day to the next, leading to inability to

identify people over extended time periods. In this paper, we

introduce RF-ReID, a novel approach that harnesses radio

frequency (RF) signals for longterm person ReID. RF signals

traverse clothes and reflect off the human body; thus they

can be used to extract more persistent human-identifying

features like body size and shape. We evaluate the perfor-

mance of RF-ReID on longitudinal datasets that span days

and weeks, where the person may wear different clothes

across days. Our experiments demonstrate that RF-ReID

outperforms state-of-the-art RGB-based ReID approaches

for long term person ReID. Our results also reveal two inter-

esting features: First since RF signals work in the presence

of occlusions and poor lighting, RF-ReID allows for person

ReID in such scenarios. Second, unlike photos and videos

which reveal personal and private information, RF signals

are more privacy-preserving, and hence can help extend

person ReID to privacy-concerned domains, like healthcare.

1. Introduction

Person re-identification (ReID) aims to match a person-of-

interest across different cameras, and at different times and

locations. It has broad applications in city planning, smart

surveillance, safety monitoring, etc. It is challenging because

the visual appearance of a person across cameras can change

dramatically due to changes in illumination, background,

camera view-angle, and human pose. With the success of

deep learning, several ReID models [3, 25, 7, 8, 14, 39, 11,

60] have managed to extract appearance features that are

view-invariant across cameras, leading to good performance

on various person ReID datasets [6].

∗Indicates equal contribution.
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Figure 1. Similarity score between people as computed by RF-ReID and

a state-of-the art video-based ReID model (the larger the score, the higher

the similarity). (a) and (b) show the same person wearing different clothes,

and (c) shows a different person wearing the same pullover as the top-left

person. The video-based ReID model relies on appearance features and

thus wrongly predicts (a) to be close to (c), while RF-ReID captures body

shape and walking style and can correctly associate (a) with (b).

However, another great challenge has rarely been investi-

gated: human visual appearance can also change drastically

over time. For example, people may revisit the same shop

on different days wearing different clothes and hair styles,

and a thief can deliberately change his clothes to mislead the

surveillance system. A robust person ReID system should

be able to match people despite appearance changes. Un-

fortunately, existing RGB-based person ReID systems have

severe limitations in achieving this goal since they intrinsi-

cally rely on appearance information such as clothes, shoes,

hair, bags, etc. [39, 49, 52]. All these features are short-lived

and can become ineffective the next day. To achieve robust

person ReID, the system should be able to extract longterm

identifying features that persist for weeks and months.

But how can we capture persistent features suitable for

person ReID? Wireless signals present a good solution. Ra-

dio frequency (RF) signals in the Wi-Fi frequency range

traverse clothes and reflect off the human body. Unlike cam-

eras, wireless signals could extract intrinsic features of the

human body, such as body size or shape. These features

are relatively stable over days and months, enabling a more
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robust longterm ReID system. Moreover, previous works

have shown the possibility of tracking people’s 3D skeletons

and walking patterns using RF signals, which can be used

as longterm identifying features [55, 24, 56, 54, 33]. Fur-

thermore, unlike RGB-based person ReID methods which

struggle in the presence of occlusion and poor lighting, RF

signals traverse walls and can enable ReID through occlu-

sions and in dark settings.

However, applying RF signals to person ReID presents

several challenges. First, training an end-to-end model only

using people’s IDs as labels leads to overfitting problems.

ID labels provide a rather weak supervision. The model

will tend to learn environment-dependent short-cuts such as

the position a person usually stays at. Second, unlike RGB

images, a single RF snapshot contains reflections from few

body parts, and misses the rest of the body. This is due to

a special property called specularity [4]. The human body

acts like a mirror for RF signals in the Wi-Fi range, and

signals reflected away from the receiver will not be captured.

As a result, a single RF snapshot does not contain enough

information about the whole body to identify the person.

To solve the overfitting problem, we propose a multi-

task learning framework and an environment discriminator.

Apart from predicting the identity of the person, we force

features from our model to contain enough information to

predict the 3D skeleton of the person. We further add an

environment discriminator to force the features to be envi-

ronment independent. This discriminator is co-trained with

the feature extraction network in an adversarial way, making

features from different environments indistinguishable by

the discriminator. To solve the specularity of RF signals, we

add a hierarchical attention module that effectively combines

information regarding the human shape and walking style

across time, i.e., across multiple RF snapshots.

We introduce RF-ReID, an RF-based person ReID model

that can extract longterm identifiable features, and work un-

der occluded or inadequate lighting conditions. RF-ReID

takes wireless signals as input, extracts identifiable features

from the reflection of the human body, and identifies the

person with the extracted feature. It performs robust per-

son ReID across both time and space. Figure 1 shows an

examples that demonstrates the effectiveness of RF-ReID.

The same person wearing different clothes in (a) and (b)) is

mistaken as a different individual by state-of-the-art video

ReID [11], while two different people wearing the same

clothes in (a) and (c) are wrongly identified to be the same

person. In contrast, RF-ReID can accurately identify (a) and

(b) to be the same person, and (a) and (c) to be different.

We evaluate RF-ReID on two datasets. (A) RRD-

Campus: The first dataset is collected using five radios

deployed in different locations on our campus. Ground truth

ID labels are collected using RGB video cameras colocated

with each radio. The resulting dataset contains 100 differ-

ent IDs, and spans 15 days. People appear multiple times

in different clothes and different people may wear similar

clothes. (B) RRD-Home: The second dataset was originally

collected to assess the viability of tracking movements of

Parkinson’s patients in their homes using RF signals. It in-

cludes data from 19 homes, and an average of one week

per home. Ground truth IDs are obtained through manual

labeling by comparing the movements from wearable ac-

celerometers with movements from RF signals. More details

about the datasets are available in section 5.

We train a single model to ReID people in both datasets.

As described above we use a discriminator to ensure that

the representation is environment independent. Since RRD-

Campus includes colocated RGB videos, we compare our

model with state-of-the-art video-based ReID[11]. The re-

sults show that RF-ReID outperforms the state-of-the-art

RGB-based ReID approaches by a large margin. They also

show RF-ReID ability to work through occlusions and in

poor lighting conditions when the camera fails completely.

RF-ReID also works well on RRD-Home, which contains RF

signals from the homes of Parkinson’s patients. This result

shows that our method can ReID people in private settings

like homes, locker rooms, and other private locations where

one cannot deploy cameras. Interestingly, this result leads to

a new concept – privacy-conscious ReID, where people may

be re-identified without capturing their personal information,

e.g., pictures or audio clips.

To summarize, this paper makes two key contributions:

• First, it investigates the task of longterm person ReID,

which identifies a person regardless of appearance

changes over time. It proposes a novel model that

leverages RF signals to achieve longterm person ReID.

It further demonstrates that the model is robust to oc-

clusion and poor lighting.

• Second, it introduces the concept of privacy-conscious

ReID as the ability to identify encounters with the same

person without collecting personal or private data like

pictures, videos, or audio clips. The paper also demon-

strates the first such privacy-conscious ReID model.

2. Related Works

(a) RGB-based ReID. There are mainly two categories of

RGB-based ReID: image-based and video-based. Early ap-

proaches for image-based ReID rely on hand-crafted features

based on color descriptors, and optimize some distance met-

ric relative to those descriptors [12, 26, 37, 28, 42]. Early

video-based ReID models use spatio-temporal descriptors

like HOG3D [21] and gait energy image (GEI) [13] to extract

additional temporal information.

Recent approaches rely on deep learning and can be

divided into two categories. The first category uses clas-

sification models similar to image or video classification
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Figure 2. RF heatmaps and an RGB image recorded at the same time.

tasks [23, 5]. The second category uses siamese models

which take a pair or triplet of images or videos as input, and

uses pairwise or triplet loss to train the model [3, 14, 8].

Some Video-based ReID models further aggregate tempo-

ral information through temporal attention or RNN net-

works [11, 29, 32, 47, 48].

Both image-based and video-based ReID methods tend

to extract short-lived features such as clothes, shoes, bags,

hair styles, etc. [6] and hence struggle to re-identify a people

across days and weeks.

(b) RF-based Person Identification. Research in wire-

less systems has explored person identification using ra-

dio signals. Previous work can be divided into two cat-

egories. The first category uses the signals transmitted

by portable devices (e.g., cellphones) to track and iden-

tify each person [22, 46, 41]. Such systems require a

person to wear or carry sensors, which limits their util-

ity and robustness. The second category analyses sig-

nal reflections off people’s bodies to identify each person

[17, 2, 16, 18, 35, 36, 44, 45, 15, 38, 43, 50]. Past systems

however classify small number of people (<10) in the same

environment, cannot generalize to new identities unseen in

the training set, and typically require the person to walk

on certain constrained paths [43, 50]. In contrast to all past

work, we are the first to achieve person ReID in the wild with

RF signals, and without requiring people to wear sensors or

move on specific paths. Furthermore, our model generalizes

to new people and new environments unseen during training.

3. Radio Frequency Signals Primer

We use an FMCW radio widely used in previous work

on RF-based human sensing [56, 27, 51, 9, 34, 40, 17, 53,

57, 55, 24]. The radio is equipped with two antenna arrays:

horizontal and vertical. It operates between 5.4 and 7.2 GHz

and can sense people up to 12m away from the device.

(a) RF Heatmaps: The RF signal at the output of the

radio takes the format of two 2D heatmaps: one from the hor-

izontal array and the other from the vertical array, as shown

in Figure 2 (red refers to large values while blue refers to

small values). The horizontal heatmap is a projection of RF

signals on the plane parallel to the ground, and the vertical

heatmap is a projection of RF signals on a plane perpendic-

ular to the ground. Intuitively, we can treat these heatmaps

as depth maps, where higher values correspond to higher

strength of signal reflections from a location. The radio gen-

erates 30 horizontal-vertical heatmap pair per second; we

call each pair an RF frame.

Figure 2 reveals that RF signals have different proper-

ties from vision data. The human body is specular in our

frequency range [4]. RF specularity occurs when the wave-

length of the signal is larger than the roughness of the ob-

ject’s surface. In this case, the object acts like a mirror as

opposed to a scatterer. The signal from each body part may

be reflected towards our sensor or away from it depending

on the orientation. Therefore, each RF frame contains reflec-

tions from a subset of body parts, making it hard to obtain

identifiable information from a single RF frame.

(b) RF Tracklets: Prior work has demonstrated that

RF signals can be used to detect, localize and track people

[1]. We use this technique to extract RF tracklets from the

RF heatmaps. As shown on the left of Figure 3, a tracklet

extracts from the horizontal and vertical heatmaps the RF

signals reflected off a person, and the bounding box of that

person at each time step (white box in figure). Since one RF

tracklet always corresponds to one person, the ReID task is

performed across different RF tracklets.

(c) Skeletons from RF: 3D Human skeletons can be

generated from RF signals using the approach in [56]. The

generated 3D skeleton data contains the 3D coordinates of

18 major human body joints at each time step, as specified

in [10], which can be used to assist the task of person ReID.

4. RF-ReID

RF-ReID is an end-to-end model for person ReID using

RF signals. As shown in Figure 3, our model takes an RF

tracklet as input. It then extracts features from the tracklet

using an RF feature extraction network. It then aggregates

temporal information through a learnable hierarchical atten-

tion module to generate a feature map. During training, these

features are supervised in a multi-task learning manner us-

ing identity classification loss, triplet loss and skeleton loss.

We further add an additional environment discriminator loss

to force the model to learn environment-invariant features.

This allows our model to generalize to new environments

not seen during training. Below, we explain each RF-ReID

component in detail.

4.1. RF Feature Extraction Network

Since RF tracklets can have different durations, we first

perform temporal sampling on each tracklet before extracting

features from it. For each RF tracklet, we uniformly sample

25 segments from it, where each segment contains 3 seconds

(90 frames) of RF heatmaps.
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Figure 3. Model architecture. RF-ReID takes an RF tracklet as input. It samples RF segments of 3 seconds (90 frames), and extracts frame-level features

with an RF feature extraction network (shown in green). These features are processed by a multi-headed hierarchical attention module (i.e., MHA) with two

sub-modules; the first attention sub-module (dark blue) extracts segment-level features and the second sub-module (light blue) extracts tracklet-level features.

The supervision for training the RF feature extraction network and the first attention sub-module is added to the segment-level features, and the supervision

for the second attention sub-module is added to the tracklet features.

We adopt an architecture similar to [56] for our backbone

feature extraction network. The network first uses spatio-

temporal convolutions to extract global features from the

input RF frames. We then crop out the region of interest

around the tracklet trajectory in the feature map. Finally,

the cropped features are fed into a sub-network to generate

frame-level identifiable features for person ReID.

4.2. Hierarchical Attention Module

The RF feature extraction network generates relevant

features from each RF segment, where a segment is a clip

of 90 RF frames (3 seconds). As mentioned in Section 3,

due to specularity, each RF frame contains information only

about some body parts. So we need to aggregate features

across frames in the same tracklet. To solve this problem, we

propose a learnable two-step hierarchical attention module

to aggregate information across each tracklet.

There are two kinds of information in an RF tracklet that

is relevant to person identification: shape and walking style.

The coarse shape of the person can be obtained by aggregat-

ing information from several seconds of RF signals. This

is because when a person moves, we can receive signals

reflected from different body parts according to their ori-

entation with respect to the radio. Thus, the first attention

block is added on frame-level features to aggregate the shape

information within each 90-frame segment (3 seconds).

The walking style, on the other hand, is a feature that

can only be inferred from a longer temporal span. However,

within an RF tracklet, there can be many non-walking peri-

ods where the person may stop, stand by, sit down, tie their

shoes, etc. Those periods cannot be used to infer the walking

style. Therefore, we use the second attention block to attend

to features from different segments across the tracklet and

aggregate them to generate one final feature vector for each

tracklet.

4.3. Multi­task Learning for Identifiable Features

To train the RF feature extraction network, we add super-

vision to the segment-level features (orange box in Figure 3).

As shown in Figure 4, we first add two losses widely used in

prior works on RGB-based person ReID: identification loss

Lid and triplet loss Ltriplet. For the identification loss, the

segment-level features are further passed through another

classification network with two fully-connected layers to

perform ID classification. This task helps the model learn

human identifiable information from RF signals. The triplet

loss [14] is computed as

Ltriplet = max(dp − dn + α, 0),

where dp and dn are the L2 distances of segment-level fea-

tures from the same person and features from different peo-

ple, respectively. α is the margin of triplet loss ( α is set to

0.3). This loss enforces features from different people to be

far away from each other and those from the same person to

be close.

The first attention layer can be trained end-to-end with the

feature extraction network. For the second attention layer,

we first generate features for each segment, then we use

the second attention layer to aggregate them and train the

second attention layer using the ID loss Lid_t and triplet loss

Ltriplet_t on the aggregated feature.
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Figure 4. Illustration of multitask learning in RF-ReID. The blue box

corresponds to the the task of person re-identification, and the yellow box

corresponds to the task of 3D skeleton prediction.

Besides these two losses, we force the model to learn

to infer the person’s skeleton from RF signals and add an

additional skeleton loss Lskl for supervision. Specifically,

we take the intermediate features in our feature extraction

network two layers above the frame-level features and feed

them into a pose-estimation sub-network that generates 3D

human skeletons. The skeleton loss is a binary cross entropy

loss similar to the one used in [56]. This loss forces the

features to contain enough information for skeleton gener-

ation, which can help the ReID task in capturing person’s

height and walking style. The skeleton loss also acts as a

regularizer on the extracted features to prevent overfitting.

4.4. Environment Discriminator

RF tracklets can have identifiable patterns strongly related

to the environment. For example, a person is much more

likely to enter his or her own office than other people. As

a result, the model can use such environmental features as

shortcuts to identify people based on their paths. This will

severely harm the model’s ability to generalize across differ-

ent environments or identify people when they do not follow

their usual paths. For example, in our Campus Dataset, the

model will have difficulty identifying a faculty who is visit-

ing another faculty in their office. In our Home Dataset, the

model will learn the specific path that each person walks in

their home, and fail to generalize to new unseen homes.

To solve this problem, we need to eliminate the

environment-dependent factors during the training process.

Thus, we consider signals from each radio location as one

environment, and train a discriminator to predict the envi-

ronment of the signal. The discriminator is trained in an

adversarial way so that eventually the model will eliminate

the features that are environment dependent. The discrimina-

tor operates on segment-level features as shown in Figure 3.

A cross entropy loss is used to train the discriminator to

predict the environment. The discriminator loss is subtracted

from the loss of multi-task training in the feature extraction

network. Denoting the RF feature extraction network as F

and the environment discriminator as D, the discriminator

loss is:

Ldis = −

M∑

c=1

yc log(D(F (x))c),

where x is the input tracklet, M is the total number of envi-

ronment and yc is the binary indicator of which environment

the current tracklet belongs to. The optimization target is:

min
F

max
D

V (F,D) = −Ldis + Lid + Ltriplet + Lskl

5. Dataset

We use the following two datasets.

5.1. RRD­Campus

RRD-Campus refers to an RF-ReID Dataset collected on

our Campus. It contains RF signals and synchronized RGB

video data. The video data is used both for ground truth

labeling and to compare with RGB-based video and image

based ReID methods.

The data is collected by deploying 5 radios in 5 different

locations across our campus and collecting data for 15 days.

Each radio is colocated with an RGB video camera. We

synchronize the video data and the RF signals using the NTP

protocol, with a maximum time difference of 10 ms.

Labeling: We deploy our data collection system at places

that tend to be revisited by the same people, such as the

lounge area in front of a lab or a set of offices. We collect

video with 960× 720 resolution and 15 FPS to assist in the

labeling process. We then use the video to label all people

who show up repeatedly, even if they have different clothes.

We further ask the people in the dataset to double-check

their own data and make sure that all RF tracklets with their

identity are labeled correctly.

Statistics: The dataset contains 100 identities in total.

On average, each identity has 8.63 RF tracklets, and each

tracklet spans over 11.0 seconds. People in the dataset may

change clothes across different days, and our data collection

system does not interfere with people’s normal activities.

5.2. RRD­Home

RRD-Home is based on the dataset in previous work

on Parkinson’s Disease analysis with RF signals [20]. The

dataset is collected by deploying RF devices in 19 different

homes to obtain RF tracklets for moving people, where each

home is inhibited by a Parkinson patient and a normal person

(typically the spouse). The Parkinson patient is asked to

wear an accelerometer to collect the acceleration data. The

collected dataset contains the RF tracklets for the people in

each home, and the corresponding accelerometer data for

the patients. Note that the acceleration data is only used for

labeling and is not an input to our model.

Labeling: Accelerometers are widely used for in-home

behavior analysis [17]. In RRD-Home, We use accelerome-

ter data to assist in the labeling process. In each home, we
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first calculate the location, moving distance and speed for

each RF tracklet, and then associate the patient’s accelerom-

eter data with the corresponding RF tracklets based on the

similarity of movement properties. RF tracklets whose mo-

tion is synced with the acceleration data from the wearable

on the patient are labeled with the patient’s ID, whereas the

tracklets whose motion does not match the acceleration data

are labeled with the ID of the other person in the home. (We

ignore RF tacklets from periods during which there is no

acceleration data.)

Statistics: The dataset contains 38 different identities

in 19 different homes. The data spans 127 days with an

average of one week per home. Each identity has 165.91
RF tracklets on average. Each RF tracklet spans over 9.24
seconds. People in the dataset can change clothes across

days, and the data collection system does not interfere with

people’s normal activities.

5.3. RF­Based Skeletons

As mentioned in Section 4.3, to assist training our ReID

model we force it to learn features useful for inferring a per-

son’s skeleton from RF signals. This is done by leveraging

the datasets from past work on 3D RF-based pose and action

estimation [24, 54].

6. Experiments

We evaluate the effectiveness and practicality of RF-ReID

and compare it with image and video based ReID.

6.1. Experimental Setup

Training & Testing: (1) RRD-Campus. We split RRD-

Campus into a training set with 60 identities and a test set

with the other 40 identities. As common in RGB-based

ReID datasets, we randomly select one sample from each

identity in the test set to build the query set and group the

remaining samples as the gallery set. (2) RRD-Home. The

training and test sets of RRD-Home contain 13 and 6 differ-

ent homes, respectively. Each home has 2 different identities

corresponding to the two inhabitants. The query set and

the gallery set is constructed similarly to RRD-Campus. (3)

RRD. We also combine RRD-Campus and RRD-Home to

form a larger dataset RRD. The training set of RRD is the

combination of RRD-Campus training set and RRD-Home

training set. We evaluate our model on both the individual

datasets and the combined one. We perform 5-fold cross-

validation, where each time we randomly assign identities to

the training set and test set.

Evaluation Metrics: During testing, the query samples

and gallery samples are encoded to feature vectors using RF-

ReID. Then we calculate the cosine distance between each

query sample’s features and each gallery sample’s features

and rank the distance to retrieve the top-N closest gallery

samples for each query sample. We compute the standard

evaluation metrics for person ReID based on the ranking

results: mean average precision score (mAP) and the cumu-

lative matching curve (CMC) at rank-1 and rank-5.

RGB Baseline Models: To demonstrate the effective-

ness of RF-ReID, we compare it with one state-of-the-art

image-based person ReId model [30] and one state-of-the-art

video-based model [11]. The comparison is performed on

RRD-Campus since only RRD-Campus is collected with

synchronized RGB videos. We first train the image-based

and video-based person ReID models on the commonly used

Market1501 [59] and MARS [58], respectively. We then

fine-tune them on the RGB video data in our training set.

To fine-tune the video model, we use videos snippets that

correspond to the RF tracklets in the training set, and to

fine tune the image-based model we use the corresponding

images in the training set. During testing, we evaluate the

performance of RGB-based models on the same query and

gallery set we used to evaluate RF-ReID. For video-based

ReID, the input is the corresponding RGB video of each

tracklet. For image-based ReID, we compute the features for

each frame in the video, and average them to get the features

of the sample.

6.2. Quantitative Results

We compare RF-ReID with state-of-the-art image-based

and video-based person ReID models on RRD-Campus. As

shown in Table 1, our RF-ReID model exhibits a significant

improvement over both image-based and video-based mod-

els. This is mainly because people in RRD-Campus tend to

wear different clothes on different days. Traditional RGB-

based ReID models focus on extracting features from clothes,

and fail when the same person wears different clothes. In

contrast, RF-ReID focuses on the shape and walking style

of a person, which remain valid over a long period.

We also report the performance of RF-ReID on RRD-

Home. Due to privacy reasons, this dataset does not include

RGB images or videos and hence we cannot compare with

RGB-based baselines. In contrast, since RF signal is privacy

preserving, it is used to track people in their homes. The

results from RDD-Home in Table 1 show that our model

not only achieves high accuracy on RRD-Campus, but also

performs well in real-world home scenarios. Furthermore,

since humans cannot recognize a person from RF signals,

our model can be used to ReID people without collecting

personal information like images or videos of people per-

forming private activities in their homes.

The results in Table 1 highlight the following points:

• RF-ReID works well for long term re-identification that

spans days, weeks, or longer.

• RF-ReID can re-identify people without collecting or

exposing any information that can be used by a human
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Methods Modality
RRD-Campus RRD-Home

mAP CMC-1 CMC-5 mAP CMC-1 CMC-5

Luo et al. [30] RGB Image 41.3 61.4 84.3 - - -

Gao et al. [11] RGB Video 48.1 69.2 89.1 - - -

RF-ReID (separate) RF Signal 59.5 82.1 95.5 46.4 74.6 89.5

RF-ReID (combined) RF Signal 60.7 83.6 96.5 49.4 75.8 92.5
Table 1. Comparison between RF-ReID and RGB-based and Video-based ReID on RRD-Campus and RRD-Home. RF-ReID (separate) is trained and tested

on RRD-Campus and RRD-Home separately. RF-ReID (combined) is trained on both RRD-Campus and RRD-Home (i.e., the RRD dataset) and tested on

both of them.

to recognize people; we refer to this property as privacy

conscious ReID system. This property is critical in

healthcare applications and clinical research, where

one needs to ReID the subjects so that one may track

changes in a patient’s health over time or as a result

of treatment; yet, it is essential to keep the subjects

de-identified and avoid collecting or storing data that

exposes the subjects’ personal information.

• Last, the results indicate that ReID is harder for RDD-

Home than RDD-Campus. We believe this is due to two

reasons: First, tacklets from homes are shorter (9.2 vs.

11 seconds). Second, the walking style of Parkinson’s

patients may differ through the day as the impact of

medications wears off and they need to take the next

dose.

6.3. Ablation Study

We conduct several ablation studies to evaluate the contri-

bution of each component of RF-ReID. All ablation results

are for RRD-Campus.

Multi-task Learning: Traditional ReID methods use

only triplet loss and ID classification loss. In our RF-ReID

model, we have added an additional skeleton loss both for

regularization and to learn human-related information. We

evaluate the performance of this skeleton loss. Table 2 shows

that adding the skeleton loss improves RF-ReID’s accuracy.

We also report the commonly used metric: Mean Per Joint

Position Error (MPJPE) [19, 55], to evaluate the accuracy

of the generated skeletons. As shown in the last column of

Table 2, the features from RF-ReID contain enough informa-

tion to generate accurate human skeletons.

Method mAP CMC-1 CMC-5 MPJPE

w/o skl loss 57.3 78.2 94.4 -

w/ skl loss 59.5 82.1 95.5 7.44
Table 2. Performance of RF-ReID with and without skeleton loss.

Hierarchical Attention Module: RF-ReID has a hierar-

chical attention module to aggregate features across a track-

let. The attention module has two blocks: the first aggre-

gates shape information within each segment (3 secs), while

the second aggregates walking-style information across the

whole tracklet. Table 3 demonstrates the effectiveness of

each block. If both blocks are replaced by average pooling

over the temporal dimension, the performance would drop by

4.1% for mAP and 7.6% for CMC-1. Each block increases

the mAP by 3∼4%, and adding them together achieves the

highest performance.

Method mAP CMC-1 CMC-5

Avg Pool+Avg Pool 55.4 74.5 93.8

Avg Pool+2nd Att. 58.3 80.3 94.4

1st Att.+Avg Pool 58.6 81.0 94.3

1st Att.+2nd Att 59.5 82.1 95.5
Table 3. Performance of RF-ReID with and without the attention module.

The first attention layer (1st Att.) denotes the layer operating within each

segment (3 sec), and the second attention layer (2nd Att.) denotes the layer

operating on the whole tracklet.

Environment Discriminator: RF-ReID use a discrim-

inator to prevent the model from generating environment

dependent features. We evaluate RF-ReID’s performance

with and without the discriminator. As shown in Table 4,

adding the discriminator helps the model improve the perfor-

mance by a large margin.

Figure 6 visualizes the feature space learned by RF-ReID

using t-SNE [31]. Each point in the figure corresponds to a

feature vector extracted from a tracklet in the test set. There

are in total 5 environments in RRD-Campus test set, and we

color each point according to its environment. The figure

shows that without the discriminator, the feature distribution

is strongly correlated with the environment. In contrast, with

the discriminator, the features are successfully decoupled

from the environment and more uniformly distributed. This

result further demonstrates that the proposed environment

discriminator can help the model learn identifying features

focused on the person rather than the environment.

Method mAP CMC-1 CMC-5

w/o discriminator 56.7 74.2 93.3

w/ discriminator 59.5 82.1 95.5
Table 4. Performance of RF-ReID with and without the environment

discriminator.

6.4. Qualitative Results

In Figure 5, we show examples from the test set of RRD-

Campus. Each example corresponds to a query sample and

its closest sample in the gallery. We compare the results

generated by RF-ReID to the video-based baseline.
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Query Video Prediction RF Prediction Query Video Prediction RF Prediction

Not Applicable Not Applicable

Figure 5. Qualitative results on RRD-Campus test set. Each row shows two examples, separated by the dotted line. The first column of each example is a

query sample in RRD-Campus test set. The second column is the top-1 prediction by the video-based ReID model in the gallery set. The third column is the

top-1 prediction by RF-ReID in the gallery set. Blue boxes stand for query sample. Green boxes mean the prediction is correct, and red boxes mean the

prediction is wrong. The first row shows scenarios where both video-based ReID and RF-ReID succeed matching the correct person. The second row shows

scenarios where video-based ReID fails, and matches to the wrong person because he has similar clothes, while RF-ReID provides accurate predictions. The

third row shows RGB-based ReID fails under dark and occluded conditions but RF-ReID can still work. The last row shows the limitations of RF-ReID which

emphasizes the walking style of the person and can get confused when he drags a bicycle or is skateboarding.

Figure 6. Distribution of features extracted by RF-ReID from different

environments. The color indicates which environment a feature belongs

to. The sub-figure on the left shows the feature distribution without the

environment discriminator, where features from same environment are

strongly clustered due to environment-dependent information. The sub-

figure on the right shows the feature distribution with the environment

discriminator. Here, the features are more uniformly spaced, showing that

they are more environment-invariant.

The figure shows that RGB-based ReID is focused on

colors and clothes, where as RF-ReID is resilient to changes

in colors and clothing items. In particular, in the second row

in the figure, RGB-based ReID fails because the gallery con-

tains other people wearing clothes similar to the query sam-

ple. In contrast, RF-ReID identifies the correct person even if

he/she wears completely different clothes in the gallery. This

demonstrates the robustness of RF-ReID against changes in

clothes.

Further, the third row in the figure shows that RGB-based

ReID fails when faced with poor lighting or occlusions. In

the example on the left, the light is turned off, and as a result

the RGB-based ReID model fails to detect the person alto-

gether, while the RF-based model works accurately without

being affected by poor lighting. Additionally, in the exam-

ple on the right, the person is behind a door so the camera

can only see a vague shadow. RF-ReID can still work in

this scenario because RF signals naturally traverse walls and

occlusions.

We also observe that RF-based ReID can fail under some

circumstances, as shown in the last row. In the example on

the left, the person in the query is walking with a bicycle. The

bicycle changes the person’s walking style; it also disturb the

RF reflections due to its metallic frame, leading to inaccurate

prediction. Another failure case is when the person is on a

skateboard. Since RF-ReID focuses on the person’s walking

style, it fails to identify this person correctly.

7. Conclusion

We have proposed RF-ReID, a novel approach for person

ReID using RF signals. Our approach can extract longterm

identifying features from RF signals and thus enables person

re-identification across days, weeks, etc. This is in contrast

to RGB-based ReID methods which tend to focus on short-

lived features such as clothes, bags, hair style, etc. Also,

unlike cameras, RF signals do not reveal private or personal

information. Thus, our ReID method can be used in health-

care applications and clinical studies where it is important to

track the health of each subject over time, while keeping the

data de-identified. Finally, RF signals work in the presence

of occlusions and poor lighting conditions, allowing us to

ReID people in such scenarios. We believe this work paves

the way for many new applications of person ReID ,where it

is desirable to track people for a relatively long period and

without having to collect their personal information.
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