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Abstract. We describe a learning-based method for low-level vision problems—estimating scenes from images.

We generate a synthetic world of scenes and their corresponding rendered images, modeling their relationships

with a Markov network. Bayesian belief propagation allows us to efficiently find a local maximum of the posterior

probability for the scene, given an image. We call this approach VISTA—Vision by Image/Scene TrAining.

We apply VISTA to the “super-resolution” problem (estimating high frequency details from a low-resolution

image), showing good results. To illustrate the potential breadth of the technique, we also apply it in two other

problem domains, both simplified. We learn to distinguish shading from reflectance variations in a single image

under particular lighting conditions. For the motion estimation problem in a “blobs world”, we show figure/ground

discrimination, solution of the aperture problem, and filling-in arising from application of the same probabilistic

machinery.

Keywords: vision and learning, belief propagation, low-level vision, super-resolution, shading and reflectance,
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1. Introduction

We seek machinery for learning low-level vision prob-

lems, such as motion analysis, inferring shape and re-

flectance from a photograph, or extrapolating image

detail. For these problems, given image data, we want

to estimate an underlying scene (Fig. 1). The scene

quantities to be estimated might be projected object

velocities, surface shapes and reflectance patterns, or

missing high frequency details. These estimates are im-

portant for various tasks in image analysis, database

search, and robotics.

Low-level vision problems are typically under-

constrained, so Bayesian (Berger, 1985; Knill and

Richards, 1996; Szeliski, 1989) and regularization

techniques (Poggio et al., 1985) are fundamental.

There has been much work and progress (for example,

Knill and Richards, 1996; Landy and Movshon, 1991;

Horn, 1986), but difficulties remain in working with

complex, real images. Typically, prior probabilities or

constraints are hypothesized, rather than learned.

A recent research theme has been to study the statis-

tics of natural images. Researchers have related those

statistics to properties of the human visual system

(Olshausen and Field, 1996; Bell and Sejnowski, 1997;

Simoncelli, 1997), or have used statistical characteriza-

tions of images to analyse and synthesize realistic tex-

tures (Heeger and Bergen, 1995; DeBonet and Viola,

1998; Zhu and Mumford, 1997; Simoncelli, 1997).

These methods may help us understand the early stages
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Figure 1. Example low-level vision problems. For given “image” information, we want to estimate an underlying “scene” that created it

(idealized scene estimates shown).

of representation and processing, but unfortunately,

they don’t address how a visual system might inter-

pret images, i.e., estimate the underlying scene.

We want to combine the two research themes of

scene estimation and statistical learning. We study the

statistical properties of a synthetically generated world

of images labelled with their underlying scenes, to learn

how to infer scenes from images. Our prior probabili-

ties and rendering models can then be rich ones, learned

from the training data.

Several researchers have applied related learning ap-

proaches to low-level vision problems, but restricted

themselves to linear models (Kersten et al., 1987;

Hurlbert and Poggio, 1988), too weak for many applica-

tions. Our approach is similar in spirit to relaxation la-

belling (Rosenfeld et al., 1976; Kittler and Illingworth,

1985), but our Bayesian propagation algorithm is more

efficient and we use training data to derive propagation

parameters.

We interpret images by modeling the relationship be-

tween local regions of images and scenes, and between

neighboring local scene regions. The former allows ini-

tial scene estimates; the later allows the estimates to

propagate. We train from image/scene pairs and apply

the Bayesian machinery of graphical models (Pearl,

1988; Binford et al., 1988; Jordan, 1998). We were

influenced by the work of Weiss (Weiss, 1997), who

pointed out the speed advantage of Bayesian methods

over conventional relaxation methods for propagating

local measurement information. For a related approach,

but with heuristically derived propagation rules, see

Saund (1999).

We call our approach VISTA, Vision by Image/Scene

TrAining. It is a general machinery that may apply to

various vision problems. We illustrate it for estimating

missing image details, disambiguating shading from

reflectance effects, and estimating motion.

2. Markov Network

For given image data, y, we seek to estimate the un-

derlying scene, x (we omit the vector symbols for

notational simplicity). We first calculate the posterior

probability, P(x | y) = cP(x, y) (the normalization,

c = 1
P(y)

, is a constant over x). Under two common

loss functions (Berger, 1985), the best scene estimate,

x̂ , is the mean (minimum mean squared error, MMSE)

or the mode (maximum a posteriori, MAP) of the pos-

terior probability.

In general, x̂ can be difficult to compute with-

out approximations (Knill and Richards, 1996). We

make the Markov assumption: we divide both the

image and scene into patches, and assign one node

of a Markov network (Geman and Geman, 1984;

Pearl, 1988; Jordan, 1998) to each patch. We draw

the network as nodes connected by lines, which in-

dicate statistical dependencies. Given the variables at

intervening nodes, two nodes of a Markov network

are statistically independent. We connect each scene

patch both to its corresponding image patch and to its

spatial neighbors, Fig. 2. For some problems where

long-range interactions are important, we add layers of

image and scene patches at other spatial scales, con-

necting scene patches to image patches at the same

scale, and to scene patches at neighboring scales and

positions. (Unlike Luettgen et al. (1994), this is not

a tree because of the connections between spatial

neighbors).

The Markov network topology of Fig. 2 implies that

knowing the scene at position j : (1) provides all the

information about the rendered image there, because

x j has the only link to y j , and (2) gives information

about nearby scenes values, by the links from x j to

nearby scene neighbors. We will call problems with

these properties low-level vision problems.
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Figure 2. Markov network for vision problems. Each node in the

network describes a local patch of image or scene. Observations, y,

have underlying scene explanations, x . Lines in the graph indicate

statistical dependencies between nodes.

Solving a Markov network involves a learning

phase, where the parameters of the network connec-

tions are learned from training data, and an inference

phase, when the scene corresponding to particular im-

age data is estimated.

For a Markov random field, the joint probability over

the scenes x and images y can be written (Besag 1974;

Geman and Geman, 1984; Geiger and Girosi, 1991):

P(x1, x2, . . . , xN , y1, y2, . . . , yN )

=
∏

(i, j)

9(xi , x j )
∏

k

8(xk, yk), (1)

where we have introduced pairwise compatibility func-

tions, 9 and 8, which are learned from the training

data. (i, j) indicates neighboring nodes i , j and N is

the number of image and scene nodes.

We can write the MAP and MMSE estimates for

x̂ j by marginalizing (MMSE) or taking the maximum

(MAP) over the other variables in the posterior prob-

ability. For discrete variables, the marginalization in-

volves summations over the discrete values of the scene

variables at each node, indicated by the summations

below:

x̂ jMMSE =
∑

x j

x j

∑

all xi ,i 6= j

× P(x1, x2, . . . , xN , y1, y2, . . . , yN ) (2)

x̂ jMAP = arg max
x j

max
[all xi , i 6= j]

× P(x1, x2, . . . , xN , y1, y2, . . . , yN ). (3)

For networks larger than toy examples, Eqs. (2) and

(3) are infeasible to evaluate directly because of the

high dimensionality of the scene variables over which

P(x1, x2, . . . , xN , y1, y2, . . . , yN ) must be summed or

maximized. When the networks form chains or trees,

however, we can evaluate the equations.

2.1. Inference in Networks Without Loops

For networks without loops, the Markov assumption

leads to simple “message-passing” rules for computing

the MAP and MMSE estimates during inference

(Pearl, 1988; Weiss, 1998; Jordan, 1998). The factor-

ized structure of Eq. (1) allows the marginalization

and maximization operators of Eqs. (2) and (3) to pass

through 9 and 8 factors with unrelated arguments. For

example, for the network in Fig. 3, substituting Eq. (1)

for P(x, y) into Eq. (3) for x̂ jMAP at node 1 gives

x̂1MAP = arg max
x1

max
x2

max
x3

P(x1, x2, x3, y1, y2, y3) (4)

= arg max
x1

max
x2

max
x3

8(x1, y1)8(x2, y2)8(x3, y3)

9(x1, x2)9(x2, x3) (5)

= arg max
x1

8(x1, y1)

max
x2

9(x1, x2)8(x2, y2)

max
x3

9(x2, x3)8(x3, y3). (6)

Each line of Eq. (6) is a local computation involv-

ing only one node and its neighbors. The analogous

expressions for x2MAP and x3MAP also use local calcu-

lations. Passing local “messages” between neighbors,

as described below, gives an efficient way to compute

the MAP estimates.

Assuming a network without loops, Eqs. (3) and (2)

can be computed by iterating the following steps

(Pearl, 1988; Weiss, 1998; Jordan, 1998). The MAP

Figure 3. Example Markov network without any loops, used for

belief propagation example described in text. The compatibility

functions 8 and 9 are defined below.
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estimate at node j is

x̂ jMAP = arg max
x j

8(x j , y j )
∏

k

Mk
j , (7)

where k runs over all scene node neighbors of node

j , and Mk
j is the message from node k to node j . We

calculate Mk
j from:

Mk
j = max

[xk ]

9(x j , xk)8(xk, yk)
∏

l 6= j

M̃ l
k, (8)

where M̃ l
k is M l

k from the previous iteration. The initial

M̃k
j ’s are set to column vectors of 1’s, of the dimen-

sionality of the variable x j .

To illustrate how these equations are used, we show

how Eq. (7) reduces to Eq. (6) for the example of Fig. 3.

First, a note about the compatibility matrices, 9 and

8. For a given observed image-patch, yk , the image-

scene compatibility function, 8(xk, yk), is a column

vector, indexed by the different possible states of xk ,

the scene at node k. The scene-scene compatibility

function, 9(xi , x j ), will be a matrix with the differ-

ent possible states of xi and x j , the scenes at nodes

i and j , indexing the rows and columns. Because the

initial messages are 1’s, at the first iteration, all the

messages in the network are:

M2
1 = max

x2

9(x1, x2)8(x2, y2) (9)

M3
2 = max

x3

9(x2, x3)8(x3, y3) (10)

M1
2 = max

x1

9(x2, x1)8(x1, y1) (11)

M2
3 = max

x2

9(x3, x2)8(x2, y2). (12)

The second iteration uses the messages above as the

M̃ variables in Eq. (8):

M2
1 = max

x2

9(x1, x2)8(x2, y2)M̃3
2 (13)

M3
2 = max

x3

9(x2, x3)8(x3, y3) (14)

M2
3 = max

x2

9(x3, x2)8(x2, y2)M̃1
2 (15)

M1
2 = max

x1

9(x2, x1)8(x1, y1). (16)

Substituting M3
2 of Eq. (10) for M̃3

2 in Eq. (13) gives

M2
1 = max

x2

9(x1, x2)8(x2, y2)

× max
x3

9(x2, x3)8(x3, y3). (17)

For this example, the messages don’t change in subse-

quent iterations. We substitute the final messages into

Eq. (7) to compute the MAP estimates, for example,

x̂1MAP = arg max
x1

8(x1, y1)M2
1 . (18)

Substituting Eq. (17), the converged message value for

M2
1 , in Eq. (18) above gives precisely Eq. (6) for x1MAP.

The exact MAP estimates for x2 and x3 are found anal-

ogously.

It can be shown (Pearl, 1988; Weiss, 1988; Jordan,

1998) that after at most one global iteration of Eq. (8)

for each node in the network, Eq. (7) gives the desired

optimal estimate, x̂ jMAP
, at each node j .

The MMSE estimate, Eq. (3), has analogous formu-

lae, with the maxxk
of Eq. (8) replaced by

∑

xk
, and

arg maxx j
of Eq. (7) replaced by

∑

x j
x j . For Markov

networks without loops, these propagation rules are

equivalent to standard Bayesian inference methods,

such as the Kalman filter and the forward-backward

algorithm for Hidden Markov Models (Pearl, 1988;

Luettgen et al., 1994; Weiss, 1997; Smyth et al., 1997;

Frey, 1998; Jordan, 1998).

A second factorization of the joint probability can

also be used instead of Eq. (1), although it is only valid

for chains or trees, while Eq. (1) is valid for general

Markov networks. This is a the chain rule factorization

of the joint probability, similar to Pearl (1988). For

Fig. 3, using the Markov properties, we can write

P(x1, y1, x2, y2, x3, y3)

= P(x1)P(y1 | x1)P(x2 | x1)

× P(y2 | x2)P(x3 | x2)P(y3 | x3). (19)

Following the same reasoning as in Eqs. (4)–(6), this

factorization leads to the following MAP update and

estimation rules:

Mk
j = max

xk

P(xk | x j )P(yk | xk)
∏

l 6= j

M̃ l
k, (20)

x jMAP = arg max
x j

P(x j )P(y j | x j )
∏

k

Mk
j . (21)

where k runs over all scene node neighbors of node j .

While the expression for the joint probability does
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not generalize to a network with loops, we nonethe-

less found good results for some problems using these

update rules (for Section 5 and much of Section 3).

2.2. Networks with Loops

For a network with loops, Eqs. (2) and (3) do not fac-

tor into local calculations as in Eq. (6). Finding exact

MAP or MMSE values for a Markov network with

loops can be computationally prohibitive. Researchers

have proposed a variety of approximations (Geman

and Geman, 1984; Geiger and Girosi, 1991; Jordan,

1998). Strong empirical results in “Turbo codes”

(Kschischang and Frey, 1998; McEliece et al., 1998),

layered image analysis (Frey, 2000) and recent theo-

retical work (Weiss, 1998; Weiss and Freeman, 1999;

Yedidia et al., 2000) provide support for a very sim-

ple approximation: applying the propagation rules of

Eqs. (8) and (7) even in the network with loops. Table 1

summarizes results from Weiss and Freeman (1999):

(1) for Gaussian processes, the MMSE propagation

scheme can converge only to the true posterior means.

(2) Even for non-Gaussian processes, if the MAP prop-

agation scheme converges, it finds at least a local max-

imum of the true posterior probability. Furthermore,

this condition of local optimality for the converged so-

lution of the MAP algorithm is a strong one. For every

subset of nodes of the network which form a tree, if the

remaining network nodes are constrained to their con-

verged values, the values of the sub-tree’s nodes found

by the MAP algorithm are the global maximum over

that tree’s nodes (Weiss and Freeman, 2000). Yedidia

et al. (2000) show that the MMSE belief propagation

equations are equivalent to the stationarity conditions

for the Bethe approximation to the “free energy” of

the network. These experimental and theoretical re-

sults motivate applying the belief propagation rules of

Table 1. Summary of results from Weiss and Freeman (1999)

regarding belief propagation results after convergence.

Network topology
Belief propagation

algorithm No loops Arbitrary topology

MMSE rules MMSE, correct For Gaussians,

posterior marginal correct means,

probs. wrong covs.

MAP rules MAP estimate Local max. of

posterior, even for

non-Gaussians.

Eqs. (8) and (7) even in a Markov network with loops.

(There is not the corresponding theoretical justification

for applying Eqs. (20) and (21) in a network with loops;

we rely on experiment).

2.3. Representation

We need to chose a representation for the image and

scene variables. The images and scenes are arrays of

vector valued pixels, indicating, for example, color

image intensities or surface height and reflectance in-

formation. We divide these into patches. For both com-

pression and generalization, we use principle compo-

nents analysis (PCA) to find a set of lower dimensional

basis functions for the patches of image and scene pix-

els. We measure distances in this representation using

a Euclidean norm, unless otherwise stated.

We also need to pick a form for the compatibil-

ity functions 8(x j , y j ) and 9(x j , xk) in Eqs. (7) and

(8), as well as the messages, Mk
j . One could repre-

sent those functions as Gaussian mixtures (Freeman

and Pasztor, 1999) over the joint spaces x j × y j and

x j × xk ; however multiplications of the Gaussian mix-

tures is cumbersome, requiring repeated pruning to

restore the product Gaussian mixtures to a manageable

number of Gaussians.

We prefer a discrete representation. The most

straight-forward approach would be to evenly sample

all possible states of each image and scene variable

at each patch. Unfortunately, for reasonably sized

patches, the scene and image variables need to be of a

high enough dimensionality that an evenly-spaced dis-

crete sampling of the entire high dimensional space is

not feasible.

To address that, we evaluate 8(x j , y j ) and 9(x j , xk)

only at a restricted set of discrete points, a subset of

our training set. (For other sample-based representa-

tions see Isard and Blake (1996), DeBonet and Viola

(1998)). Our final MAP (or MMSE) estimates will be

maxima over (or weights on) a subset of training sam-

ples. In all our examples, we used the MAP estimate.

The estimated scene at each patch was always be some

example from the training set.

At each node we collect a set of 10 or 20 “scene can-

didates” from the training data which have image data

closely matching the observation, or local evidence,

at that node. (We think of these as a “line-up of sus-

pects”, as in a police line-up.) We will evaluate proba-

bilities only at those scene values. This simplification

focuses the computational effort on only those scenes
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Figure 4. Showing the problem to be solved by Bayesian belief

propagation. We break the observed image data into patches (top

row). For each image patch, we gather a collection of candidate

scene patches from the training database. Each scene can explain the

observed image patch, some better than others. Neighboring image

patches have their own sets of scene candidates (in each column). We

must find at each location the scene candidate which both explains

the local image data well, and is compatible with the best scene

candidates at the neighboring locations. Bayesian belief propagation

gives an approximate solution to this problem.

which render to the observed image data. The propaga-

tion algorithms, Eqs. (7) and (8) or Eqs. (21) and (20),

become matrix operations involving relatively small

vectors and matrices. Figure 4 shows symbolically the

image data and scene candidates.

2.4. Learning the Compatibility Functions

We want to learn from our training data the compatibil-

ity functions relating neighboring nodes of the Markov

network. We have explored two different approaches

which give comparable results for our problems.

The first method uses the message-passing rules

of Eqs. (21) and (20), based on the joint probability

factorization which is not valid for a network with

loops. So in using these update rules, we are effec-

tively ignoring the presence of loops in both learning

and inference. From the training data, we fit mixtures

of Gaussians to the joint probabilities P(y j , x j ) and

P(xk, x j ), for neighboring nodes j and k. We evaluate

P(x l
k | xm

j ) =
P(x l

k ,x
m
j )

P(xm
j )

at each of the scene candidates

x l
k (indexed by l) at node k and at each candidates xm

j

(indexed by m) at node j , giving a matrix of rows in-

dexed by l and columns indexed by m. For a given

image observation yk at patch k, P(yk | x l
k) becomes a

column vector indexed by each scene candidate, l. We

used these quantites in Eqs. (20) and (21) for the results

shown in Sections 3 and 5, except for Figs. 14–16.

More properly, rather then using the conditional

probabilities of Eqs. (21) and (20), Iterative Propor-

tional Fitting (e.g., Smyth et al., 1997) should be used to

iteratively modify the compatibility functions of Eq. (1)

and Eqs. (7) and (8) until the empirically measured

marginal statistics agree with those predicted by the

model, Eq. (1). However, for the problems presented

here, we found good results using the method described

above.

The second method we used relied on the proper

probability factorization for networks with loops,

Eq. (1), but used a simple way to find the compati-

bility functions. We spaced the scene patches so that

they overlap and used the scene patches themselves to

estimate the compatibilities 9(x j , xk) between neigh-

bors. Let k and j be two neighboring scene patches. Let

d l
jk be a vector of the pixels of the lth possible candidate

for scene patch xk which lie in the overlap region with

patch j . Likewise, let dm
kj be the values of the pixels (in

correspondence with those of d l
jk) of the mth candidate

for patch x j which overlap patch k see Fig. 5. We say

that scene candidates x l
k (candidate l at node k) and xm

j

are compatible with each other if the pixels in their re-

gions of overlap agree. We assume that the image and

scene training samples differ from the “ideal” training

samples by Gaussian noise of covariance σi and σs , re-

spectively. Those covariance values are parameters of

the algorithm. We then define the compatibility matrix

between scene nodes k and j as

9
(

x l
k, xm

j

)

= exp−|d l
jk−dm

kj |
2/2σ 2

s (22)

The rows and columns of the compatibility matrix

9(x l
k, xm

j ) are indexed by l and m, the scene candi-

dates at each node, at nodes j and k.

Figure 5. The compatibility between candidate scene explanations

at neighboring nodes is determined by their values in their region

of overlap. Let dl
k j be the pixels of the lth scene candidate of patch

j in the overlap region between patches j and k, and let dm
jk be

the (corresponding) pixels of the mth scene candidate belonging to

patch k, next to patch j . Then the elements of the compatibility matrix

between scene nodes j and k, 8(x l
j , xm

k ) (a matrix indexed by l and

m), are Gaussians in |dl
k j − dm

kj |.
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Note, this form for the compatibility matrix between

scene nodes is not a constraint on the spatial smooth-

ness of the scene patches; those can be as rough as the

PCA representation of each patch can describe. It is a

“uniqueness” constraint, requiring that the pixels in the

region of overlap between patches have only one value.

We say that a scene candidate x l
k is compatible with

an observed image patch yo if the image patch, yl
k ,

associated with the scene candidate x l
k in the training

database matches yo. It won’t exactly match, so again

we assume “noisy” training data and define the com-

patibility

8
(

x l
k, yk

)

= exp−|yl
k−yo|

2/2σ 2
i . (23)

We set σi to allow roughly 10 samples at each node

to be within two standard deviations of the observed

image patches, and set σs to allow roughly 5 or 10

matrix transitions to be appreciably different than zero.

This sample-based method was used for the results of

Section 4, and for Figs. 14–16.

It could be the case that two particular scene patches

would never be next to each other, even though their

pixel values agreed perfectly in their region of common

support. The Gaussian mixture method would assign a

low compatibility to those two scene patches abutting,

while the sample-based method would assign them a

high compatibility. However, the sample-based method

is easier to work with and assumes the proper form for

the posterior probability of a Markov network, Eq. (1).

Once we have specified the representation and the

compatibility functions, we are ready to apply VISTA

to vision problems.

3. Super-Resolution

For the super-resolution problem, the input image is

a low-resolution image. The scene to be estimated is

the high resolution version of the same image. (Note

this is different than another problem sometimes called

super-resolution, that of estimating a single high res-

olution image from multiple low-resolution ones). A

good solution to the super-resolution problem would

Figure 6. Example images from a training set of 80 images from two Corel database categories: African grazing animals, and urban skylines.

Sharp and blurred versions of these images were the training set for the test image of Figs. 9 and 10.

allow pixel-based images to be handled in an almost

resolution-independent manner. Applications could in-

clude enlargment of digital or film photographs, upcon-

version of video from NTSC format to HDTV, or image

compression.

At first, the task may seem impossible—the high

resolution data is missing. However, we can visu-

ally identify edges in the low-resolution image that

we know should remain sharp at the next resolution

level. Furthermore, the successes of recent texture syn-

thesis methods (Heeger and Bergen, 1995; DeBonet

and Viola, 1998; Zhu and Mumford, 1997; Simoncelli,

1997), gives us hope to handle textured areas well, too.

Others (Schultz and Stevenson, 1994) have used a

Bayesian method for super-resolution, hypothesizing

the prior probability. In contrast, the VISTA approach

learns the relationship between sharp and blurred

images from training examples, and achieves bet-

ter results. Among non-Bayesian methods for super-

resolution, the fractal image representation used in

compression (Polvere, 1998) (Fig. 13(c)) allows zoom-

ing, although its image generation model will not hold

for all images.1 Selecting the nearest neighbor from

training data (Pentland and Horowitz, 1993) (Fig. 9(a))

ignores important spatial consistency constraints.

We apply VISTA to this problem as follows. By blur-

ring and downsampling sharp images, we construct a

training set of sharp and blurred image pairs. We lin-

early interpolate each blurred image back up to the

original sampling resolution, to form an input image.

The scene to be estimated is the high frequency detail

removed by that process from the original sharp image,

Fig. 7(a) and (b).

We employ two pre-processing steps in order to

increase the efficiency of the training set. Each step

exploits an assumption about the nature of images.

First, we assume that images are Markov over scale

(Luettgen et al., 1994) in a bandpass image represen-

tation, such as a Laplacian pyramid image decompo-

sition (Burt and Adelson, 1983). Let H be the high-

frequency pixel values, and M be the values of the

next-highest spatial frequency band, which we will call

the mid-frequency band, and L be the pixel values of

all lower spatial frequencies in the image. We assume
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Figure 7. We want to estimate (b) from (a). The original image, (b) is blurred, subsampled, then interpolated back up to the original sampling

rate to form (a). All images shown are at 170 × 102 resolution. The missing high frequency detail, (b) minus (a), is the “scene” to be estimated,

(d) (this is the first level of a Laplacian pyramid (Burt and Adelson, 1983)). Two image processing steps are taken for efficiency: the low

frequencies of (a) are removed to form the input bandpassed “image”. We contrast normalize the image and scene by the local contrast of the

input bandpassed image, yielding (c) and (d).

that highest resolution frequency band is conditionally

independent of the lower frequency bands, given the

second highest resolution frequency band:

P(H | M, L) = P(H | M). (24)

Based on this assumption, to predict the highest fre-

quency band, we will only examine the mid-frequency

band, M , not all lower frequency bands of the image.

This greatly reduces the variability we have to store

in our training data, collapsing the training data for all

possible low-frequency values into one value, depen-

dent only on the mid-band image.

Second, we assume that the statistical relationships

between image bands are independent of image con-

trast, apart from a multiplicative scaling. By taking the

absolute value of the mid-frequency band, and blurring

it, we form a “local contrast” image, which we use to

normalize both the mid- and high-frequency bands. We

make the training set from the contrast normalized mid-

and high-frequency bands, shown in Fig. 7(c) and (d).

This saves having to replicate the training set over all

possible values of image contrast, and is a very sim-

plified model of the contrast normalization which may

take place in the mammalian visual system (Carandini

and Heeger, 1994). We undo this normalization after es-

timating the scene. The functional forms of the filters

used and the contrast normalization are given in the

Appendix.

We break the image and scene into local patches.

The choice of patch size is a compromise between two

extremes. If the image patch size is too small, then each

local image patch would give very little information for

estimating the underlying scene variable. The Markov

network model of patches only connected to their near-

est neighbors would break down. However, the train-

ing database would be easy to store. On the other hand,

a large patch size would disambiguate the underlying

scene variables, but it would be prohibitive to learn the

relationship between local image and scene patches.

That storage requirement grows exponentially with the

dimensionality of the image and scene patches. As a

compromise, we seek an image and scene patch size

which is big enough to give some useful information
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Figure 8. Some training data samples for super-resolution problem. The large squares are the image data (mid-frequency data). The small

squares below them are the corresponding scene data (high-frequency data).

about the underlying scene, yet is small enough to al-

low learning the relationship between image and scene.

We then rely on belief propagation to propagate local

evidence across space.

We first describe our results using the gaussian mix-

tures method, employing Eqs. (20) and (21). We used

7 × 7 and 3 × 3 pixel patches, Fig. 8, from the train-

ing images and scenes, respectively. These were center-

aligned, so that the image patch centered at pixels (i, j)

covered all pixels (i ± 3, j ± 3) and the corresponding

scene patch covered all pixels (i ± 1, j ± 1). Applying

Principal Components Analysis (PCA) (Bishop, 1995)

to the training set, we summarized each 3-color patch

of image or scene by a 9-d vector. From 40,000 im-

age/scene pair samples, we fit 15 cluster Gaussian mix-

tures to the observed joint probabilities P(xk, x j ) of

neighboring scene patches k, j , assuming spatial trans-

lation invariance. One Gaussian mixture described the

joint statistics of horizontal neighbors, and one de-

scribed the statistics of vertical neighbors. We also fit

Gaussian mixtures to the prior probability of a scene

patch, P(x j ), and the joint probability of image-scene

pairs, P(yk, xk), again assuming spatial translation in-

variance.

Given a new image, not in the training set, from

which to infer the high frequency scene, we found the

10 training samples closest to the image data at each

node (patch). The 10 corresponding scenes are the can-

didates for that node.

From the fit densities, we could evaluate the condi-

tional probabilities used in the message update equa-

tion, Eq. (20): P(xk | x j ) and P(yk | xk). We evaluated

these conditional probabilities at the 10 candidate scene

points at each node and at all possible combination of

scene candidates (10×10) between neighboring nodes.

For storage efficiency, we pruned frequently occurring

image/scene pairs from the training set, based on a

squared error similarity criterion. We propagated the

probabilities by Eq. (20), and read-out the maximum

probability solution by Eq. (21). We found experimen-

tally that the reconstructed image retained more visu-

ally pleasing high frequency structure when we used a

“maximum likelihood” readout of the estimated scene

from Eq. (21), setting the prior probability term P(x j )

to one.

To process Fig. 10(a), we used a training set of 80 im-

ages from two Corel database categories: African graz-

ing animals, and urban skylines (Fig. 6). For reference,

Fig. 9(a) shows the nearest neighbor solution, at each

node using the scene corresponding to the closest image

sample in the training set. Many different scene patches

can explain each image patch, and the nearest neighbor

solution is very choppy. Figures 9(b), (c) and (d) show

the first 3 iterations of MAP belief propagation. The

spatial consistency imposed by the belief propagation

finds plausible and consistent high frequencies for the

tiger image from the candidate scenes.

Figure 10 shows the result of applying this super-

resolution method recursively to zoom two octaves.

The algorithm keeps edges sharp and invents plausible

textures. Standard cubic spline interpolation, blurrier,

is shown for comparison.

Figure 11 explores the algorithm behavior under dif-

ferent training sets. Each training set corresponds to

a different set of prior assumptions about typical im-

ages. Figure 11(a) is the actual high resolution image

(192 × 232). (b) is the 48 × 58 resolution input image.

(c) is the result of cubic spline interpolation to 192×232

resolution. The edges are blurred. (d) is an example im-

age of a training set composed entirely of random noise

images. (g) is the result of using that training set with

the Markov network super-resolution algorithm. The

algorithm successfully learns that the high resolution

images relate to lower resolution ones by adding ran-

dom noise. Edges are not maintained as sharp because

the training set has no sharp edges in it. (e) is a sam-

ple from a training set composed of vertically oriented,

multi-colored rectangles. Again, the super-resolution

algorithm correctly models the structure of the visual

world it was trained on, and the high-resolution image

(h) shows vertically oriented rectangles everywhere.

(f) is an example image from a training set of generic

images, none of any teapots. Figure 12(b) shows

other examples from that training set. The extrapolated
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Figure 9. (a) Nearest neighbor solution. The choppiness indicates that many feasible high resolution scenes correspond to a given low resolution

image patch. (b), (c), (d): iterations 0, 1, and 3 of Bayesian belief propagation. The initial guess is not the same as the nearest neighbor solution

because of mixture model fitting to P(y | x). Underlying the most probable guess shown are 9 other scene candidates at each node. 3 iterations of

Bayesian belief propagation yields a probable guess for the high resolution scene, consistent with the observed low resolution data, and spatially

consistent across scene nodes.

image, (i), maintains sharp edges and makes plausible

guesses in the texture regions. The estimated images

properly reflect the structure of the training worlds for

noise, rectangles, and generic images.

Figure 13 depicts in close-up the interpolation for

image (a) using two other training sets, shown in

Fig. 12. Figure 13(d) was recursively zoomed up two

octaves using the Markov network super-resolution al-

gorithm with an ideal training set of images taken at the

same place and same time (but not of the same subject).

Figure 13(e) used a generic training set of images. Both

estimates look more similar to the true high resolution

result (f) than either cubic spline interpolation (b) or

zooming by a fractal image compression algorithm (c).

Edges are again kept sharp, while plausible texture is

synthesized in the hair.

We also applied the method of Eqs. (8) and (7) to the

super-resolution problem. This patch-overlap method

to find the compatibility functions between nodes was

faster to process, and typically gave fewer artifacts.

Figures 14–16 were made using this sample-based

method. Scene patches were 3×3 pixels, with a 1 pixel

overlap between patches. This results in each scene

pixel being described by two different scene patches.

To output the final image, we averaged the scene results

from each pixel where it was described by more than

one patch. This method gives results with a silghtly

different visual character than the Gaussian mixture

method. It has fewer artifacts at edges (note the girl’s

nose), but is also smoother in regions of image texture.

As Figure 11 shows, the training set influences the

super-resolution output. On the assumption that the im-

age is similar to itself over different spatial scales, it

is reasonable to try using the image itself, at a lower-

resolution, as the training set for zooming up to a higher

resolution. Figure 15 shows that that training set gives

reasonable results for our common test image. We built

a training set from all 90 degree rotations and transpo-

sitions of the image from which the 70 × 70 test im-

age was cropped (top). After zooming up to 280 × 280

resolution by the patch-overlap version of the Markov

network super-resolution algorithm, the results are

comparable with the super-resolution results from other

training sets.

Figure 16 shows a patch of texture, zoomed up two

and four octaves up to 400% and 1600% magnifica-

tion. (We used the patch overlap method to compute

the compatibilities for belief propagation by Eqs. (8)
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Figure 10. (a) 85 × 51 resolution input. (b) cubic spline interpo-

lation in Adobe Photoshop to 340 × 204. (c) belief propagation in

Markov network zoom to 340 × 204, recursively zooming up by one

octave twice.

and (7). For comparison, zooming by pixel replication

and cubic spline interpolation are shown as well. The

algorithm “makes-up” detail which, while almost cer-

tainly not correct, is plausible and visually pleasing.

As emphasized by other authors (e.g., Field, 1994),

the visual world has much more structure than would

images of random collections of pixel values. The re-

sults of this section show that we can exploit this struc-

ture to estimate missing resolution detail.

4. Shading and Reflectance Estimation

We turn to a second low-level vision application, that

of estimating shading and reflectance properties from

a single image. Figure 17, left, illustrates the prob-

lem, with an image pair due to Adelson (1995). The

top image looks like a raised bump, with the inten-

sity variations due to shading effects. The bottom im-

age looks like two crescents drawn on a flat piece of

paper, with the intensity variations due to surface re-

flectance changes. Yet each image has nearly exactly

the same intensities everywhere; one is a sheared ver-

sion of the other. Clearly a local look-up of scene struc-

ture from image intensities will not allow us to distin-

guish the causes of the crescent image or the bump

image. Furthermore, while people report consistent in-

terpretations for the crescent and bump images (data

from Freeman and Viola, 1998), each image has mul-

tiple feasible scene explanations, shown in the middle

and right of Fig. 17. The shape explanation for the

crescents image requires non-generic alignment of the

assumed lighting direction (from the left) with the in-

ferred shape (Freeman, 1994).

While disambiguating shading from reflectance

is fundamental to interpreting images by computer,

it has received relatively little research attention.

Shape-from-shading algorithms typically assume con-

stant or known surface albedo markings (Horn and

Brooks, 1989). Sinha and Adelson (1993) have ad-

dressed this problem, but in a blocks world with pre-

segmented junctions and regions. Generalization to the

world of real images has proved difficult. A Bayesian

approach using pixel-based image representations was

taken by Freeman and Viola (1998), who derived the

likelihood of reflectance from the prior probability

penalty required of a shape interpretation of the image.

Here we take a more general approach, explicitly solv-

ing for the reflectance and shape combination that best

explains the image data, using the VISTA approach.

We focus on a simplified version of the problem:

we assume just one light direction, and one fixed re-

flectance function (Lambertian). Generalizing to other

light directions involves taking a new training set over

a sampling of different light directions. This simplified

setting retains the fundamental ambiguity we focus on:

how can we distinguish shading from paint?

We apply to this problem domain the same proce-

dure we used for super-resolution. We first generate

a training set of image and scene patches. Here the

scene consists of two pixel arrays, one describing the
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Figure 11. Effect of different training sets on super-resolution outputs. (a), at 192 × 232 resolution, was blurred, and subsampled by 4 in each

dimension to yield the low-resolution input, (b), at 48 × 58 resolution. Cubic spline interpolation to full resolution in Adobe Photoshop loses the

sharp edges, (c). We recursively zoomed (b) up two factors of two using the Markov network trained on 10 images from 3 different “worlds”:

(d) random noise, (e) colored rectangles, and (f) a generic collection of photographs. The estimated high resolution images, (g), (h), and (i),

respectively, reflect the statistics of each training world.

Figure 12. Sample images from the 10 images in each of the (a) “picnic” and (b) “generic” training sets. Sharp and blurred versions of these

images were used to create the training data for Fig. 13(d) and (e). The generic training set was also used for Figs. 14 and 16.

reflectance function and one describing the shape by

a range map (where pixel intensities indicate distance

from the camera).

Our training set consisted of computer-generated ex-

amples of images such as those in Fig. 18. Randomly

placed and oriented ellipses were used as either re-

flectance images on a flat range map, or as range images

with a flat reflectance map. At a global scale, which is

shape and which is reflectance is perceptually obvious

from looking at the rendered images. At a local scale,
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Figure 13. (a) Low-resolution input image. (b) Cubic spline 400% zoom in Adobe Photoshop. (c) Zooming luminance by public domain fractal

image compression routine (Polvere, 1998), set for maximum image fidelity (chrominance components were zoomed by cubic spline, to avoid

color artifacts). Both (c) and (d) are blurry, or have serious artifacts. (d) Markov network reconstruction using a training set of 10 images taken at

the same picnic, none of this person. This is the best possible fair training set for this image. (e) Markov network reconstrution using a training

set of generic photographs, none at this picnic or of this person, and fewer than 50% of people. The two Markov network results show good

synthesis of hair and eye details, with few artifacts, but (d) looks slightly better (see brow furrow). Edges and textures seem sharp and plausible.

(f) is the true full-resolution image.

however, the images are ambiguous; Fig. 20 shows dif-

ferent scene explanations for a given patch of image

data. Both shading and paint scene explanations render

to similar image data. We generated 40 such images

and their underlying scene explanations at 256 × 256

spatial resolution.

Next, given a training image, we broke it into

patches, Fig. 19. Because long range interactions are

important for this problem, we used a multi-scale ap-

proach, taking patches at two different spatial scales,

of size 8 × 8 and 16 × 16 pixels. The image patches

were sampled with a spatial offset of 7 and 14 pixels,

respectively, ensuring consistent alignment of patches

across scale, and a spatial overlap of patches, used in

computing the compatibility functions for belief prop-

agation with Eqs. (8) and (7). As in the other problems,

each image patch in the Markov network connects to

a node describing the underlying scene variables. For

this multi-scale model, each scene node connects to its

neighbors in both space and in scale.

4.1. Selecting Scene Candidates

For each image patch, we must select a set of candi-

date scene interpretations from the training data. For

this problem, we found that the selection of candidates

required special care to ensure obtaining a sufficiently

diverse set of candidates. The difficulty in selecting

candidates is to avoid selecting too many similar ones.

We want fidelity to the observed image patch, yet at the

same time diversity among the scene explanations. A

collection of scene candidates is most useful if at least

one of them is within ǫ distance of the correct answer.

We seek to maximize the probability, P̂ , that at least

one candidate x
j

i (the j th scene candidate at node i) in
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Figure 14. Super-resolution results using the patch-overlap method

to find the scene patch compatibilities. 280 × 280 super-resolution

result, starting from the 70×70 sized image of Fig. 13(a). Image was

made using the generic training set (with 99,275 image/scene pair

samples), and the overlapped patches method of determining the

scene-scene compatibility functions. (a) After no iterations of be-

lief propagation. Note the roughness from incompatible neighboring

scene candidates. (b) After 10 iterations of belief propagation (al-

though results appeared to converge after 3 or 4 iterations). Texture

rendition is slightly worse than results of Gaussian mixture method,

Fig. 13, although there appear to be fewer artifacts. The true high

resolution scene is given in Fig. 13(f).

the collection S is within a threshold distance, ǫ of the

true scene value, x̂i , given the local observation, yi , at

the i th patch:

P̂(S) = max
x

j

i ∈S

P
(∣

∣x̂i − x
j

i

∣

∣ < ǫ | yi

)

. (25)

We use a greedy approach to select the set of candi-

dates, S. Assume we have already selected some set of

candidates, S0, and we want to decide which new can-

didate to add to our selected set to maximize P̂ . There

may be a very probable candidate close to one already

in our set. Choosing that candidate would add little to

P̂(S), because its region of the scene parameter space

within distance ǫ would be already accounted for by

the nearby, previously selected candidate.

For a given selection of scene candidates, S0, the

utility of an additional candidate x
j

i is

U
(

x
j

i

)

=

∫

|x ′−x
j

i |<ǫ

P(x ′ | yi )δ(S0, x ′) dx ′, (26)

where

δ(S0, x ′) =

{

1 if
∣

∣x ′ − x̄
∣

∣ > ǫ,∀x̄ ∈ S0

0 otherwise
(27)

Comensurate with our rough initial estimates of the

probability that each scene is the correct one, we use a

Figure 15. Using a lower-resolution version of the image itself as

a training set. As Fig. 11 shows, super-resolution results depend on

the training set. It is reasonable to try using the image itself at low

resolution to generate examples of high resolution detail. (a) We used

images of all 90 degree rotations and transpositions of the uncropped

version of Fig. 13(a), resulting in a training set of 72,200 image/scene

pairs. Starting from Fig. 13(a), we used VISTA to zoom up two oc-

taves, giving (b), which compares will with Markov network zooms

using other training sets, and with the true high resolution image,

Fig. 13(f). We used the patch overlap method to compute the com-

patibilities for belief propagation by Eqs. (8) and (7).

simple approximate criterion to select the best scene

candidate to add to S0. Before any belief propaga-

tion, our only estimate of P(x
j

i | yi ) is the compatibility

function, c8(x
j

i , yi ) (c is a normalization constant). We

divide our estimated probability of each scene patch,

c8(x
j

i , yi ), by the number of selected scene patches

within a distance ǫ of this candidate x
j

i . Thus, we ap-

proximate Eq. (26) by

∫

|x ′−x
j

i |<ǫ

P(x ′ | yi )δ(S0, x ′) dx′ ≈
c8

(

x
j

i , yi

)

N
(

x
j

i , S0

)
, (28)

where N (x∗
i , S0) is the number of scene candidates x̄ in

S0 such that |x̄ −x
j

i | < ǫ. Then the best scene candidate

to add to the set S0 is

x∗
i = max

j

8
(

x
j

i , yi

)

N
(

x
j

i , S0

)
, (29)
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Figure 16. Repeated zooms of a 50 × 50 pixel resolution texture image (a), in 3 different ways. (b) 400% zoom and (e) 1600% zooms, by

pixel replication. (c) and (f) by cubic spline interpolation in Adobe Photoshop. (d) and (g) by the VISTA markov network belief propagation

approach, using the “generic” training set depicted in Fig. 12 and the patch-overlap method of computing the compatibility matrices between

nodes. The high resolution details added by the algorithm in (d) and (g), while almost certainly not veridical, are visually plausible.

Figure 17. The problem of distinguishing shading from paint. The

two images at the left (from Adelson, 1995) are very similar, yet give

very different perceptual interpretations. Adding to the difficulty of

the problem, each image can, in principle, have multiple different

feasible interpretations, shown in the middle and right.

This procedure produces a diverse set of scene

patches which are all reasonably good explanations of

the observed image patch. Figure 20(a) shows a set

of scene candidates selected only based on the dis-

tance of their rendered images from the observed im-

age patch. Note there are many similar scene patches.

Figure 20(b) shows the set selected using the selection

criterion described above. This collection includes a

more diverse set of scene explanations, yet each still

describes the input image relatively well.

4.2. Compatibility Functions

For this problem, we used the patch overlap method

to compute the compatibility functions, 9 and 8. In
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Figure 18. Examples from training set for shading and reflectance

disambiguation. Ellipsoids of random orientation, size, and ampli-

tude were added to bitmapped images. These bitmaps were treated

either as reflectance images (a and c) or as range maps (b and d), and

were used to generate a total of 40 rendered images, combined with

the shape and reflectance explanations which generated them.

Figure 19. The input images, (a) and (d), are broken into patches at

two different spatial scales, (b) and (e), and (c) and (f). In the Markov

network, each image patch is connected with a node describing the

underlying scene variables. Scene nodes connect to their neighbors

in both space and in scale.

computing the distance between the pixels of two

scenes, we scaled the reflectance distances by 0.5 rel-

ative to the shape differences, in order to put them on

a comensurate scale relative to their amplitude ranges.

To obtain robustness to outliers, we used an L1-norm

(instead of the L2-norm) for distance measurements

for both images and scenes. Figure 21 shows a typical

compatibility matrix.

To compute the compatibilities between neighbor-

ing patches at different scales, we first interpolated the

lower-resolution patch by a factor of 2 in each dimen-

sion so that it had the same sampling rate as the high

resolution patch. Letting d l
jk be the pixels of the lth

candidate in the high resolution patch k, and dm
kj be

the pixels of the mth candidate in the interpolated low-

resolution patch j , we take as the compatibility,

9
(

x l
k, xm

j

)

= exp−|d l
jk−dm

kj |
2/2σ 2

s , (30)

where we scale σs to give the same per pixel variance

as for the compatibility function between patches at

the same scale. The compatibility function 9(x l
k, xm

j )

is different between each pair of nodes k and j , and is

indexed by the scene candidate indices at each node,

l and m.

A reflectance explanation is feasible for any image,

yet we want to allow for a shape explanation, when ap-

propriate. So we add a prior penalty term to 8(xk, yk),

penalizing (in the log domain) by the L1-norm dis-

tance of the reflectance from a flat reflectance image.

This discourages every image from being explained as

reflectance variations on a flat surface.

Having defined the training set (Fig. 18), the network

nodes and connections (Fig. 19), the scene candidates

(Fig. 20) and the compatibility functions (Fig. 21), we

can use the Markov network to infer the underlying

scene for a new input image. Figures 22 and 23 show

Bayesian belief propagation iterations for the bump

and crescent test images of Fig. 17. As expected, the

Markov network gives similar initial interpretations for

the two images, since on a local scale they are spatially

offset versions of each other nearly everywhere. The

belief propagation arrives at different most-probable

scenes, converging to a shape explanation for the bump

image, and converging to a reflectance explanation for

the crescent image, finding no good shape to explain it.

In our training samples, there were few non-generic

samples, by which we mean ones with significant shape

structure made invisible by coincidental alignment with

the assumed light direction. (There are a few, however,

note Fig. 23). Were such samples more prevalant, as

they can be in a much larger training set, we would

want to add a term penalizing those non-generic in-

terpretations, as described in Freeman (1994), in order

to penalize shape interpretations such as Fig. 17, bot-

tom right.
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Figure 20. Selection of candidate scenes, without (a) and with (b) the diversity criterion described in the text. A diverse set of candidate

explanations leads to better image interpretations.

Figure 21. Compatibility function between two nodes (node [3,

4], layer 1 to node [2, 4], layer 1). The reflectance and shape scene

candidates at node [3, 4], shown next to the rows, identify each

row. The scene candidates for node [2, 4] identify each column. The

compatbility matrix value is depicted by the brightness of each square

at each row and column intersection.

Figure 24 shows the VISTA approach applied to sev-

eral other images. The left images of b, d, f, and h show

that our training data doesn’t fit these images very well.

However, the reconstructed scenes are of the appropri-

ate type (reflectance or shading) in each case.

5. Motion Estimation

Finally, we apply VISTA to the problem of motion esti-

mation. The scene data to be estimated are the projected

velocities of moving objects. The image data are two

successive image frames. Because we felt long-range

interactions were important, we built Gaussian pyra-

mids (e.g., Jahne, 1991) of both image and scene data,

connecting patches to nearest neighbors in both scale

and position.

Luettgen et al. (1994) applied a related message-

passing scheme in a multi-resolution quad-tree network

to estimate motion, using Gaussian probabilities. While

the network did not contain loops, the authors observed

artifacts along quad-tree boundaries, which were arti-

ficial statistical boundaries of the model.

For the motion estimation problem, to accurately

match the two frames of input images at a patch, the

training data needs to contain essentially all possible

local image patches cross all possible image motions,

which can be a prohibitively large set. In other work

(Freeman, et al., 2000), we have applied the belief prop-

agation method to estimate the motion of real images,

but used a brightness constancy assumption to generate

candidate scene interpretations for each image patch.

Here, we enumerate all possible observed input images,

but we restrict ourselves to a synthetic world of mov-

ing constant intensity blobs, of random intensities and

shapes, in order to use the same learning machinery for

this problem as we did for the previous two.
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Figure 22. Iterations of the belief propagation for shading/

reflectance determination for bump image. The left-most column

shows the image rendered from each of the selected candidate scenes.

Since each scene candidate was selected to explain the observed im-

age, the left column stays nearly constant over the different choices

for scene explanations. After 5 or 6 iterations, the scene estimate

makes only small changes (compare with iteration 40).

Figure 23. Initial iterations and final solution for crescent problem.

The reconstructed shape has a few samples with non-generic shapes

relative to the assumed lighting direction, yielding shape structures

invisible to the rendered image. The initial scene guess, based on lo-

cal information alone, is similar to that for the bump image of Fig. 22,

but after several iterations of belief propagation, the reflectance

explanation becomes more probable.
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Figure 24. Several images from a database (Freeman and Viola, 1998) of images labelled by naive observers as being caused by shading effects

(a, c) or reflectance effects (e, g). The algorithm interpretation agrees with the appearance, and labelling by the subjects. The rendered images of

the scene interpretations are not especially faithful to the input images, showing that the training data, depicted in Fig. 18, is not a good match

for these images. However, in each case, the scene interpretation is generally correct.

We wrote a tree-structured vector quantizer, to code

4 by 4 pixel by 2 frame blocks of image data for each

pyramid level into one of 300 codes for each level, and

likewise for scene patches.

During training, we presented approximately

200,000 examples of irregularly shaped moving blobs

of a contrast with the background randomized to one

of 4 values. For this vector quantized representation,

we used co-occurance histograms to measure the joint

probabilities of neighboring scene vectors and of im-

age/scene pairs. From those joint probabilities, we

calculated the conditional probabilities used in the

message passing and belief update rules of Eqs. (21)

and (20), see Freeman and Pasztor (1999).

Figure 27 shows six iterations of the inference algo-

rithm as it converges to a good estimate for the underly-

ing scene velocities. For this problem with this training

data, the machinery leads to figure/ground segmen-

tation, aperture problem constraint propagation, and

filling-in (see caption). The resulting inferred velocities

are correct within the accuracy of the vector quantized

representation.

6. Discussion

A limitation of the VISTA approach is that one must

find a set of candidate scene patches for any given in-

put image patch. In the implementations of this pa-

per (Freeman, et al., 2000), we relied on a training set

which enumerated a coarse sampling of all possible

input patch values.

We illustrated two approaches that allow this enu-

meration to be successful. One is to allow only a re-

stricted class of input images. The moving blobs were

such a restricted visual world. The shading/reflectance

images were also restricted, in that they did not in-

clude occluding edges and other features. The second
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Figure 25. Schematic illustration of multi-scale representation used

for motion analysis problem. The image data is presented to the

Markov network at multiple resolutions. Each scene node (repre-

senting a patch of velocity data at some resolution and position)

connects with its neighbors both in space and across scale. Each

scene node also has connections (not shown) with image data at the

corresponding position and scale.

Figure 26. Motion estimation problem. First of two frames of image data (in gaussian pyramid), and corresponding frames of velocity data.

The left side shows just one of two image frames. The right side shows (red, darker) motion vectors from the second time frame obscuring (blue,

lighter) motion vectors from the first. The scene representation contains both frames. Each large grid square is one node of the Markov network.

Figure 27. The most probable scene code for Fig. 26(b) at first 6 iterations of Bayesian belief propagation. (a) Note initial motion estimates

occur only at edges. Due to the “aperture problem”, initial estimates do not agree. (b) Filling-in of motion estimate occurs. Cues for figure/ground

determination may include edge curvature, and information from lower resolution levels. Both are included implicitly in the learned probabilities.

(c) Figure/ground still undetermined in this region of low edge curvature. (d) Velocities have filled-in, but do not yet all agree. (e) Velocities

have filled-in, and agree with each other and with the correct velocity direction, shown in Fig. 26.

approach is to pre-process the input images to remove

extraneous complexity. This was the approach we used

for the super-resolution problem. The image patches

were both band-pass filtered and contrast normalized,

which allowed adequate fitting of the natural images

with reasonably sized training sets.

7. Summary

We described an approach we call VISTA—Vision by

Image/Scene TrAining. One specifies prior probabili-

ties on scenes by generating typical examples, creating

a synthetic world of scenes and rendered images. We

break the images and scenes into a Markov network,

and learn the parameters of the network from the train-

ing data. To find the best scene explanation given new
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Figure 28. Comparison of algorithm behaviors across problems. For the motion estimation problem, the belief propagation algorithm properly

learns to “fill-in” motion information, propagating perpendicularly to the image contour. For the super-resolution problem (example image from

Freeman and Pasztor, 1999) propagation can occur along the direction of an image contour, as a hypothesized image contour is extended along

its direction (see horizontal line at left, extending to the right). This different behavior occurs using the same probabilistic machinery for the two

different problems.

image data, we apply belief propagation in the Markov

network even though it has loops, an approach sup-

ported by experimental and theoretical studies.

We used very similar machinery for the three

problems we discussed. The training data for each

particular vision problem yielded different algorithm

behavior. Figure 28 shows a comparison of the

information propagation between motion estimation

and super-resolution. For the motion problem, filling-

in propagated interpretations perpendicularly to image

contours; for the super-resolution problem, the infor-

mation propagated along the center contour of the im-

age shown. In each case, the propagation was appro-

priate to the problem at hand.

The intuitions of this paper—propagate local es-

timates to find a best, global solution—have a long

tradition in computational vision and have been imple-

mented in many ways (Barrow and Tenenbaum, 1981;

Rosenfeld et al., 1976; Horn, 1986; Poggio et al., 1985).

The power of the VISTA approach lies in the large

training database, allowing rich prior probabilities, the

selection of scene candidates, which focuses the com-

putation on scenes that render to the image, and the

Bayesian belief propagation, which allows efficient in-

ference.

Applied to super-resolution, VISTA gives results that

we believe are the state of the art. Applied to shape-

from-shading the algorithm shows an ability to distin-

guish shading from paint for some simple images. Ap-

plied to motion estimation, the same method resolves

the aperture problem and appropriately fills-in motion

over a figure. The technique shows the benefits of ap-

plying machine learning methods and large databases

to problems of visual interpretation.

Appendix A: Filters Used for Super-Resolution

A.1. Pre-Filter Before Subsampling, to Create

Training Data

0.25 0.5 0.25

applied separably in each dimension.

A.2. Contrast Normalization

Below are the values of the upper-left 7×7 quadrant of

the 15 × 15 filter used in contrast normalization. The

square of the mid-band image is blurred by this low-

pass filter. After taking the square root, a small constant,

0.01, is added to avoid division by zero later. During

contrast normalization, the mid- and high-frequency

bands are divided by this blurred energy image.

0 0.0000 0.0004 0.0012 0.0024 0.0031 0.0032

0.0000 0.0004 0.0015 0.0036 0.0057 0.0068 0.0071

0.0004 0.0015 0.0037 0.0065 0.0086 0.0095 0.0097

0.0012 0.0036 0.0065 0.0088 0.0099 0.0103 0.0103

0.0024 0.0057 0.0086 0.0099 0.0103 0.0103 0.0103

0.0031 0.0068 0.0095 0.0103 0.0103 0.0103 0.0103

0.0032 0.0071 0.0097 0.0103 0.0103 0.0103 0.0103

A.3. Mid-Band Filter

We do all the processing at the sampling rate of the

high resolution band pixels to be estimated. We first

double the pixel resolution in each dimension, bilin-

early interpolating between samples. This is effectively

a low-pass filter.
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Then we remove the low-frequencies from the in-

terpolated image, taking advantage of the assumption

of Eq. (24), that the lowest image frequencies do not

help predict the highest image frequencies, given the

mid-band frequencies.

This low-pass filter, L , is applied in the frequency

domain. It is rotationally symmetric, with a value in

radial spatial frequency, r

L(r) =
1 − exp(−r2/0.02)

1 + exp(−(r − 0.25)/0.075)
, (31)

where r ranges from 0 to π
2

at the largest distance from

the origin in the baseband.
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Note

1. However, a nice Photoshop plug-in which uses an undisclosed

technique for super-resolution, perhaps fractal-based, is available

from http://www.altamira-group.com/html/buyit/order.html.
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