
Learning Macro-Actions for Arbitrary Planners and Domains

M.A. Hakim Newton and John Levine and Maria Fox and Derek Long
Computer and Information Sciences

University of Strathclyde
Glasgow, United Kingdom

e-mail: {newton, johnl, maria, derek}@cis.strath.ac.uk

Abstract

Many complex domains and even larger problems in simple
domains remain challenging in spite of the recent progress
in planning. Besides developing and improving planning
technologies, re-engineering a domain by utilising acquired
knowledge opens up a potential avenue for further research.
Moreover, macro-actions, when added to the domain as addi-
tional actions, provide a promising means by which to con-
vey such knowledge. A macro-action, or macro in short, is
a group of actions selected for application as a single choice.
Most existing work on macros exploits properties explicitly
specific to the planners or the domains. However, such prop-
erties are not likely to be common with arbitrary planners
or domains. Therefore, a macro learning method that does
not exploit any structural knowledge about planners or do-
mains explicitly is of immense interest. This paper presents
an offline macro learning method that works with arbitrarily
chosen planners and domains. Given a planner, a domain, and
a number of example problems, the learning method gener-
ates macros from plans of some of the given problems under
the guidance of a genetic algorithm. It represents macros like
regular actions, evaluates them individually by solving the re-
maining given problems, and suggests individual macros that
are to be added to the domain permanently. Genetic algo-
rithms are automatic learning methods that can capture inher-
ent features of a system using no explicit knowledge about
it. Our method thus does not strive to discover or utilise any
structural properties specific to a planner or a domain.

Introduction
Planning has achieved significant progress in recent years
from planning competitions. However, the focus of planning
research remains mostly on developing and improving plan-
ning technologies. Diverse planning architectures are being
put forward; structural knowledge about search algorithms
or problem instances are being incorporated into planners;
even other technologies (e.g. Satisfiability, Model Checking
etc.) are being translated into planning. But the impact of
problem formulation on its solution process remains over-
looked. Re-engineering a domain by utilising knowledge
acquired for a planner paves the way for further research
in this direction. Macro-actions, when represented as addi-
tional actions, are one relatively convenient way to achieve
such domain enhancement.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A macro-action, or macro in short, is a group of actions
selected for application at one time like a single action.
Macros could represent high level tasks comprising low
level details. From a broader perspective, macros are like
subroutines or procedures in the programming paradigm.
However, macros are a promising means by which signifi-
cant knowledge could be conveyed. Combining several steps
in the state space, macros provide extended visibility of the
search space to the planner. Carefully chosen macros could
help find nodes that are better than the current nodes espe-
cially when the goodness of the immediate search neigh-
bourhood cannot be measured appropriately. Thus, macros
could capture local search in the troublesome regions of the
search space and encapsulate significant experience of the
planner. Consequently, a goal could be reached quickly and
problems that are unsolvable1 could become solvable.

Contribution

Most existing macro learning methods are more focused and
specialised to exploiting particular planner or domain prop-
erties. For example, Macro Problem Solver (MPS) (Korf
1985) learns macros for a particular goal in domains that ex-
hibit operator decomposability; MARVIN (Coles & Smith
2004) learns macros that help a forward chaining heuristic
based planner escape plateaus in its heuristic profile (for
other examples, see the section discussing related work).
However, such properties are not likely to be common with
a wider range of planners or domains. Therefore, a macro
learning method that does not exploit any explicitly specific
structural knowledge about planners or domains remains un-
explored. This paper presents an offline method that learns
macros genetically from plans for arbitrarily chosen plan-
ners and domains. The macros are generated from plans
of smaller problems2 and evaluated against other larger but
solvable problems. This is to show that macros learnt from
smaller problems can reliably be applied in larger problems.
The generality aspects of our method, however, are due to
the use of a genetic algorithm as our learning technique and

1By solvability we mean, using the original domain, whether
the planner can solve the problem within given resource (e.g. time,
memory, etc.) limits. Whether the goal of a problem can be attained
in a given context is discussed under the term reachability.

2By problem size or difficulty level we mean, the time required
by the given planner to solve the problem with the original domain.

256

plans as the macro generation source. On one hand, genetic
algorithms are automatic learning methods that can capture
inherent features of a system (e.g. what is good or bad of
it) using no explicit knowledge about it. Plans, on the other
hand, invariably reflect successful choices of actions by the
planner to cross the problem state spaces. Also, plans could
inherently bear the characteristics of the planner or the do-
main, especially that led to the solutions. Our method thus
does not discover or utilise any knowledge explicitly specific
to a planner or a domain.

Given a planner, a domain, and a number of example
problems, our method learns macros from plans under guid-
ance from a genetic algorithm. It then suggests individual
macros that are to be added permanently to the domain as
additional actions. For the sake of convenience, macros are
represented both as sequences of constituent actions and as
resultant actions built up by regression of the actions in the
sequences. Macros are lifted randomly from plans of the
smaller example problems to seed the population. To ex-
plore only the macros occurring in plans, genetic operators
are restricted to extending a macro by the preceding or the
succeeding action in the plan, shrinking a macro by deletion
of an action from either end, splitting a macro into two, and
lifting a macro from plans. The ranking method is based on
a weighted average of the time differences while solving a
different set of more difficult but solvable problems (the re-
maining examples) with the macro augmented domains and
the original domain. After the learning is accomplished, yet
another set of more difficult problems (which might include
unsolvable instances) are used to demonstrate the perfor-
mance of the selected individual macros. We have achieved
convincing results with several planners and domains.

The rest of the paper is organised as follows: the next two
sections discuss the motivations behind this work and related
work, followed by another section that describes a genetic
approach of learning macros from plans; the fourth section
onward presents our experimental results and analyses; the
last section discusses our conclusion and future work.

Motivations

Conceptually a system achieves better performance if it can
exploit its previous experiences. Our highest level objective
is to learn experiences of a system in certain contexts and to
provide them somehow to the system. Also, the knowledge
acquired from simpler situations should reliably be applica-
ble to more complex situations. Moreover, we would like to
achieve generality of our learning method over the systems
for which it learns, over the knowledge it acquires for them,
and over the way knowledge is conveyed.

Learning from Examples From the learning perspective, it
is very important that knowledge be acquired from simpler
situations, reinforced in complex but manageable situations,
and applied in yet more complex and even unmanageable
situations. The success of the first two activities depends on
the achievement of performance and manageability in the
last activity. Macros are, therefore, generated from plans of
smaller problems and evaluated against other larger but solv-
able problems. To demonstrate the performance of the sug-

gested macros, yet larger problems are used, which might
include unsolvable instances.

Learning in Planning From previous research, it has be-
come obvious that planning in any realistic domain requires
much knowledge. Systems that exploit particular domain
or planner aspects have demonstrated success. But they are
conditional in the sense that they work only if certain prop-
erties hold for the planner or the domain. Our motivation
is to develop a method that works unconditionally meaning
irrespective of any particular characteristics exhibited by the
planner or the domain.

Macros as Knowledge Conveyors The knowledge acquired
from a particular context can be incorporated into the plan-
ner or encoded into the domain. The first approach taken by
most existing work needs extension of the planner. The sec-
ond approach however does not need that, if macro-actions
are used and represented like normal actions. When macros
are added into a domain as additional actions, the reachabil-
ity of a problem is not affected. But they cause more pre-
processing time and incur an extra overhead for the planners
adding more branches in the search tree. However, the latter
problem is minimised due to the use of a technique called
helpful action pruning (Hoffmann & Nebel 2001) by many
recent planners. Within syntactical and semantical limits of
the Planning Domain Definition Language (PDDL), knowl-
edge modelled as obligations (i.e. control rules) is not sup-
ported and any knowledge can be conveyed only by addi-
tional choices (i.e. actions). Macro-actions in the form of
normal actions are thus convenient to achieve domain en-
hancement.

Macros from Plans Plans invariably reflect the successful
choices of actions to cross the problem state space and thus
could bear the characteristics of the planner, the domain or
the problem inherently. For example, unexplainable random
action sequences in the plans could indicate confused states
of the planner while it is trying to escape troublesome re-
gions; a repeating subsequence of actions could indicate the
presence of structural repetitions in the domain or in the
problem. Plans could, therefore, be used as a potentially
useful source for macro generation. An appropriate search
tool could analyse plans to produce macros that capture the
choices of the planner on the problem landscapes or encode
any useful domain structures. Our work, therefore, explores
only the macros that occur in plans.

Learning Macros Genetically

Although the macro space is restricted when macros are
learnt only from plans, an exhaustive approach is not good
because macros comprising any number of actions are to be
considered. This work takes guidance from a genetic algo-
rithm while searching the macro space.

A genetic algorithm keeps a population of good individ-
uals, generates a new population from the current one using
a given set of genetic operators. It then replaces inferior
current individuals by superior new individuals (if any) to
get a better current population, which is again used to re-
peat the process until the termination condition is met. In a
particular problem context, an individual is taken for a so-

257

lution (macro in our case); which means genetic algorithms
are an optimisation based multi-point search on the solution
space. Moreover, newly generated individuals are other pos-
sible solutions in the neighbourhood of the currently kept
solutions and a richer collection of operators explore more
possible solutions. The requirements of a genetic algorithm
are a suitable encoding of the individuals, a method to seed
the initial population, definitions of the genetic operators to
generate new individuals from the current population, and a
method to evaluate individuals across the populations. Note
that, by satisfying such requirements, the specific knowl-
edge, we give, is actually generic in planning and by no way
specific to a planner or a domain.

Genetic Algorithms in Planning Genetic algorithms have
produced promising results in learning control knowledge
for domains and some success in generating plans. EvoCK
(Aler, Borrajo, & Isasi 2001) evolved heuristics generated
by HAMLET (Borrajo & Veloso 1997) for PRODIGY4.0
(Veloso et al. 1995) and outperformed both of them. L2Plan
(Levine & Humphreys 2003) evolved control knowledge
or policies that outperformed hand-coded policies. Earlier,
Spector managed to achieve plans for a range of initial and
goal states (Spector 1994), but the problems were very small
in size. SINERGY (Muslea 1998) could only solve prob-
lems with specific initial and goal states. Later, GenPlan in
(Westerberg & Levine 2000) showed that genetic algorithms
can generate plans, but it is somewhat inferior to the state-
of-the-art planners. Genetic algorithms have also been used
to optimise plans (Westerberg & Levine 2001).

Related Work

Macros are not very new in planning research. Therefore, it
is useful to compare our approach with other previous work.

STRIPS (Fikes, Hart, & Nilsson 1972) produces its
macros from all unique subsequences of wholly parame-
terised plans. The number of macros thus grows quickly.
Our method, in contrast, learns and suggests the best indi-
vidual macros for any given planner-domain pair.

REFLECT (Dawson & Siklóssy 1977) generates macros
in a preprocessing stage by analysing possible causal links
between actions in a domain. This approach largely depends
on domain characteristics and ignores how macros would
impact on planners. Also, this approach does not consider
macros that have concurrent actions or that help a particular
planner syntactically. Our work does not consider such strin-
gent restrictions and our macros are tested with the planner
during their evaluation.

MORRIS (Minton 1985) performs exhaustive search on
plans to learn macros for STRIPS from plan fragments
that are frequently used or achieve interactive goals. Our
method, in contrast, uses genetically guided search on the
plan fragments and does not assume any structure being
present in the domain.

Macro Problem Solver (MPS) (Korf 1985) learns a com-
plete set of macros that totally eliminates the search but only
for a particular goal in fixed size problems on domains that
exhibit operator decomposability. MPS needs a different set
of macros when the problem instances scale or goals are

different. Unlike our method, MPS therefore relies on the
presence of specific characteristics in the domains and the
problems.

MACLEARN (Iba 1989) learns macros from action se-
quences that lead the search to reach a peak from another
peak in its heuristic profile. It then uses an automated static
filter based on domain knowledge and a manual dynamic fil-
ter based on usage of macros in plans. Unlike our method,
this approach therefore depends on particular characteristics
of the search algorithm and the domain. However, like our
method, MACLEARN compiles macros into regular actions
and adds them into the domain.

MARVIN (Coles & Smith 2004) generates macros from
the plan of a reduced version of the given problem after
eliminating symmetries. MARVIN also learns macros from
action sequences that lead its FF style search to success-
fully escape plateaus (which is a planner characteristic). Our
method, in contrast, is not aware of any such properties be
present in a planner. In particular, we can learn macros that
eliminate such plateaus from FF’s search space.

Macro-FF (Botea et al. 2005), an extension of FF to incor-
porate macros, uses component level abstraction based on
static facts of a domain to learn macros. It also lifts partial-
order macros from plans based on an analysis of causal links
between succesive actions. However, our work does not
exploit any specific domain characteristics, or a stringent
constraint like causal links between constituent actions. Al-
though both methods evaluate macros by solving problems,
Macro-FF considers improvement in the number of states
explored whereas our method uses time gains. This is be-
cause improvement in states explored does not necessarily
translates into time efficiency as evaluation or exploration of
each state might take more time when macros are used.

Moreover, macros that achieve heuristically identified
subgoals (Hernádvölgyi 2001), show about 44% improve-
ment in the Rubik’s Cube domain. Another approach of
learning macros automatically by discovering abstraction hi-
erarchies and exploiting domain invariants (Armano, Cher-
chi, & Vargiu 2005) caused a slightly negative impact on
the performance. However, both of these methods exploit
domain characteristics.

A Macro Learning Method
Our learning method is described in Figure 1. This is
based on a genetic approach with individuals being taken
as macros. Its implementation issues include representation,
generation, and evaluation of macros along with validation
and pruning techniques to reduce possible wasted effort.

1. Initialise the population and evaluate each individual to assign a numerical rating.

2. Repeat the following steps for a given number of epochs.

(a) Repeat the following steps for a number equal to the population size.

i. Generate an individual using randomly selected operators and operands, and

exit if a new individual is not found in a reasonable number of attempts.

ii. Evaluate the generated individual and assign a numerical rating.

(b) Replace inferior current individuals by superior new individuals and exit if

replacement is not satisfactory.

(c) Exit if generation of a new individual failed.

3. Suggest the best individuals as the output of the algorithm.

Figure 1: A learning method using a genetic approach

258

Macro Representation

Genetic algorithms require individuals to be encoded in a
composite form whereas this work requires macros to be
added as additional actions to the domains. Macros are,
therefore, represented (see Figure 2) both as sequences of
constituent actions and as resultant actions having parame-
ters, preconditions, and effects. Given the sequence of con-
stituent actions, the resultant action of a macro is built us-
ing composition of actions by regression. Genetic operators
are applied on the operand macro’s sequence and from the
output sequence, the resultant macro’s action is built. Had
PDDL supported macros syntactically, the action composi-
tion would not be required and planners could easily execute
a macro sequence.

;;;(:macro

(:action move-pick-move

:parameters (?ra ?rb - room ?b - ball ?g - gripper)

:precondition (and (not (= ?ra ?rb))(at-robby ?ra)(at ?b ?rb)(free ?g))

:effect (and (carry ?b ?g)(not (at ?b ?rb))(not (free ?g))))

;;; (:sequence (move ?ra ?rb)(pick ?b ?rb ?g)(move ?rb ?ra)))

Figure 2: Representation of a macro

Composition of Actions by Regression: This is a bi-
nary, non-commutative and associative operation on actions
where the latter action’s precondition and effect are subject
to the former action’s effect, and both actions’ parameters
are unified (see Figure 3). Not every composition produces
a valid action because the resultant precondition might have
contradictions, the resultant effect might be inconsistent, and
the parameters might face type conflicts while being unified.
This work considers composition of actions only in STRIPS
and FLUENTS subsets of the PDDL.

�Action1Precondition Effect �Action2Precondition Effect

�Macro-ActionPrecondition Effect

�
�

�
�

�
��

��

�
�

���

modification

�
���

�
���

��
both way modification

Param1 Param2 M.Param

?x - ball ?y - room ?y - place ?z - robby ?x - ball ?y - room ?z - robby

?x - room ?y - ball ?y - place ?z - robby type conflict for ?y

Precond1 Effect1 Precond2 Effect2 M.Precond M.Effect

not (p . . .) (p . . .) (p . . .) not (p . . .) true null

(p . . .) not (p . . .) (p . . .) not (p . . .) false invalid

not (p . . .) (p . . .) not (p . . .) (p . . .) false invalid

(p . . .) not (p . . .) not (p . . .) (p . . .) true null

(r . . .)≥1 (r . . .) –= 1 (r . . .)≥2 (r . . .) –= 2 1≤(r . . .)≥3 (r . . .) –= 3

Figure 3: A composition of actions by regression

Precondition under Composition: A literal, appearing in
the latter action’s precondition, might be satisfied or contra-
dicted and a function value might be changed by the former
action’s effect (see Figure 3). Therefore, the resultant pre-
condition will be a conjunct of the former action’s precondi-
tion and the latter action’s modified precondition.

Effect under Composition: The resultant effect will be a
union of the latter action’s modified effect and the former
action’s sub-effects which are not further modified by the
latter action’s effect (see Figure 3).

Parameters under Composition: Parameters of both the
actions are first unified and then union-ed together. Param-
eter unifications can be done by type or by name. The first
option needs knowledge about the multiplicity of any static

or dynamic relationships between objects; which means do-
main and planner characteristics are to be discovered. The
second option (see Figure 3) is suitable for this work if
constituent actions are lifted from plans where multiplic-
ity issue has already been handled. In this case, problem
objects are then replaced by generic variables but domain
constants are left unchanged; which means actions are con-
sidered grounded partially with constants. Variables having
common names are then unified replacing generalised types
by specialised ones; distinct variables however remain unaf-
fected.

Example Problems

The example problems, our method requires, are to be sup-
plied as input. Alternatively, a problem generator can be pro-
vided, which is used to generate the necessary problems ran-
domly. A set of smaller problems called seeding problems
are solved and the plans are used as the macro generation
source. Another set of larger but solvable problems called
ranking problems are used for macro evaluation. Note, in
order for the time gain to be measurable significantly and
precisely on a given computer, the ranking problems can-
not be very small. For this work, the ranking problems are
solvable in 10secs as shown in Figure 7.

Although, for the time being, we use randomly generated
problems, it is worth mentioning here that the selection of
problems normally affects the suitability of a macro in cov-
ering a wider range of problems. Carefully chosen examples
should cover as many aspects of the system as possible.

Macro Generation

Generation of macros require genetic operators to be de-
fined. One motivation of this work is to generate macros
from plans. Besides, our observations suggest subsequences
of a good sequence are also good while sequences contain-
ing bad subsequences are also bad. Genetic operators are
therefore restricted to extending a macro by the preceding or
the succeeding action in the plan, shrinking a macro by dele-
tion of an action from either end, and splitting a macro at a
random point (see Figure 4). Lifting of random sequences
from plans is used as yet another operator which facilitates
diversity of the macro space exploration. To seed the initial
population, sequences of actions are randomly lifted (using
the lift operator) from plans of the seeding problems.

Plan . . . (a . . .)(b . . .)(c . . .)(d . . .)(e . . .)(f . . .)(g . . .) . . . (j . . .)(k . . .)(l . . .)(m . . .) . . .

Macro (b . . .)(c . . .)(d . . .)(e . . .)(f . . .)

Extend (a . . .)(b . . .)(c . . .)(d . . .)(e . . .)(f . . .) (b . . .)(c . . .)(d . . .)(e . . .)(f . . .)(g . . .)

Shrink (c . . .)(d . . .)(e . . .)(f . . .) (b . . .)(c . . .)(d . . .)(e . . .)

Split (b . . .)(c . . .)(d . . .) (e . . .)(f . . .) (b . . .)(c . . .) (d . . .)(e . . .)(f . . .)

Lift (j . . .)(k . . .)(l . . .)

Figure 4: Genetic operators

Macro Evaluation

To evaluate individual macros, a number of different prob-
lems called ranking problems are used. These problems are
larger than the seeding problems, but not too large because
they are attempted to be solved for every macro. For each
macro, an augmented domain is produced adding it as an
additional action to the original domain. For all the rank-
ing problems, the planner is then run both with the original

259

domain and the augmented domain under similar resource
limits. Although a deterministic planner takes the same time
and returns the same plan every time a problem is solved, a
stochastic planner takes varying times and returns different
plans. Assuming the underlying time distributions to be nor-
mal for a stochastic planner, a problem is therefore solved a
number of times and a random variable having parameters
(sample-count ν, mean μ, dispersion δ = σ/

√
ν) is used

to represent the time distribution. Based on relevant fitness
criteria, the augmented domain (and so the macro) is then
given a numerical rating against the original domain.

Fitness Criteria For a good macro, in qualitative terms,
most problems should be solved taking less time in most
cases with its augmented domain. A bad macro, in contrast,
would cause overhead that leads to longer solution times or
even failures in solving problems within given resource lim-
its. A good macro, however, may not have high usage be-
cause there could be an infrequently used but tricky macro
that saves enormous search time. Furthermore, good macros
need not be intuitively natural. For a given macro, we there-
fore require three quantitative measures.

Cover (C) measures the portion of the ranking problems solved
using its augmented domain. Note, all problems are solvable.

Score (S) measures the weighted mean time gain/loss over all the
ranking problems compared to when they are solved using the
original domain. Any gain/loss for a larger problem gets more
weight as our interest is to apply macros in larger problems.

Point(P) measures the portion of the ranking problems solved
with the augmented domain taking less or equal time compared
to when they are solved using the original domain.

Utility Value Reflecting all the three fitness factors together,
the formulae shown in Figure 5 gives a numerical rating
(also called fitness value) to a macro. Among the three fac-
tors, score is more effective in the ranking of good macros
while the other two are to counterbalance any misleadingly
high utility value. The individual factors are calculated in
slightly different ways for deterministic and stochastic plan-
ners. However, Figure 5 shows a unified formula consider-
ing (only for convenience of description) deterministic plan-
ners as a special case of stochastic planners. Notice that,
most calculated values are normalised in [0,1]. The notion
used in computation of sk and s′k will be clear from their

values at certain points (e.g., sk = 1, 1
2 , and 0 for μ′k = 0,

μk, and ∞ respectively). Moreover, its non-linear character-
istic is suitable for a utility function. Note, the utility values
assigned to the macros are not absolute in any sense, rather
relative to the ranking problems and the planner used.

Macro Validation

Macros having unsatisfiable preconditions or inconsistent
effects are detected whenever possible in Step 2(a)i of the
learning method in Figure 1. Unsatisfiable preconditions,
however, cannot be detected completely at this stage (note
that, satisfiability is also a research problem). Besides, in-
consistent effects sometimes arise during the runtime of a
planner. The reason is mostly the mishandling of parameter
binding and object inequality by some planners especially
when more than one parameters have compatible types. For

U = C × S × P C = Σn

k=1ck/n

=− 1
2

if C = 0 S = wΣn

k=1skwk + w′Σn

k=1s′

k
w′

k

=−1 if invalid plans produced P = Σn

k=1pk

Where,

n: Number of ranking problems to be solved.

m: Number of times a ranking problem is to be solved. For a deterministic planner,

m = 1.

tk(νk, μk, δk): Time distribution for problem-k while solving with the original

domain. Note, each problem is solved m times with the original domain i.e.,

νk = m. Moreover, μk > 0. When m = 1, νk = 1 and so δk = 0. If

δk = 0, any terms involving δk are omitted.

t′
k
(ν′

k
, μ′

k
, δ′

k
): Time distribution for problem-k while solving with the augmented

domain. Note, 0 ≤ ν′

k
≤ m. When the problem is not solved (i.e., ν′

k
= 0),

μ′

k
= ∞. When m = 1, ν′

k
= 0 or 1 and so δ′

k
= 0.

t(ν, μ, δ) = Σn

k=1tk: Total time distribution for all the ranking problems while

solving with the original domain. This is a sum of random variables. Therefore,

ν = Σn

k=1νk = mn, μ = Σn

k=1μk , and δ2 = Σn

k=1δ2
k

.

ck = ν′

k
/νk: Probability that problem-k is solved using the augmented domain.

sk = μk/(μk + μ′

k
): The normalised gain/loss in mean while solving problem-k

with the augmented domain.

s′

k
= δk/(δk + δ′

k
): The normalised gain/loss in dispersion while solving problem-

k with the augmented domain. if m = 1, s′

k
is defined to be 0 and omitted as

δk = δ′

k
= 0.

wk = μk/μ: Weight of gain/loss in mean with more emphasis on larger problems

w′

k
= 1/n: Weight of gain/loss in dispersion with equal emphasis on all problems

w = μ/(μ + δ): The overall weight of gain/loss in mean.

w′ = δ/(μ + δ): The overall weight of gain/loss in dispersion.

pk = 1 for gain, 0 for loss, 1
2

otherwise. The Student’s t-test at 5% significance

level on tk and t′
k

determines a gain or a loss. Alternatively, sign(μk − μ′

k
) is

used when m = 1 and/or t-test cannot be used because δs are zero.

Figure 5: A utility function for macro evaluation

example, if both ?x and ?y are bound with the same ob-
ject in (p ?x) and (not (p ?y)), the instantiated ef-
fect becomes inconsistent and causes invalid plans to be
generated. Appropriate not-equalities are, therefore, added
to the precondition whenever parameters having compatible
types represent different objects. Moreover, in many unfa-
miliar cases, planners produce invalid plans due to some un-
known reasons (probably bugs). Plans produced with the
augmented domains are, therefore, validated for such plan-
ners in Step 2(a)ii.

Macro Pruning

Pruning techniques, several comes from existing work, are
used to reduce any effort wasted otherwise to explore poten-
tially inferior macros.

Pruning during generation: The following strategies are
adopted in Step 2(a)i of the learning method in Figure 1:

1. Sequences of actions that have subsequences producing
null effects are not minimal.

2. The more the parameters, the more the unnecessary in-
stantiated operators. This affects the planners which do
operator instantiation in their preprocessing steps.

3. Longer action sequences are more specific to certain ob-
jectives and are less likely to be useful for a wider range
of problems.

4. Similar sequences of actions differing only by parameter-
isation are considered copies of a single sequence.

260

5. Sequences of actions equivalent in partial order are con-
sidered copies of a single sequence.

6. Actions in a macro should have parameters in common
(by name). This ensures cohesiveness of the constituent
actions and also oversees that irrelevant actions are not
part of a macro. A more stringent strategy that consecu-
tive actions in a macro must have a causal link between
them has been considered but finally not used. This is be-
cause there could be an auto correlation between actions
such that execution of them together somehow helps the
planner solve problems faster. The auto correlation could
be inherent in the planner’s architecture or implementa-
tion, or could be in the domain model as well.

Pruning during evaluation: Failure to solve a problem us-
ing the augmented domain within certain limits whereas it is
solvable using the original domain implies the macro causes
much overhead and resource (time, memory, etc.) scarcity
to the planner. Early detection of such inferior macros in
Step 2(a)ii in Figure 1 saves learning time needed otherwise
to solve the remaining problems.

Experiments

To demonstrate that this learning method works for arbitrary
planners, we choose a number of planners (see Figure 6)
from different tracks (i.e. planning styles), but only those
holding the basic characteristics of the tracks. Moreover, to
show the effectiveness of our macros against planning tech-
nologies, most of the planners chosen are the current state-
of-the-art ones in their respective tracks. Similarly, the do-
mains chosen (see Figure 6) are bench mark domains used in
planning research. The problems used to demonstrate per-
formance of the suggested macros are called testing prob-
lems. These are larger than the ranking problems and might
include unsolvable instances. For a suggested macro, the
testing problems are solved using both the original domain
and the augmented domain.

� FD (Fast Downward) is a heuristic based progression planner that uses a multi-valued encoding

and a hierarchical problem decomposition technique to compute its heuristic function.

� FF (Fast Forward) is a forward chaining heuristic based state space planner that uses a relaxed

graphplan algorithm as its heuristic.

� LPG (Local Search for Planning Graphs) is a stochastic planner that uses a heuristic based

efficient local search on action graphs representing partial plans.

� SatPlan transforms a planning problem into SAT-instances, solves them using SAT-solvers, and

the solutions are transformed back to give a plan.

� SGPlan partitions a large planning problem into subproblems, solves them by some other plan-

ner, and the plans are combined to produce a global solution.

� VHPOP (Versatile Heuristic Partial Order Planner) is a partial order causal link planner that

uses various flaw selection strategies as its heuristic.

◦ Blocksworld domain has a robot arm that picks and drops blocks to build stacks on a table.

◦ Ferry domain requires a number of cars to be transported between ports by a ferry. The ferry

can carry only one car at a time.

◦ Gripper domain has a robot with two grippers to carry balls between two rooms.

◦ Satellite domain deals with a number of satellites that can take images of targets in various

modes and transmit data to the base.

◦ NFerry is a numeric version of the Ferry domain described above with additional numeric con-

straints on fuel that is consumed by the ferry while sailing.

◦ NSatellite is a numeric version of the Satellite domain described above with additional numeric

constraints on buffer capacity.

Figure 6: Planners and domains used in this work

Results

Figure 7 describes the typical setup of our experiment. The
parameter values in most cases are chosen intuitively. Fig-
ure 8 summarises the performance of the suggested macros
for the planners. Moreover, Figure 9 optionally gives a
graphical illustration of plan times for some of the macros.

� Number of random problems: Seeding 5, Ranking 20, Testing 50

� Macro size limits: Maximum parameters 8, Maximum sequence length 8

� Operator selection probability: Extend 25%, Shrink 25%, Split 25%, Lift 25%

� Sample count for a stochastic planner to represent the distribution: 5

� Evaluation phase pruning: a macro is pruned out if more than 50% problems or

runs are unsatisfactory

� Number of epochs: 200 Population size: 2× number of actions

� Satisfactory replacement level: at least 1 in every 25 consecutive epochs

� Generation attempts: maximum 999999 for every new macro

� Resource limit: memory 1 gigabyte, time - ranking 10 secs, testing 1800 secs

Figure 7: Experimental setup

• S% problems are solved only with the augmented domain and s% only with the original domain.

• T% problems take less time with the augmented domain and t% with the original domain.

• L% problems have less plan length with the augmented domain and l% with the original domain.

• (P%, p%) is (mean, dispersion) of plan time (T) performance (TOrig − TAug)/TOrig

• (Q%, q%) is (mean, dispersion) of plan length (L) quality (LOrig − LAug)/LOrig

domain-planner-macro +S -s +T -t P ± p +L -l Q ± q

Blocks-FF-1 +36 -0 +60 -4 65 ± 19 +58 -4 20 ± 2

Blocks-FF-2 +26 -4 +40 -16 18 ± 14 +20 -36 -4 ± 2

Blocks-LPG-1 +0 -0 +94 -0 58 ± 2 +92 -0 28 ± 2

Blocks-LPG-2 +0 -0 +74 -0 41 ± 3 +80 -0 19 ± 1

Blocks-SGPlan-1 +6 -0 +72 -12 -19 ± 76 +38 -34 -2 ± 2

Blocks-SGPlan-2 +8 -0 +42 -48 -60 ± 28 +12 -74 -18 ± 2

Blocks-VHPOP-1 +54 -0 +26 -2 79 ± 9 +0 -2 -2 ± 2

Blocks-FD, SatPlan No good macro could be learnt

Ferry-FD-1 +0 -0 +100 -0 93 ± 0 +96 -4 9 ± 0

Ferry-FF-1 +0 -0 +100 -0 92 ± 0 +0 -100 -30 ± 0

Ferry-FF-2 +0 -0 +100 -0 92 ± 0 +0 -100 -30 ± 0

Ferry-LPG-1 +0 -0 +92 -0 92 ± 0 +0 -92 -18 ± 0

Ferry-LPG-2 +0 -0 +92 -0 90 ± 0 +0 -92 -19 ± 0

Ferry-SatPlan-1 +10 -0 +88 -2 94 ± 2 +0 -90 -64 ± 5

Ferry-SatPlan-2 +6 -4 +74 -12 -2 ± 36 +0 -86 -54 ± 1

Ferry-VHPOP-1 +68 -0 +32 -0 100 ± 0 +0 -32 -26 ± 2

Ferry-VHPOP-2 +62 -0 +32 -0 100 ± 0 +0 -4 -1 ± 1

Ferry-SGPlan No good macro could be learnt

Gripper-FD-1 +54 -0 +46 -0 88 ± 1 +0 -46 0 ± 0

Gripper-FD-2 +54 -0 +46 -0 87 ± 1 +0 -46 0 ± 0

Gripper-FF-1 +0 -0 +100 -0 97 ± 0 +0 -100 -31 ± 0

Gripper-FF-2 +0 -0 +100 -0 97 ± 0 +0 -100 -31 ± 0

Gripper-LPG-1 +0 -0 +100 -0 92 ± 0 +0 -100 -23 ± 0

Gripper-LPG-2 +0 -0 +100 -0 90 ± 0 +0 -100 -21 ± 0

Gripper-SatPlan-1 +20 -0 +78 -2 77 ± 4 +0 -80 -47 ± 1

Gripper-VHPOP-1 +36 -0 +64 -0 85 ± 4 +0 -36 -17 ± 3

Gripper-VHPOP-2 +34 -0 +64 -0 99 ± 0 +0 -34 -11 ± 2

Gripper-SGPlan No good macro could be learnt

Satellite-FF-1 +0 -0 +100 -0 96 ± 0 +0 -100 -43 ± 1

Satellite-FF-2 +0 -0 +100 -0 94 ± 0 +0 -100 -43 ± 1

Satellite-VHPOP-1 +12 -0 +22 -6 51 ± 21 +0 -28 -13 ± 2

Satellite-VHPOP-2 +14 -0 +24 -6 47 ± 21 +0 -42 -21 ± 2

Satellite-FD, LPG, SatPlan, SGPlan No good macro could be learnt

NFerry-FF-1 +32 -0 +62 -6 66 ± 6 +0 -68 -85 ± 3

NFerry-FF-2 +12 -42 +22 -4 50 ± 9 +0 -26 -87 ± 4

NFerry-SGPlan-1 +4 -0 +46 -36 33 ± 8 +14 -68 -8 ± 1

NFerry-SGPlan-2 +18 -0 +44 -38 33 ± 10 +0 -82 -36 ± 2

NFerry-LPG No problem could be solved by the planner

NFerry-FD, SatPlan, VHPOP FLUENTS not supported by the planners

NSatellite-FF-1 +58 -0 +42 -0 98 ± 0 +0 -42 -10 ± 1

NSatellite-FF-2 +58 -0 +42 -0 97 ± 0 +4 -38 -9 ± 1

NSatellite-LPG-1 +64 -0 +38 -0 48 ± 3 +0 -18 -11 ± 1

NSatellite-LPG-2 +64 -0 +38 -0 48 ± 3 +2 -16 -10 ± 1

NSatellite-SGPlan-1 +0 -0 +100 -0 39 ± 1 +0 -100 -29 ± 1

NSatellite-SGPlan-2 +0 -0 +100 -0 28 ± 0 +0 -100 -28 ± 1

NSatellite-FD, SatPlan, VHPOP FLUENTS not supported by the planners

Figure 8: Summarised experimental results

261

 1

 10

 100

 1000

 0 10 20 30 40

tim
e

(s
ec

)

problems

gripper-fd

original
suggested-1
suggested-2
suggested-3

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40

tim
e

(s
ec

)

problems

satellite-ff

original
suggested-1
suggested-2
suggested-3

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40

tim
e

(s
ec

)

problems

nsatellite-lpg

original
suggested-1
suggested-2
suggested-3

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40

tim
e

(s
ec

)

problems

ferry-satplan

original
suggested-1
suggested-2
suggested-3

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40

tim
e

(s
ec

)

problems

nferry-sgplan

original
suggested-1
suggested-2
suggested-3

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40

tim
e

(s
ec

)

problems

blocks-vhpop

original
suggested-1

Figure 9: Time performance of some suggested macros against original domains

Analysis

For a comprehensive analysis of this work, the qualitative
achievements are presented as hypotheses with proper justi-
fication made by the results.

Hypothesis 1 Our utility function is qualitatively consistent
across given problems, domains and planners.

Justification: As mentioned earlier, the exact utility values
assigned to the macros are relative to the example problems
and the planner used. Therefore, it is necessary to show
the qualitative consistency of our utility function. For this,
we computed utility values of the suggested macros against
the testing problems. For most macros in most domains,
these values are found to be consistent and positively cor-
related with the values assigned against ranking problems
during evaluation. Furthermore, the suggested macros, in
many cases, (see Figure 8) achieve significant improvement
with the testing problems. This implies macros learnt by our
method from the smaller problems are equally useful for the
larger problems.

Hypothesis 2 Our method can learn macros from plans ef-
fectively without exploiting any knowledge explicitly specific
to planners, domains, problems, or plans.

Justification: Our method does not discover or utilise any
explicitly specific properties from either of planners, do-
mains, problems or plans. Moreover, it only explores the
macros that occur in plans. Figure 8 shows that, we can
learn useful macros for most planner-domain pairs.

Hypothesis 3 Macros learnt by our method can lead to sig-
nificant improvement of planners’ performance on domains.

Justification: In spite of much work on macros, it is not
known whether one macro learning technique can effec-
tively be used for arbitrary planners and domains. This work

shows (see Figure 8), using our macros not only can prob-
lems be solved much faster with different planners on dif-
ferent domains but also many unsolvable problems can be
solved.

Hypothesis 4 The macros learnt by our method can capture
various features of domains and planners.

Justification: In some domains, the best macros learnt for
different planners are found to be overlapping. This suggests
such macros might be domain specific or in other words
planner independent. Besides, using our macros, FF sud-
denly finds its search space much more friendly (i.e. rel-
atively less plateaus) and LPG does not require so many
restarts in its search. Also, in the problems that are not
easy to partition, SGPlan solves them faster with our macros.
However, the opposite happens with easily decomposable
problems as seen with Blocks and NFerry domains. We
do not know as yet how other planners get help from our
macros. Nevertheless, our method thus learns macros that
capture various characteristics of domains and planners.

Other observations and comments about our experiments
are as follows:

1. Our macros often lead to longer plans as observed with
most domains and planners.

2. The evaluation of a macro takes much more time than
the generation of a new macro even though many prun-
ing techniques are used in both phases. To speed up
the learning process, the intuitively chosen parameters
(e.g. population-size, epoch-count, replacement-level,
operator-probabilities, etc.) are to be tuned. However, in
essence, this work is to show that such a generalised ap-
proach works successfully; its performance is, therefore,
not measured in terms of its learning time (see Figure 10
for a brief illustration).

262

Time(Hours) fd ff lpg satplan sgplan vhpop

blocks 14.5 19.5 58.7 3.1 9.1 0.5

ferry 17.2 15.4 32.2 1.0 19.1 0.3

gripper 4.1 3.1 21.2 1.1 3.0 0.7

satellite 31.2 24.3 152.4 0.8 13.7 1.2

nferry 23.0 35.6

nsatellite 38.4 30.0 27.0

Figure 10: Macro learning time for planners on domains

3. Our work could be extended to temporal domains had
PDDL been closed under composition with durative ac-
tions or did it support discrete effects at any time over
the duration of a durative-action. Nevertheless, composi-
tion of actions is not, in essence, a hard requirement of
this work; had PDDL supported macros, the actions of a
macro could be executed easily.

Conclusion

This paper presents an automated macro learning method
that requires no structural knowledge about the domains or
the planners. Despite recent significant progress in planning,
many complex domains and larger problems in simple do-
mains remain challenging. However, the focus of planning
research remains mostly on developing and improving plan-
ning technologies. Also, the impact of problem formulation
on its solution process remains overlooked. Macros pro-
vide a promising avenue in planning research to achieve fur-
ther improvement through domain enhancement. Macros,
when added to the domain like normal actions, can con-
vey significant knowledge to the planner. Experiences of
the planner on the problem landscape can be encoded as
macros while re-engineering a domain. Most existing work
on macros somehow need knowledge specific to the plan-
ner or the domain. A macro learning method that does not
need such knowledge is, therefore, important. Our method
learns macros effectively from plans for arbitrarily chosen
planners and domains using a genetic algorithm. Genetic al-
gorithms are automatic learning methods that can discover
inherent characteristics of a system using no explicit knowl-
edge about it. We have achieved a convincing, and in many
cases dramatic, improvement with a number of planners and
several domains. Also, we have demonstrated successfully
by our results that macros learnt from smaller problems can
reliably be applied in larger problems. Further experiments
to learn macros for more complex domains are underway.
As we consider only individual macros for the time being,
we hope to extend our approach to learning a set of macros
either incrementally or using a genetic approach on macro-
sets. In the latter case, the challenge is to explore both macro
space and macro-set space together. It would be useful to
find what problems are suitable for learning as we use ran-
domly generated problems for the time-being. However,
this is a common issue for any such machine learning ap-
proaches. Although one motivation behind this work is to
capture a planner’s experiences on a domain landscape, we
are also motivated by the desire to investigate how evolution
(a genetic algorithm with richer collection of operators) of
such knowledge further improves its performance.

Acknowledgement

This research is supported by the Commonwealth Scholar-
ship Commission in the United Kingdom.

References
Aler, R.; Borrajo, D.; and Isasi, P. 2001. Learning to solve prob-
lems efficiently by means of genetic programming. Evolutionary
Computation 9(4):387–420.

Armano, G.; Cherchi, G.; and Vargiu, E. 2005. A system for
generating macro-operators from static domain analysis. In Pro-
ceeding (453) Artificial Intelligence and Applications.

Borrajo, D., and Veloso, M. 1997. Lazy incremental learning
of control knowledge for efficiently obtaining quality plans. AI
Review 11(1–5):371–405.

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J. 2005.
Macro-FF: Improving AI planning with automatically learned
macro-operators. Journal of Artificial Intelligence Research
24:581–621.

Coles, A., and Smith, A. 2004. MARVIN: Macro-actions from
reduced versions of the instance. In IPC4 Booklet. ICAPS.

Dawson, C., and Siklóssy, L. 1977. The role of preprocessing
in problem solving systems. In Proceedings of the International
Joint Conference on Artificial Intelligence, 465–471.

Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning and ex-
ecuting generalized robot plans. Artificial Intelligence 3(4):251–
288.

Hernádvölgyi, I. 2001. Searching for macro operators with auto-
matically generated heuristics. In Proceedings of the 14th Bien-
nial Conference of the Canadian Society on Computational Stud-
ies of Intelligence: Advances in Artificial Intelligence, 194–203.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.

Iba, G. A. 1989. A heuristic approach to the discovery of macro-
operators. Machine Learning 3:285–317.

Korf, R. E. 1985. Macro-operators: A weak method for learning.
Artificial Intelligence 26:35–77.

Levine, J., and Humphreys, D. 2003. Learning action strate-
gies for planning domains using genetic programming. In Appli-
cations of Evolutionary Computing, EvoWorkshops2003, volume
2611, 684–695.

Minton, S. 1985. Selectively generalising plans for problem-
solving. In Proceedings of the International Joint Conference on
Artificial Intelligence.

Muslea, I. 1998. A general purpose AI planning system based on
the genetic programming paradigm. In Proceedings of the World
Automation Congress.

Spector, L. 1994. Genetic programming and AI planning system.
In Proceedings of the Twelfth National Conference on Artificial
Intelligence, AAAI-94, 1329–1334.

Veloso, M.; Carbonell, J.; Perez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning: The
PRODIGY architecture. Journal of Experimental and Theoreti-
cal Artificial Intelligence 7:81–120.

Westerberg, C. H., and Levine, J. 2000. GenPlan: Combining
genetic programming and planning. In 19th Workshop of the UK
Planning and Scheduling Special Interest Group (PLANSIG).

Westerberg, C. H., and Levine, J. 2001. Optimising plans using
genetic programming. In 6th European Conference on Planning.

263

