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Abstract
Mahalanobis distance metric takes feature weights
and correlation into account in the distance com-
putation, which can improve the performance of
many similarity/dissimilarity based methods, such
as kNN. Most existing distance metric learning
methods obtain metric based on the raw features
and side information but neglect the reliability of
them. Noises or disturbances on instances will
make changes on their relationships, so as to af-
fect the learned metric. In this paper, we claim that
considering disturbance of instances may help the
metric learning approach get a robust metric, and
propose the Distance metRIc learning Facilitated
by disTurbances (DRIFT) approach. In DRIFT, the
noise or the disturbance of each instance is learned.
Therefore, the distance between each pair of (noisy)
instances can be better estimated, which facilitates
side information utilization and metric learning.
Experiments on prediction and visualization clearly
indicate the effectiveness of DRIFT.

1 Introduction
Similarity and dissimilarity are widely used in machine learn-
ing area, such as classification [Bian and Tao, 2011, Luo et al.,
2016], clustering [Xing et al., 2003, Xiang et al., 2008, Law
et al., 2016b] and retrieval [McFee and Lanckriet, 2010]. The
goal of Distance Metric Learning (DML) is to find a better
distance computation which can perform better than the Eu-
clidean one. Given a positive semi-definite matrix M , the
(squared)Mahalanobis distance between two instances xi and
xj can be defined as:

dist2M (xi,xj) = (xi − xj)
⊤M(xi − xj) .

Since it considers the relationship between different types
of features [Lim et al., 2013, Ye et al., 2016b], its advan-
tages have been discovered and validated from various per-
spectives [Kulis, 2012, Bellet et al., 2015].
To train a Mahalanobis distance metric, various types of

side information [Law et al., 2016a] should be collected to
provide a direction for distance relative comparisons. Af-
ter searching a metric decreasing the violation of these con-
straints, similar instances become close to each other while
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dissimilar ones are far away. Although ground-truth side in-
formation leads to a well-learned Mahalanobis metric [Verma
and Branson, 2015, Cao et al., 2016], it is in fact unknown
during the training process. Therefore, side information is
often generated based on reliable raw features from various
sources. For example, random choice [Davis et al., 2007], Eu-
clidean nearest neighbor selection [Weinberger et al., 2006],
and all-pair enumeration [Xing et al., 2003, Mao et al., 2016].
To reduce the uncertainty in side information, [Huang et al.,

2010] and [Wang et al., 2012] try a selection strategy among
all target neighbors. While it is more reasonable to assume
that there are inaccuracies in feature value collection, since
the feature inaccuracies or noises will damage the structure
of neighbors, and consequently affect the reliableness of side
information. From the aspect of this generative process, we
tackle the unreliability in metric learning and propose the Dis-
tance metRIc Facilitated by disTurbances (DRIFT) approach,
using which a robust distance metric is achieved based on the
explicit consideration of instance disturbances.
In DRIFT, all possible variations of disturbances on in-

stances are involved in the expected distance, so as to form
different side information constraints as well as assign rea-
sonable weights on them. Specifically, when a pair of noisy
instances meets the requirement of the provided side infor-
mation, the DRIFT’s learned metric should tolerate perturba-
tions by enlarging the similarity region. As such the robust-
ness of metric will increase and the generalization ability can
be improved. On the contrary, if the side information was
hard to satisfy for the concerned pair, assigning obvious per-
turbations can be risky. Hence, the tolerance level of dis-
turbances on instance pairs reflects the reliableness of side
information to some extent. Moreover, perturbation distribu-
tion modeled noises make DRIFT have the ability to represent
instances distribution quantitatively [Van Der Maaten et al.,
2013], and help reduce the effects of incorrect guidance in
training. Therefore, it is expected that DRIFT can provide a
robust distance metric with better discriminative ability.

DRIFT learns metric and disturbance of instances jointly.
Benefited from metric decomposition, we get a simplified ob-
jective and acceleration variants with sub-problems further
reducing to scalar group optimization. Our empirical inves-
tigations provide visualization effects demonstrating the in-
terpretability of DRIFT. Real-world tasks validate DRIFT’s
superiorities on generalization and robustness, especially in
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the case of unreliable instances/side information.
The rest of this paper starts with discussions about related

methods. Then the DRIFT approach is presented in detail.
The last are experiments and conclusion.

2 Related Work
Mahalanobis distance is widely researched in distance metric
learning. It is originally used in the clustering task [Xing et
al., 2003] considering all pair comparisons. ITML [Davis et
al., 2007] utilizes the randomly chosen pairwise side infor-
mation and information based regularizer. While triplets con-
straints are considered in LMNN [Weinberger et al., 2006] to
form a large margin objective. To find a better description of
side information, a multi-stage strategy is proposed in [Wein-
berger and Saul, 2009, Zhan et al., 2009], where the metric
learned in the previous stage is used to find nearest neigh-
bors in the current one. [Huang et al., 2010] and [Wang et
al., 2012] traverse all target neighbors to find best candidates.
In DRIFT, we propose a new perspective on the refinement
of side information by considering the disturbances over in-
stances. Different metric learning methods and the ways they
use side information can be found in [Bellet et al., 2015].
Perturbations modeling can be regarded as a type of regu-

larization [Wager et al., 2013] to train a robust model [Chen et
al., 2014, Wangni and Chen, 2016] or get better feature repre-
sentations [Van Der Maaten et al., 2013, Chen et al., 2015, Li
et al., 2016]. Qian et al. [2014] first consider noises in met-
ric learning, but only fixed covariance perturbation is used to
get a low rank solution. In DRIFT, we learn the perturbation
distribution to directly model the noises for a robust metric.
The disturbance distribution is also closely related to the

instance distributions, and consequently correlated with the
instance generation mechanism. Different from [Ye et al.,
2016a], where distributions are considered to model the multi-
ple metrics and indirectly infer the metric for unseen instance,
DRIFT explicitly models the distribution related to instances
and side information. Mao et al. [2016] study robust mani-
fold learning. Nevertheless, they focus on the instance distri-
bution towards preserving their Euclidean distances. On the
contrary, DRIFT approach considers the disturbance distribu-
tion directly for better discriminative ability.

3 Learning Distance Metric Considering
Instance Disturbance

The Distance metRIc learning Facilitated by disTur-
bances (DRIFT) approach learns instance disturbances and
distance metric jointly. In this section, we introduce nota-
tions first, then give a description of the distribution perturbed
distance computation. After that, detailed DRIFT formula-
tion and its optimization strategy are presented. Acceleration
strategies are described at last.

3.1 Notations
Given a training set D = {xi, yi}Ni=1, each instance xi ∈ Rd

has a label yi ∈ 1, 2, . . . , C . We focus on the input side
information in the form of T triplets.1 In the t-th triplet

1Learning with perturbed distance in the pairwise form can also
be formulated in a similar way.

{xt
i,x

t
j ,x

t
k}, xt

j is the target neighbor of instance xt
i and

they should be close to each other using learned distance.
While xt

k is the imposter, i.e., a different class instance that
needed to be pushed away. The learned Mahalanobis distance
metric M lies in the set of positive semi-definite matrix S+

d .
∥M∥2F = ⟨M,M⟩ = Tr(M⊤M) is the Frobenius norm of a
matrix. I is the identity matrix. [·]+ is a scalar input function
which only preserves the non-negative part of input value.

We useP to denote the set of valid probability distributions
(nonnegative and sum to one over random variable space).
Denote pi(ϵ) ∈ P as the perturbation distribution for in-
stance xi and p = {pi(ϵ)}Ni=1 is the set of all these distri-
butions. For random variable ϵ ∈ Rd, the KL-divergence
can produce a non-negative inconsistency measurement be-
tween two distributions p(ϵ) and p0(ϵ), which is defined as
KL(p∥p0) =

∫
p(ϵ) log p(ϵ)

p0(ϵ)
dϵ.

3.2 Instance Disturbances in Metric Learning
Instance disturbance affects its neighborhood structures, in-
ducing unreliability in training, which can be used for facil-
itating the utilization of side information. Taking perturba-
tions into account in the distance computation, variants of in-
stances should be used to explain the guidance of side infor-
mation. In DRIFT, We focus on the expectedMahalanobis dis-
tance with metricM between two instances xi and xj , which
is equivalent to covering all the instances x̂i and x̂j sampled
from instance distribution p(xi) and p(xj), respectively [Li
et al., 2016, Mao et al., 2016]:

Ex̂i,x̂j [dist
2
M (x̂i, x̂j)] = Ex̂i,x̂j

[
(x̂i − x̂j)

⊤M(x̂i − x̂j)
]

=

∫∫
x̂⊤
i M x̂i + x̂⊤

j M x̂j − 2x̂⊤
j M x̂i p(x̂i)p(x̂j)dx̂idx̂j

= Ex̂i [x̂
⊤
i M x̂i] + Ex̂j [x̂

⊤
j M x̂j ]− 2Ex̂i [x̂i]

⊤MEx̂j [x̂j ] . (1)

Last step in Eq. 1 comes from the independent assumption
between instances xi and xj . Since it is a general assump-
tion that the disturbances on instances are centralized, i.e.,
Ex̂i

[x̂i] = xi, the above expected distance can be further
transformed into:

Ex̂i,x̂j [dist
2
M (x̂i, x̂j)] = dist2M (xi,xj)+⟨M,Cov[xi]+Cov[xj ]⟩ .

(2)
Cov[xi] ∈ S+

d is the covariance matrix of distribution p(xi).
Hence, the expected Mahalanobis distance between two in-
stances is appended with a term of covariances. Moreover, we
can model the disturbance of instance based on Eq. 2 by in-
troducing an unbiased random perturbation ϵ ∈ Rd, sampled
from a distribution p(ϵ), to the expected distance computation.
Therefore, the difference of two perturbed instances sampled
from p(xi) and p(xj) can be denoted as x̂i−x̂j = xi−xj+ϵ.
Thus disturbance over distance also considers the variations
over instances, as revealed by the distance transformation:

Ex̂,ŷ[dist
2
M (x̂, ŷ)] = dist2M (x,y) + Eϵ[ϵ

⊤Mϵ] . (3)

For the PSD property of metric M , the last term in Eq. 3 is
a quadratic form which is positive no matter what value of ϵ
takes. So the expected distance in Eq. 3 has the expansion
property that enlarges original Mahalanobis distance value.
In our DRIFT method, we consider the expected distance and
learn the distribution over ϵ.
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Given a triplet {xt
i,x

t
j ,x

t
k}, the metricM should make the

distance between xt
i and imposter xt

k larger than the distance
between xt

i and target neighbor xt
j beyond a margin. Due to

the expansion property, there is no additional effect in consid-
ering expected distance for imposter comparisons. Together
with the fact that target neighbor relationship possesses more
uncertainty [Wang et al., 2012], it’s better to invoke the ex-
pected distance only in measuring the target neighbor pair.
Therefore, we can formulate our Distance metRIc Facilitated
by disTribution (DRIFT) approach as follows:

min
M, p

1

2
∥M∥2F + λ1

N∑
i=1

KL
(
pi(ϵ)∥p0(ϵ)

)
+ λ2

T∑
t=1

ξt ,

s.t. ∀t, dist2M (xt
i,x

t
k)− E

[
dist2M (xt

i, x̂
t
j)
]
≥ 1− ξt, ξt ≥ 0 ,

M ∈ S+
d , ∀i, pi(ϵ) ∈ P, (4)

where the first part in the objective is a Frobenius norm regu-
larizer on metric M . The second term is a distribution regu-
larizer, i.e., KL-divergence is used to make the learned pertur-
bation distribution pi(ϵ) close to a specified prior p0(ϵ). As
in the general setting [Mao et al., 2016], we choose prior as
a zero-mean multivariate normal distribution: p0 ∼ N (0,Σ0)
for all instances, which satisfies the unbiased requirement. It
is notable that in the Eq. 4, we do not constrain the form of
pi(ϵ) but only require it as a valid distribution. Instances’ dif-
ferent perturbations give rise to various impacts when com-
puting distance with others, which considers local properties
of instances. The third term minimizes the large margin vi-
olation. For each instance, the distance between imposters
should be larger than (beyond a margin value) the expected
distance between its target neighbors.
In our solution, we optimize over target neighbor instance

xt
j around its neighborhood to find the best disturbance, i.e.,

only the target neighbor x̂t
j = xt

j + ϵ, ϵ ∼ pj(ϵ) is perturbed.
This simplification gets the same results as considering the
distribution on the perturbation of instance differences. Since
most existing distance metric learning methods use Euclidean
nearest neighbors as target neighbors [Weinberger and Saul,
2009], the perturbation of target neighbors relieves the prob-
lem of initial target selection and sets the target neighbor hav-
ing the right distance with others as well. In addition, it is
obvious that learning the parameters of the noise distribution
can be regarded as measuring the tolerance of perturbation on
target neighbors. Pairs satisfying constraint easily can toler-
ate perturbations more to some extent, and expand the similar
range w.r.t. a center instance, which is shown in Fig. 1. On
the other hand, these pairs attract more weights in the training,
thus a robust metric is expected to be obtained.

3.3 Optimization for DRIFT
The objective formulation of DRIFT can be transformed to:

min
M∈S+

d
, pi∈P

1

2
∥M∥2F + λ1

N∑
i=1

KL (pi(ϵ)∥p0(ϵ))

+λ2

T∑
t=1

ℓ

(
dist2M (xt

i,x
t
k)− E[dist2M (xt

i, x̂
t
j)]

)
,

where ℓ(x) = [1− x]+ is the hinge loss. Mahalanobis metric
and instance disturbances are learned in an alternative manner.

Margin

Class 1

Class 2

Margin

Considering target 

neighbor disturbances

Expected distance expands

the similar range

Figure 1: Illustration of DRIFT approach. The left plot shows
the large margin requirement to optimize the metric: the dis-
tance between imposters should be larger than that between
target neighbor with a margin. The right plot demonstrates
the scenario when we consider the distribution/perturbation
for a target neighbor, which expands the similar range if
needed. Hollow blue squares are the perturbed target neigh-
bor samples.

When M is fixed, the third part of the optimization problem
is a linear optimization over distribution pi, which tunes the
perturbations under the guide of the current metric. When per-
turbation distributions p is fixed, the objective considers the
influence of target neighbor by expected distance, and finds
a global distance metric to push imposters farther away than
target neighbors.
Fix metric M and solve distribution p: We can write the
sub-problem in the constraints form:

min
pi(ϵ)∈P

λ1

N∑
i=1

KL (pi(ϵ)∥p0(ϵ)) + λ2

T∑
t=1

ξt , (5)

s.t. ∀t, dist2M (xt
i,x

t
k)− E

[
dist2M (xt

i, x̂
t
j)
]
≥ 1− ξt, ξt ≥ 0 .

With the convex property of KL-divergence, we can optimize
Eq. 5 from dual. With non-negative multipliers α = {αt}Tt=1

and β = {βt}Tt=1, the dual problem can be written as:

max
α,β

min
pi,ξt

λ1

N∑
i=1

KL(pi(ϵ)∥p0(ϵ)) + λ2

T∑
t=1

ξt −
T∑

t=1

βtξt

−
T∑

t=1

αt

(
ct − Eptj

[ϵ⊤Mϵ]− 1 + ξt
)

,

s.t. ∀i, pi(ϵ) ∈ P, ∀t, αt ≥ 0, βt ≥ 0 . (6)

ct = dist2M (xt
i,x

t
k) − dist2M (xt

i,x
t
j) = ⟨M,At⟩ is

the difference of Mahalanobis distance with metric M
between imposters and target neighbors, where At =
(xt

i,x
t
k)(x

t
i,x

t
k)

⊤ − (xt
i,x

t
j)(x

t
i,x

t
j)

⊤. The expectation
Ept

j
[·] in Eq. 6 is taken over the distribution of the distur-

bance on xt
j . After applying stationarity property of KKT

condition [Boyd and Vandenberghe, 2004] in Eq. 6, we can
get λ2 − αt − βt = 0, thus 0 ≤ αt ≤ λ2. When taking
derivative w.r.t. pi(ϵ), we have

pi(ϵ) ∝ exp

(
−1

2
ϵ⊤(Σ−1

0 +
2

λ1

T∑
t=1

ItjαtM)ϵ

)
. (7)

Itj = Itj(xi) is the indicator whether perturbation distribution
of target neighbor j in t-th triplet belongs to xi. Since pi is a
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valid distribution, we can get the normalization constant from
its exponential form, which achieves a multivariate normal
distribution. By defining Σ−1

i = Σ−1
0 + 2

λ1

∑T
t=1 I

t
jαtM ,

we have pi(ϵ) ∼ N (0,Σi). Because M is PSD, the updated
covariance matrix is also PSD, meeting the requirement of a
normal distribution. It is notable that distributions for pertur-
bations on different instances differ in their ways combining
dual variables. Due to complementary slackness, the value of
αt should be zero if a large margin is preserved with the ex-
pected distance, then the disturbance will be close to the prior.
Otherwise, the distribution will adapt to the current measure-
ment so as to change the weights on different constraints.
Substituting the distribution, we can simplify the dual prob-

lem to an optimization of f1 on variable α:

max
α

f1(α) =
λ1

2

N∑
i=1

log det(Σ−1
i ) +

T∑
t=1

αt(1− ct) ,

s.t. 0 ≤ αt ≤ λ2 , (8)

where det(·) is the determinant of a matrix. From the smooth
concave property of the log det(·) term, we can optimize the
sub-problem for disturbance using accelerated projected gra-
dient descent method [Nesterov, 2004, Li et al., 2014]. The
gradient w.r.t. αt can be calculated as follows:

∂f1
∂αt

=

N∑
i=1

ItjTr

(
(Σ−1

0 +
2

λ1

T∑
t=1

ItjαtM)−1M

)
+(1−ct) . (9)

Although there is a matrix inverse operation in Eq. 9, it can
be further simplified as shown in the next sub-section.
Fix distribution p and solve metric M : The sub-problem
for distance metricM can be formulated as:

min
M∈S+

d

1

2
∥M∥2F +λ2

T∑
t=1

ℓ

(
dist2M (xt

i,x
t
k)−E[dist2M (xt

i, x̂
t
j)]

)
.

(10)
Since hinge loss is non-smooth, directly optimizing with sub-
gradient descent will have slow convergence rate [Beck and
Teboulle, 2009]. So we use a smooth approximation of hinge
loss to accelerate the training ofM :

ℓs(x) =
1

L
log

(
1 + exp (−L(x− 1))

)
. (11)

The larger the parameter L in Eq. 11, the more ℓs(x) close to
the hinge loss [Zhang et al., 2003, Qian et al., 2015a]. With
this smoothed loss, the above sub-problem over metric M
is a convex smooth one, which can also be optimized with
accelerated projected gradient descent method.
Given the learned perturbation distribution pi in Eq. 7, we

can compute the expectation over the quadratic form in Eq. 10
analytically. For a triplet {xt

i,x
t
j ,x

t
k}, the expected term

Ept
j
[ϵ⊤Mϵ] = ⟨Ept

j
[ϵϵ⊤],M⟩ = ⟨Σt

j ,M⟩. The covariance
matrix Σt

j corresponds to the target neighbor j in triplet t,
which can be estimated with learned α. If we denote the
objective over M with smoothed loss as f2, we can get the
gradient w.r.t. metricM as:

∂f2
∂M

= M + λ2

T∑
t=1

ℓ′s(at)(At −
N∑
i=1

ItjΣi) ,

where at = dist2M (xt
i,x

t
k)− dist2M (xt

i,x
t
j)− Ept

j
[ϵ⊤Mϵ] is

the input distance value. ℓ′s(at) =
1

1+exp(−L(at−1)) − 1 is the
derivative value of the smoothed hinge loss.

3.4 Acceleration for DRIFT

Since M should be projected to the PSD cone to preserve
a valid metric, we can use its eigen-decomposition M =
UDU⊤ to further accelerate the optimization process over α.
For M ’s symmetric property, its eigen vector U is an orthog-
onal matrix, and D = diag{D1, D2, . . . , Dd} is a diagonal
matrix containing its eigenvalues. In the following discussion,
we set prior covariance Σ0 = λI .

To get the objective of the dual problem in Eq. 8 when
solving the perturbation distribution, we need to compute

O1 = log det(Σ−1
0 +

2

λ1

T∑
t=1

ItjαtM) . (12)

Since the determinant of a matrix equals to the product of its
eigen-values, we can get O1 =

∑D
d=1 log(

1
λ + qtDd) with

qt = 2
λ1

∑T
t=1 I

t
jαt as the accumulated coefficient for each

instance. Therefore, the computation of the matrix in Eq. 8
degrades to a scalar group computation problem.
To compute the gradients w.r.t. αt, we need to get O2 =

Tr((Σ−1
0 + qtM)−1M). Directly computing the trace term

needs the inverse and multiplication of a d × d matrix. How-
ever, we can transform O2 as:

O2 = Tr

(
(Σ−1

0 + qtM)−1M

)
= Tr

(
1

qt
(
1

qt
Σ−1

o +M)−1M

)
=

1

qt
Tr

(
(I +

1

qt
Σ−1

0 M−1)−1

)
=

D∑
d=1

1

qt +
1

λDd

.

The last equation comes from the fact that the trace of a matrix
equals to the sum of its eigen-values. In summary, we trans-
form the distribution optimization over α to a problem only
consisting of group of scalars computation with little compu-
tational cost.
After the distribution p is known, we need to find Σi =

(Σ−1
0 + qtM)−1 to complete the gradient computation when

optimizing the metric M . We can rewrite the covariance ma-
trix computation as:

Σi =

(
U(diag(

1

λ
) + qtD)U⊤

)−1

= Udiag

(
λ

1 + qtDdλ

)
U⊤ ,

which avoids the inverse computation. Operator diag(Dd)
forms the variables over index d to a diagonal matrix.
The number of triplets increases when we meet large-

scale datasets, and it is difficult to enumerate all triplets in
a single gradient computation of M . Stochastic gradient de-
scent can be a rescue [Qian et al., 2015a], which can be
used to reduce the computational burden in the metric sub-
problem. In this case, we can consider an upper bound of
the loss over the expected distance, where the disturbance
of instances can be seamlessly imbedded in the stochastic
gradient of metric. For the t-th triplet, using Jensen’s in-
equality, we have ℓ(dist2M (xt

i,x
t
k) − E[dist2M (xt

i, x̂
t
j)]) =

[1 − dist2M (xt
i,x

t
k) + E[dist2M (xt

i, x̂
t
j)]]+ ≤ E([1 −

dist2M (xt
i,x

t
k) + dist2M (xt

i, x̂
t
j)]+). Therefore, we can op-

timize following objective upper bound for metricM :

min
M

1

2
∥M∥2F+

λ2

T

T∑
t=1

Eptj

[
[1−dist2M (xt

i,x
t
k)+dist2M (xt

i, x̂
t
j)]+

]
,
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(a) Synthetic Data (b) DRIFT Projection

(c) Selected Skeletons

A

C

B

(d) Visual Effects of Distribution

Figure 2: Visualization of DRIFT’s property on synthetic data.
Plots (a)-(d) show the original instances, projected instances, se-
lected skeleton and the learned distribution (for left bottom in-
stances), respectively.

where unbiased gradient can be computed by randomly choos-
ing a triplet and disturbing the target neighbor with its known
perturbation distribution.

4 Experiments
In this section, empirical investigations are conducted to vali-
date the effectiveness of DRIFT. In detail, we first show the in-
terpretability of the process of DRIFT on synthetic data, then
DRIFT is compared with state-of-the-art methods on the real
datasets. At last, we demonstrate the robustness of DRIFT
given perturbed side information and instances.

4.1 Visualization on Synthetic Set
We first demonstrate the property of DRIFT on a 2D synthetic
dataset. There are totally 600 instances with 2 classes. Class 1
is distributed in two different areas as in plot (a) of Fig. 2. We
set the prior of DRIFT to 0.01I . Using only a single metric,
DRIFT clusters the same cluster instances together (plot (b)).
Plot (c) shows the instances in the original space who have

zero dual variable sums. As in Eq. 7, when the sum of dual
variables related to a particular instance is larger than zero, a
difficult constraint is identified and the instance perturbation
covariance will be compressed. Therefore, we can use the
dual variable αt to reflect the reliableness of side information
to some extent and select the skeleton of data. We also give
a visualization of learned distribution. Sizes of ellipsoids in
the plot (d) are proportional to their covariances. The larger
an ellipsoid, the wider the range of position the correspond-
ing instance can drift. Instances in area “B” and “C” have
large neighborhood range, which can satisfy the side informa-
tion and enlarge the class boundary simultaneously. While
instances near the class boundary (area “A”) are hard to deal
with. So compared with previous instances, they have smaller

expected distance with others when they are selected as target
neighbors, and therefore impose smaller weights on their re-
lated constraints.

4.2 Comparisons on Real-World Benchmarks
To test the classification ability of the learned metric for
DRIFT, we compare the proposed DRIFT with state-of-the-art
metric learning methods on 15 real datasets over 30 random
trials. In each trial, 70% of training data is randomly selected,
and the rest is used for test. Parameters are tuned for each
method ranging from {10−2, 10−1, . . . , 102}.
We compare with three parts of methods. First is the state-

of-the-art metric learning methods, namely LMNN [Wein-
berger et al., 2006], DNE [Zhang et al., 2007], ITML [Davis
et al., 2007], GMML [Zadeh et al., 2016] and RVML [Per-
rot and Habrard, 2015]. Second group including the ones
weighting the side information in the training process, i.e.,
MSLMNN [Weinberger and Saul, 2009], LNML [Wang et al.,
2012] and MSML [Qian et al., 2015b]. The last two meth-
ods consider noise/distribution in the distance computation:
SGDD [Qian et al., 2014] and MPME [Mao et al., 2016]. The
learned metric is validated using 3NN. The results with Eu-
clidean distance is denoted as EUCLID. For our DRIFT ap-
proach, we test both performance of the batch and stochastic
solver, which are shown as DRIFTB and DRIFTS respectively.
In the implementation, we initialize metric M = I and α as
zero vector. Triplets are initialized the same way as LMNN.
Average test errors of all methods are listed in Table 1.

From the results, it can be found that the classification results
for kNN can be improved with learned metrics, which shows
the necessity and effectiveness of the metric learning. In addi-
tion, the methods considering the reliability of provided side
information can give better results. For example, triplet selec-
tion method LNML gets better results than the non-selection
counterpart LMNN. Although MPME considers instance dis-
tribution in the training process, it only uses the Euclidean dis-
tance as a learning guidance, so cannot perform well when the
Euclidean one is not suitable. Our DRIFT approach can per-
form best on 9 of 15 datasets. Since it considers the instance
disturbance, it identifies and takes advantages of useful side
information constraints during the training. Compared with
LNML, it can give even better results. Effectiveness of DRIFT
can also be validated by its t-test comparison with others.

4.3 Investigations on Robustness
To test the robustness of DRIFT approach when dealing with
noisy side information, we test DRIFT on above datasets with
perturbed triplets constraints. The same partition as last sub-
section is used and parameters of all methods are fixed before
training. For a triplet set {xt

i,x
t
j ,x

t
k}Tt=1 generated with 3

target neighbors and 10 imposters based on Euclidean near-
est neighbor, we construct a noisy version by sampling 20%
of them on which positions of xt

j and xt
k are exchanged.

We compare our DRIFT method (batch solver) with LMNN,
MSLMNN and LNML, since they obtain a metric from given
fixed triplets. For the multi-stage method MSLMNN, we also
corrupt its newly generated side information. The results of
compared methods are listed in Fig. 3. Due to the page limit,
only 4 of datasets are shown. Euclidean distance results are

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3319



Table 1: Comparisons of classification performance (test errors, mean ± std.) based on 3NN. DRIFTB and DRIFTS are compared. The best
performance on each dataset is in bold. Last two rows list the Win/Tie/Lose counts of DRIFTB/S against other methods on all datasets with
t-test at significance level 95%.

Name DRIFTB DRIFTS LMNN DNE ITML GMML RVML LNML MSLMNN MSML MPME SGDD EUCLID

australia .150±.022 .174±.028 .174±.020 .217±.026 .175±.021 .203±.048 .157±.020 .155±.023 .173±.028 .162±.020 .249±.025 .233±.073 .217±.026
autompg .239±.032 .255±.035 .259±.037 .272±.033 .266±.032 .259±.034 .294±.027 .262±.040 .243±.033 .334±.058 .295±.028 .276±.052 .260±.036
balance .068±.021 .095±.028 .146±.028 .199±.019 .093±.022 .181±.018 .106±.021 .099±.016 .075±.017 .469±.105 .201±.016 .139±.026 .188±.022
credita .160±.022 .181±.027 .184±.023 .232±.021 .178±.024 .212±.041 .162±.031 .159±.019 .179±.022 .167±.022 .251±.021 .205±.042 .232±.021
german .278±.026 .281±.021 .292±.021 .296±.020 .295±.021 .284±.020 .280±.020 .284±.020 .297±.019 .275±.018 .317±.018 .299±.000 .296±.021
haberma .293±.031 .292±.034 .300±.030 .292±.032 .311±.033 .313±.028 .316±.029 .316±.032 .296±.033 .316±.030 .314±.035 .608±.128 .304±.029
hayes-r .270±.051 .278±.049 .314±.072 .411±.041 .315±.063 .385±.074 .330±.048 .275±.046 .278±.058 .397±.059 .373±.079 .421±.088 .398±.046
heart .191±.026 .194±.027 .200±.031 .190±.034 .187±.032 .191±.034 .193±.036 .194±.042 .199±.036 .230±.045 .202±.031 .209±.046 .190±.034
heart-s .184±.030 .190±.032 .195±.026 .188±.030 .187±.030 .191±.036 .193±.033 .184±.036 .207±.039 .233±.057 .219±.035 .212±.042 .188±.030
house-v .057±.017 .065±.019 .060±.017 .083±.025 .058±.019 .078±.024 .069±.016 .057±.020 .066±.018 .058±.022 .063±.018 .064±.022 .083±.025
Live-di .370±.042 .373±.038 .373±.045 .384±.040 .391±.052 .398±.041 .386±.040 .371±.043 .382±.044 .424±.043 .455±.048 .368±.049 .384±.040
promote .106±.057 .136±.077 .105±.037 .249±.063 .147±.063 .394±.093 .121±.043 .107±.047 .122±.041 .107±.046 .375±.044 .169±.073 .249±.063
segment .032±.007 .035±.007 .039±.006 .053±.008 .035±.006 .054±.008 .035±.006 .032±.006 .033±.007 .051±.011 .106±.008 .103±.056 .050±.007
sick .030±.003 .031±.003 .031±.003 .038±.004 .038±.004 .056±.006 .050±.005 .029±.005 .029±.004 .033±.004 .048±.004 .083±.045 .038±.004
sonar .141±.035 .137±.042 .145±.032 .168±.036 .170±.035 .210±.040 .236±.056 .160±.038 .203±.045 .200±.050 .183±.047 .162±.056 .168±.036

W / T / L DRIFTB vs. others 8 / 7 / 0 12 / 3 / 0 12 / 3 / 0 12 / 3 / 0 8 / 7 / 0 4 / 11 / 0 6 / 9 / 0 11 / 4 / 0 14 / 1 / 0 14 / 1 / 0 13 / 2 / 0
W / T / L DRIFTS vs. others 4 / 9 / 2 11 / 4 / 0 6 / 8 / 1 11 / 4 / 0 5 / 8 / 2 2 / 8 / 5 3 / 10 / 2 10 / 1 / 4 13 / 2 / 0 12 / 3 / 0 11 / 4 / 0
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Figure 3: Investigation of corrupted side information. The results
on noise-free datasets are filled with color, and the increases of error
rates when training with noisy counterpart are denoted using shadow.
Error bars in plots represent the 30 trials std. on corrupted datasets.

also compared. Due to the fact that the corrupted information
does not influence kNN, it can often get better results than
others. It can be found clearly in Fig. 3 that the corrupted
side information has a huge impact on the metric learning
process. Both LMNN and MSLMNN get worse results than
the Euclidean one, i.e., they learn a poor metric with cor-
rupted constraints. LNML can relieve the negative variation,
but DRIFT is almost not affected by this side information and
can even train a good metric. It maybe in DRIFT the pertur-
bations of instances takes different types of side information
into consideration hence improve its robustness on average.
Performances with the change of noise level are also inves-

tigated. The maximum absolute values of each feature con-
struct the basic noise vector, and times of it are added to the
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Figure 4: Averaged test errors when different times of basic noises
are added on these two datasets, where numerical value before “x”
represents the multiplication of basic noise vector added.

original datasets. Averaged test errors of different noise lev-
els are recorded in Fig. 4. From the results, it is notable that
DRIFT performs better than others under various noisy envi-
ronment. In summary, these two performance comparisons
validate the robustness of DRIFT, which strengthens the ad-
vantage of DRIFT in an unknown scenario.

5 Conclusion
We claim one of the prominent side information noise comes
from the inaccuracies of feature values, which will damage
the neighbor structure and seriously degenerate the robust-
ness of metric learning approaches. Aiming at the noisy in-
stance issues, Distance metRIc learning Facilitated by disTur-
bances (DRIFT) approach is proposed in this paper, which
considers the perturbations on instance target pairs, to learn
a robust metric. It is notable that expected distance for
noisy instances is not only used for modeling types of feature
value perturbations but also takes account of the constraints
weights. Acceleration of DRIFT is also provided. Experi-
ments on real datasets validate the effectiveness of DRIFT on
classification performance. Results under noisy environments
also highlight the DRIFT’s superiorities. DRIFT can also be
used to reveal the instance relationship for graph construction,
which can be an interesting future work.
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