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Abstract

The cerebellum has long been known to be associated with the coordination of the

human motor system. Contemporary research indicates that this is one product of the

cerebellum's true function: the generation of dynamic models of systems both within

and without the body. This thesis describes the instantiation of one such model on the

humanoid robot Cog, developed at the MIT Artificial Intelligence Laboratory. The

model takes the form of an adaptive mapping of head movements into anticipated

motion in the visual field. This model is part of a visual subsystem which allows Cog

to detect motion in the environment without being confused by movement of its own

head. The author hopes that this work will be the first step in creating a generalized

system for generating models between sensorimotor systems, and that such a system

will be the first step in the development of a fully-functional artificial cerebellum for

Cog.
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Chapter 1

Background

This thesis describes some preliminary work I have done with the visuomotor sys-

tem of Cog, a robot currently under development at the MIT Artificial Intelligence

Laboratory. Cog is a humanoid robot, designed to be able to interact with the world

in a human-like fashion, hopefully with human-like capacities. The purpose of the

Cog project is to learn about human cognition by attempting to simulate or replicate

it, with the underlying hypothesis that cognition is shaped by interaction with the

world.

As one of the first toddling steps towards that goal, I implemented a system which

learns a model of head movement in terms of the visual motion it induces by moving

the camera. This is one stab at what I hope will eventually be many such models

linking many (all) of Cog's sensorimotor systems together. I have implemented a

single form of such a model, based on a network of linear approximators; many

alternatives exist. In the future, I would like to have a system which automatically

generates these functional maps between systems, picking the appropriate format or

using a sufficiently general and powerful template.

This idea of a phalanx of internal models is inspired by the cerebellum. Another

higher level goal of mine is to implement cerebellar functions on Cog; a large part of

that task involves figuring out just what the cerebellum does. One current view is that

the cerebellum makes dynamic models of interactions of the body with the world, as

well as models of internal systems and their interactions. Along these lines, generating

models of sensorimotor systems is an implementation of cerebellar function.

From a more pragmatic perspective, as Cog becomes more developed, it will have
more and more specialized computational systems which will need to cooperate with
each other. Models which translate the actions of one system into the native param-

eters of another will facilitate such cooperation. Once the number of subsystems on
Cog exceeds a handful, an infrastructure which automatically generates such adaptive

models will make the entire programming experience much more manageable.



Cerebellum

The primary inspiration for this project comes from the cerebellum, an organ which
is well-known but little-understood. In humans, the cerebellum is a corrugated golf
ball of neurons tucked into the back of the skull between the occipital lobe and

the brainstem (Figure 1-1). Its cortex is about 1mm thick, but deeply folded, and

comprises about half the neurons in the brain. Unlike the cerebral cortex, it has

no central fissure. The microscopic structure of the cerebellar cortex is crystalline

compared to the cerebral cortex; of the five major cell types, four are oriented and

located in well-defined perpendicular planes. The cerebella of other species have

roughly the same structure; all vertebrates have a cerebellum. A full discussion of

the intricacies of cerebellar physiology can be found in (Ito 1984), or (Eccles et al.

1967).

Figure 1-1: Sagittal view of the brain. The cerebellum is the finely folded structure

in the lower left, tucked under the cerebrum and behind the brainstem (Noback 1981,

p.3)

The first major step in unraveling the functioning of the cerebellum was made

by Holmes (1917), a military doctor who carefully documented the motor deficits of

WWI soldiers suffering from head wounds. This became the first volume of a great

body of evidence pointing towards the human cerebellum's involvement in motor



control.

So far, via such lesion studies, we know that the cerebellum is involved in both

autonomic and voluntary motor activity. The medial cerebellum controls reflexes

such as the vestibular ocular response (VOR). The paramedial cerebellum helps with

posture and stance. The lateral cerebellum plays a part in coordinating voluntary

motor activity. Lesions of the lateral cerebellum cause well-known motor deficits

(Dichgans & Diener 1985):

* diminished tendon reflexes (hypotonia)

* weak, easily tired muscles (asthenia)

* decomposition of movements into component parts

* inability to correctly gauge distance of movements (dysmetria)

* inability to perform smooth alternating, repetitive movements (dysdiadochoki-

nesia)

* oscillation in voluntary motion (intention tremor)

* drunken-like walking (atazic gait)

* slow, explosive, slurred speech (scanning speech).

Note that in no case does cerebellar damage prevent voluntary movement; it just

degrades the quality.

The outcome of such lesion data was the general hypothesis that the cerebellum's

function is to learn motor programs for common, repeated motions, such as reaching

out to different points in space. These programs would be used by the cerebral

motor cortex to create smooth, well-controlled voluntary motions. Deficits such as

intention tremor become a result of the cerebral cortex being forced to use its own slow

feedback loops to control activity which should have been directed by a feedforward

motor program. Marr (1969) and Albus (1971) introduced the first of the modern

theories that try to explain how the cerebellum accomplishes this learning and control.

Both theories mapped the cerebellar microstructure into a three-layer network of

perceptrons which acted as an associative memory system.

Modelling

In the last twenty-five years, the field has evolved to a more elegant hypothesis, that
the cerebellum's function is to create and learn dynamic models of the body and
the body's interaction with the world. These models are not restricted to the motor
systems, but encompass sensory systems as well, and may even include models of
cognitive subsystems within the brain.

Paulin (1993b) cites examples of vertebrates which have large and highly developed
cerebella, but primitive motor skills. The Mormyrid fish, one such example, are
electric fish which use electrolocation to navigate and feed, and the enlarged portions



of their cerebella are tied to electrodetection. In mammals which rely on echolocation,
such as bats and dolphins, certain lobules of the cerebellum which react to input from
the auditory system are very highly-developed, compared to lobules related to wings

or fins. In all these cases the cerebellum plays a greater role in processing sensory

information than in regulating motor output.

Daum et al. (1993) cite recent reports in which cerebellar lesions in people result

in:

* impairments in visuospatial recall and in three dimensional manipulation

* deficits in anticipatory planning

* deficits in verbal learning

* changes in visuospatial organizational abilities.

Furthermore, a study by Akshoomoff & Courchesne (1992) gives evidence that the

cerebellum plays a role in quickly shifting attention between different sensory modal-

ities.

All of these are hard to explain if the cerebellum's function is restricted to motor

programming; however, these and motor programming can all be explained by viewing

the cerebellum as a dynamic systems modeller. Historically, it may just be that the

motor deficits were the most obvious results of cerebellar dysfunction in humans.

Modelling the Modeller

This brings us back around to my own project. Many theories have been advanced

to try to explain how the cerebellum can learn and maintain such models; no one

has yet answered that question. Paulin thinks that the cerebellum acts as a Kalman

filter (Paulin 1993a). Miall, Weir et al. (1993) advocate the idea that the cerebellum

is a Smith predictor, a system which models time delays in the control loop as well

as kinematics. Keeler (1990) returns to the Marr-Albus models, but recasts them

as prediction generators rather than motor program memories. Kawato et al. (1987)

model the cerebellum as networks of non-linear elements which learn both forward

and inverse dynamics from each other.

All of this has inspired the simple system implemented on Cog, which learns a

kinematic model of the head in terms of vision. The learning is performed by a

network of linear experts (Section 3.2.2). This system is the first solid step towards

an implementation of cerebellar functions on Cog.



Chapter 2

Apparatus

This project was implemented on the robot Cog; one purpose of the project was to

see just what Cog was capable of at this early stage in its electromechanical devel-

opment. This chapter gives an overview of Cog's mechanical and electrical features,
followed by a more detailed look at the framegrabbers, motor control software, and

IPSmacrolanguage. These are hardware and software systems which I designed myself

and which are a integral parts of this project.

2.1 Cog in General

Cog is a robotic humanoid torso (Figure 2-1). Mechanically, Cog is an approximation

of the human frame from the waist up, with all the major degrees of freedom [dof]

accounted for, except for the flexible spine. Electronically, Cog is a heterogeneous,
open architecture, multi-processor computer.

Body

Cog's body consists of a torso, a head, and two arms. The torso is mounted to a large,
sturdy machine base via 2-dof "hips"; Cog has no legs. The head is mounted on a

3-dof neck, and the neck and arms are connected to a 1-dof shoulder assembly which

rotates about the vertical axis of Cog's torso. Cog's arms are 6-dof mechanisms with

compliant (ie. spring-coupled) actuators (Williamson 1995). Hands for Cog have also

been designed and are currently being tested (Matsuoka 1995). (Figure 2-2, A, B)

All of Cog's actuators use electric motors with optical encoders to measure joint

position. The motors are controlled by dedicated 68HCll microprocessors, one pro-

cessor per motor. The 68HC11's regulate motor power via a pulse-width modulation

(PWM) circuit, and can measure motor current, temperature, and position.

Cog's head holds two 2-dof eyes, each composed of two miniature black and white

CCD cameras. One camera has a wide-angle lens with a 1150 field of view to cover
full-field vision. The other camera has a 230 narrow-angle lens to approximate foveal
vision. The cameras interface to Cog's brain via custom-built frame-grabbers (see
Section 2.2). At this moment, the cameras are the only sensors on Cog's head,
however Cog will soon have hearing (Irie 1995) and a vestibular apparatus as well.



Figure 2-1: Front view of Cog, a humanoid robot from the waist up. The arms have

been taken off for table-top testing.

Cog will eventually also have tactile sensors around its body.

Brain

The architecture of Cog's brain is based on a backplane containing multiple inde-

pendent processor boards (Kapogiannis 1994). Processors can be sparsely connected

one-to-another via dual-ported RAM (DPRAM). The backplane supplies the proces-

sors with power and a common connection to a front-end processor (FEP), which

provides file service and tty access. In the current scheme, up to 16 backplanes can

each support 16 processors.

We are currently using Motorola 68332 microcontrollers as the main processors.

These are 16 MHz variants of the 68020, with a 16-bit data bus and on-chip serial

I/O hardware. Each processor is outfitted with 2 Mb of RAM and each runs its

own image of L, a multitasking dialect of Lisp written by Rod Brooks (1994). The

processors have six DPRAM ports which can be used for communication with other

processors, or for interfacing to framegrabbers and video display boards. They also

have a 2 Mbit/s synchronous serial port through which they connect to the peripheral

motor control boards.

The brain is described as an open architecture system because it could conceivably



Figure 2-2: One of Cog's arms and one of Cog's hands, currently disembodied.

contain any processor which uses the same FEP and DPRAM interfaces. A C-40 based

DSP board with DPRAM interface has been built and will soon be integrated into

Cog for use with audition and vision.

2.2 Frame Grabbers

Cog's vision system consists of four black and white commercial CCD cameras and

four custom-built framegrabbers (Figure 2-3), which were designed and built in-house

by me. The primary motivation for designing our own was the issue of interfacing

to Cog's brain. Any over-the-counter framegrabber would have needed an add-on

DPRAM interface. Monochrome framegrabbers are not very complex; it was cheaper

and easier to build our own grabbers which stored images directly into DPRAM's.

The framegrabbers operate in real-time, dumping one 128 x 128 pixel frame to

DPRAM every 1/30 second. Each pixel is 8-bit grayscale; 128 x 128 is the largest image

array that will fit into a DPRAM. After a frame is complete, the DPRAM generates

an interrupt request on the 68332 processor to indicate that the frame is ready for

processing. Each framegrabber has slots for six DPRAM cards, so that six processors

can simultaneously and independently access the same camera image. Each grabber

also has a video output for debugging which can display the raw digitized image or



Figure 2-3: One of Cog's home-built real-time framegrabbers. The circuit board is

dominated by the six ports for DPRAM cards.

the contents of a DPRAM.

The basic outline of a framegrabber is shown in Figure 2-4 (the complete schematic

can be found in Appendix A). This circuit is a conglomeration of single-chip solutions

(which explains why it is relatively cheap and easy to build). A sync separator chip

extracts timing signals from the video input. A Brooktree Bt218 analog-to-digital

converter (Bro 1993) digitizes the video input and puts the pixel data onto a bus. Two

counter chips count pixel column and row, and control addressing of the DPRAM's.

A Brooktree Bt121 videoDAC generates a video output of whatever is on the data

bus for debugging. All of the support logic is contained in two programmable array

logic (PAL) chips. The Decode PAL controls read/write to the data bus and handles

the debugging switches. The Clock PAL generates the pixel clock, various blanking

pulses, and the write pulses for the DPRAM's. A 19.66 MHz crystal oscillator drives

the Clock PAL.

The 19.66 MHz oscillator is divided down to 2.46 MHz for the pixel clock by the

Clock PAL - this yields a 128-pixel horizontal line. The video signal has 525 lines

vertically; we get 128-pixel vertical resolution by digitizing only every other line of

every other field. Each video frame is transmitted as two interlaced fields (Roberts

1985), one of which is completely ignored by the framegrabber.

Each of the video fields is 1/60 of a second long. The grabber writes to a DPRAM

during the even field, but ignores the DPRAM during the odd field. This gives a

processor 17 ms to respond to the image-ready interrupt and to use the data before

it gets clobbered. With the current system software, the frame is immediately copied

from DPRAM into local memory. Thus, there is still a complete 33 ms latency (one

video frame) between when the image is captured and when the brain sees it.

Note that the circuit does not contain a phase-locked loop (PLL). The sytem clock

(the oscillator) is not directly synchronized with the video input signal. However, the

pixel clock divider is reset with every horizontal line. So, there is at most a 1/8 pixel

jitter between lines.

The framegrabbers have gone through a few revisions, mostly via PAL firmware
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Figure 2-4: Functional diagram of a framegrabber.

upgrades. Since almost all of the control logic is routed through the PAL's, overhauls
of the system are much easier and cheaper than if the logic had been hardwired.
Framegrabbers v1.4.3 were used for this project; a new set of PC boards with extra
circuitry for improved timing and image stability (v.1.5) are almost ready to be put
into service.

2.3 InterProcess Socks

L is a multi-tasking dialect of Lisp, which allows multiple procedures to execute with
simulated concurrency. However, L has very little in the way of built-in process
control, and no provisions for interprocess communication. To fill these gaps, I wrote
IPS.

IPS, or InterProcess Socks, is a macro package which provides for simple but very
convenient data sharing and process control via two abstractions, the svariable and
the sprocess.

A single svariable (for shared-variable) consists of two parts, a datum and a
flag. A lone svariable is no better than a regular variable; the fun starts when
many svariables are connected together to form a connection group. Connected
svariables share the same data, via an indirected pointer, but have independent flags.



When the common data is changed by access through one svariable, the flags on all

connected svariables are set. Svariables can also be disconnected, or separated from

their groups.

A sprocess (for sharing-process) is a kind of execution-independent process ob-

ject with input and output ports. A sprocess contains executable code which can be

spawned to create a real, running process; this process can be killed and respawned

without obliterating the sprocess. A sprocess also has port variables, variables which

are lexically bound within the sprocess body but can be accessed outside of the spro-

cess. Port variables can contain any data structure, but by default they are svariables,
which means that the ports of different sprocesses can be connected together. The

body of a sprocess is specially parsed so that the data fork of a shared port variable

can be accessed by name like any other variable.

Shared port variables are the cornerstone of IPS. They allow the programmer to

create individual lexically-scoped processes and to easily specify data connections

between them. All of the code for this thesis is written using IPS. Each subsystem

on Cog is composed of individual sprocesses -motor handlers, video frame handlers,
calibration processes, etc.- which are linked together by connected svariables.

A full description of IPS can be found in Chapter 2 of the HumOS Reference

Manual (Brooks, Marjanovi6, Wessler et al. 1994); a quick overview of the command

syntax is given in Appendix B.

2.4 Motor Control

Each of Cog's motors is driven by a dedicated peripheral controller board. These

boards contain a 68HCll 8-bit microprocessor, a pulse-width modulation (PWM)

circuit, a high power H-bridge for motor current control, amplifiers for current and

temperature sensors, and an encoder chip to keep track of joint position. Each mi-

crocontroller communicates with a 68332 processor via a synchronous serial line by

exchanging 16-byte packets containing 13 bytes of data, tag bits, and a checksum. A

single 68332 can service eight controller boards with a total throughput of up to 400

packets per second. In the case of the neck, with three motors and controllers hooked

up to one processor, the data rate is a comfortable 100 Hz apiece.

The synchronous serial protocol specifies that the 68332 is the master port, initi-

ating byte transfers between it and a 68HC11. In general, communication from the

68332 side is driven by a motor handler coded as an sprocess using IPS. The handler

has svariables for each of the command parameters and regularly stuffs the data into

the appropriate packets and ships them off. Return packets are parsed and the sensor

data is placed into other svariables. Any other sprocesses which want to use this

data, or want to command the motor, simply need connections to the right ports in

the motor handler.

The motor controllers havea couple of built-in safety features. If communication

with the master 68332 processor is lost for more than 250 ms, or if the 68HCll hangs,
it will automatically reset itself and shut down its motor. Furthermore, whenever a

controller is restarted, it waits to handshake with the master processor before starting



Figure 2-5: A 68HCll peripheral motor controller board, in this case mounted on the
head to control an eye motor. The various ribbon cables are for power, sensor and
encoder input, motor output, and communication with a master 68332 processor.

its main program. This startup-interlock involves the exchange of three query packets
and three acknowledgement packets to make sure that the computers on both ends
of the serial link are ready and willing to start processing. During the interlock, the
controller also identifies what type and version of code it is running, and gives a guess
as to why it was last reset.

The bulk of the code on a motor controller is for servocontrol. The servo code
decides just what kind of muscle a motor looks like to the rest of Cog's brain. After
reviewing some literature on theories of biological motor control (Bizzi, Hogan et al.
1992), and equilibrium point control (McIntyre & Bizzi 1993) in particular, I decided
to implement a basic proportional-derivative (PD) controller for the neck motors.
The PD controller has adjustable gains so it is possible to execute equillibrium point
guided movements from the 68332, and as a fallback, it always has plain position
control.

Other actuators on Cog use different servocontrol code. The eye controllers have
proportional-integral-derivative (PID) controllers optimized to perform unassisted
position-directed saccades. The arm controllers have torque feedback, and take PD
control to the point of simulating virtual springs in the joints.





Chapter 3

Task

The task at the root of this project is to accurately determine motion in the visual

scene in spite of any movement of the head. The basic set-up is illustrated in Figure 3-

1. The head has two degrees of freedom, pan O, and tilt Ot.' When the head moves,
the visual field of the camera is swept across the scene. If Cog is looking for motion

in the scene, it will mistakenly determine that the whole world has moved, unless

the motion detection processes receive notice of head movement and can compensate

accordingly.

This task has three components:

* detecting motion

* moving the head

* learning the transfer function between head motion and scene motion.

The transfer function depends on the head and camera geometries. This function

could be hard-coded, but learning it yields a more robust system. Continuous, slow

learning allows this system to adapt to inevitable changes such as motor shaft slippage

and mechanical disalignment. Learning can also be easier: why waste time measuring

parameters which are due to change if the system can figure out the parameters for
itself?

The solution to this task is embodied in the control loop illustrated in Figure 3-2.
A motion detection system outputs vectors which show motion velocity in the scene.
At the same time, the head moves because the neck motors are commanded by some

motion generator. Neck positions and differential movement are fed into a network
which produces a velocity correction for the motion detector. Assuming that most of
a visual scene is still and that most movement is not correlated to head motion, the
corrected detector output should be zero across the scene. So, the corrected output
itself can be used as the error signal to train the network.

Any real movement in the scene will generate noise in the network training input.
If the learning rate is low, this noise will not significantly disturb the network. The

1Cog's neck has a third degree of freedom, roll, which is held fixed in this project, along with the
eyes. Integrating three more degrees of freedom is another project altogether (See Chapter 5).
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Figure 3-1: Parameterization of the motion detection task. (x, y) is a coordinate in

the visual field; (0,, Ot) represents the orientation of the head. When the head turns

by (80p, SOt), the shaded patch appears to move by (5x, Sy).

entire system will give correct velocity outputs for real motion in the scene, while

continuously learning to mask out false motion induced by a moving head.

3.1 Sensorimotor Subsystems

My goal is to learn maps between sensorimotor systems, and I chose neck motor con-

trol and motion detection as the first pair because they were available. When I started

on this project (and actually continuing to now), the only reliably functioning parts

on Cog were the neck motors, the eye motors, and the cameras and frame grabbers.

The eye motors and their servo code were the subject of some experimentation by

a fellow graduate student (Cynthia Ferrell), so I effectively had only the neck and

cameras to work with - one sensor system and one actuator system.

What I came up with is a simple but extensible motion detection system, and a

rather degenerate neck motion generator. The motion detection system will probably

be a permanent feature on Cog, in a more refined form. The motion generator will

hopefully be unnecessary later on.



ted

Figure 3-2: The basic control and training loops of the motion detection task. The

compensation network learns the effect of head movement on scene movement in order

to cancel it out.

3.1.1 Motion Detection

The motion detection system consists of a number of independent detector processes,
each of which analyzes the motion of a small patch of the visual field. The output of

each detector is a motion vector indicating the velocity of the patch. Taken together,
the resulting vector field yields a coarse approximation of the optical flow in the scene

(Horn 1986, p. 278ff). Due to processing limitations, only a single detector process

was ever used at once, though.

A detector operates on a 16 x 16-pixel patch located at some position (X, y) in the

visual field (recall that the full field is 128 x 128). The detector operates as follows

(refer to Figure 3-3):

1. It grabs and stores a 24 x 24 patch centered over the 16 x 16 patch at (x, y).

2. From the next successive video frame, it grabs the 16 x 16 patch.

3. It searches for the best correlation of the 16 x 16 patch within the 24 x 24 patch.

The offset of the best match from the center yields the motion vector.

The best correlation is found by calculating the Hamming distance between the 16 x 16
patch and its overlap at each of 81 positions within the 24 x 24 patch. The position
with the lowest distance wins.

To make even a single detector operate in real-time on a 68332 processor, each
8-bit grayscale pixel in a patch is reduced to 1-bit by thresholding with the average
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Figure 3-3: Illustration of the motion detection algorithm. Image patches from two

video frames are grabbed, thresholded, and then correlated. The offset of the best

correlation from the center gives the motion vector.

pixel value of the entire patch.2 This allows an entire row of pixels to be packed

into a single machine word, and then two rows can be correlated using a single XOR

machine instruction.

To speed up the process even more, the averaging, thresholding, and correlating

routines were coded in assembly language. An assembly-coded correlation is twice as

fast as an L-coded version, taking 11.8 ms versus 25.6 ms.

Compensation

To be useful in this project, a motion detector needs the capacity to compensate for

head motion error. To achieve this, each motion detector takes a correction vector vi

2The average value of the first 24 x 24 patch is used to threshold both it and the subsequent

16 x 16 patch.
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as input. This vector is a measure of how far the image is expected to have moved

between video frames. The 16 x 16 patch from the second frame in the sequence is

grabbed from a location offset by this amount (Figure 3-4). This effectively subtracts

iC from the motion vector i determined by the correlation, yielding a corrected output
V'- vC. By giving the detector a hint where to look for the image, the limited dynamic
range of the motion detector is not made any worse by head movement.

First Frame 
Second Frame

11Y% 

I

X

JYVCY

X+Vcx

\r I

...no offset!

Figure 3-4: Illustration of error compensation in the motion detector. Since the scene
is expected to have shifted by v4, the second patch is grabbed from an offset of v,.

Performance

By itself, a single motion detector runs in real-time on a 68332, processing every frame
at 30 frames/second. With the network and learning code included, this drops to 3
updates per second. Since the search space for the correlation is 9 x 9, the motion
vector output is in the range ±4, which translates into ±1200/sec at full-speed, or
+11°/sec as part of the complete system. The 3-bit precision is rather paltry, and the
dynamic range is pretty small, but the system works for the regular head movement
it faces in this project. To improve either range or precision would require more
processing power than available on a single 68332.

Due to the 1-bit thresholding, this motion detection scheme works best on high-
contrast objects which occupy the entire 16 x 16 patch area. This is not so good for
registering hands waving in front of the camera. On the other hand, this is perfectly
adequate for analyzing the motion of the background scene, which is mostly what the
detector needs to do.



3.1.2 Neck Motion Control

To learn to correlate head movement with visual motion, Cog's head needs to move

around. In the future, Cog will have processes that will want to move its head, to

track motion or to fixate on a sound source, for example. Right now, unfortunately,
Cog's head has no particular reason to move at all.

For the purposes of this project, I concocted a random motion generator. This

process chooses random targets in the head's range of motion and directs the head to

each target in a smooth motion via position control. The motion can be constrained

to vertical or horizontal directions only in order to test the learning algorithm.

The speed of generated motion along each axis is nominally 80 /sec, tuned to fit

nicely in the range of the motion detectors.

3.2 Learning the Transform

3.2.1 Geometric Analysis

Without too many simplifying assumptions, one can find an analytic solution for the

position (a,,y) of an object in the camera field, given the head orientation and the

position of the object in space.

Let us assume that the neutral point of the camera optics is centered on the pivot

point of the neck; this is not the case, but I am deferring the corrections until later.

Refering to Figure 3-5, let ' be the target position relative to the camera. When the

head is in full upright and locked position, the camera orientation is described by

axial unit vector 110o = (0, 0, 1); the camera horizontal is described by perpendicular

unit vector ^Lo = (1, 0, 0).

When the head moves, tilt angle Ot specifies the elevation of the camera's horizontal

plane off the horizon, and pan angle 8, specifies the rotation of the camera in that

plane. The camera orientation is modified by a rotation matrix R, yielding ^11 = R^llo
and 8j = R o±0 , where

cos 9, 0 - sin O,
R = sin 0P sin Ot cos Ot cos 0, sin Ot .

sin Op cos Ot - sin Ot cos 0p cos Ot

In order to work out the optics, we need to express the target position in terms of

o,. and 000, where 8o, is the angle betweeen ^11 and ', and 0o9 is the angle of r' relative

to the camera horizontal. Let r( = (r'- ill))11, the projection of ' onto the camera axis.

Then we get:

cos 0, - - r - c11

and

C o s 0 , rL 
r ' .L

cos , = Il- FI Tsin 8,. - sin 0,"

Note that both of these are independent of the object depth r.
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Figure 3-5: Simplified geometry of the head and camera. r' is the object position; ^p
is the axial vector of the camera; ^± determines the horizontal plane of the camera.

A ray of light from position r' enters the center of the camera optics with angles
(o•, 00). It exits at (Oi,, Oi) = (mOo,, ,Oo) - that is, Oo0 is unchanged; 0, is mulit-
plied by some constant dependent on the optic configuration. The resulting pixel

(X, y) illuminated by this ray is (d sin O9, cos Oio, d sin O9 , sin Oi,), where d is another
constant of the optics, related to the focal length.

From all of this, we can try tosolve for (x, y) in terms of (Op, Ot, r). An explicit
solution is not very pretty, and fortunately we don't really want an explicit solution.
Since the motion detection algorithm (Section 3.1.1) looks at motions of small patches
of visual field for small head displacements, we can locally linearize the solution by
finding the Jacobian J of (x, y) over (O,, 9O), such that

()=J ( O)

where J is a function of (0,, Ot, , y).

The general solution for J is unforgiving, too - to find it requires finding ri in
terms of (p, , xt, y), the inverse of the original optical projection. So, we will just
let our network learn it. However, it is relatively painless to solve J for the special
case where (x, y) is fixed at (0, 0), that is, for a point centered in the camera's field



of view. Working through yields

oo -md mdsin ,p cos O,(,) = 0 -md cos2 op

This will be used in Chapter 4 to double check what the network has learned.

Parallax Error

The above calculations were made assuming that the center of the camera optics

coincides with the center of rotation. In reality, it isn't, and this introduces a parallax

error, or depth dependence. Let the camera be offset from the pivot by some vector

/ = RAo (see Figure 3-6), and let 'o be the position of the object point relative to the

pivot. Now, r'is still the position relative to the camera, so the expressions for cos 0,

and cos 90 remain the same. However, ' varies with head orientation: r = ro - p.

This introduces an error term roughly proportional to P:

ro

The exact contribution is also affected by the orientation of o; if o is collinear with

the pan axis, then o" . llo = o • .A 0 = 0, and the offset will not cause any problems.

Otherwise, there will be an error which is inversely proportional to depth. Luckily,

on Cog most of the learning is done off of a background scene consisting of the far
walls of a large room, where is on the order of -.

rI

I

"I

t 
•  

n

Figure 3-6: Modification of the head and camera geometry when the camera is offset

from the pivot point of the neck by p.



3.2.2 Network Architecture

The learning problem comes down to learning the function (0p, Ot, x, y, 60p, 60)

(8z, Sy), which tells us how far a point in the visual scene moves when the head

moves. Any way the problem is expressed, it has eight degrees of freedom - the

solution set is an eight dimensional manifold. We could try to learn the explicit

functional solution of (Sx, Sy), which will be a map R' - 7,R 2. Or, we could use the

aforementioned linearized solution and learn the Jacobian J, which gives us a map
,g4  -- + JZ4 .

I chose to use the latter approach. The volume of the input space, which our

learning system has to model, is exponential in its dimension. Although we need to

learn twice as many outputs for the Jacobian over the explicit solution, the input

dimensionality is reduced by two. For a given complexity of learning technique (i.e.

number of nodes in a network), this increases the density with which the modeller can

cover its input space, which should mean a better model. Also, for purely aesthetic

reasons, the latter approach is closer to the heart of the problem. We are really inter-

ested in the effect of position differentials, not absolute positions, so the differential

approach is more natural.

J could be learned via a number of different techniques, ranging from learning

unknown parameters of the exact functional form, to maintaining a table of examples

to interpolate from; Atkeson (1989) gives a review of the possibilities. I chose a

function approximation scheme consisting of a hybrid neural network of linear experts,
similar to a network used by Stokbro et al. (1990). This network is a type of mixture

of experts model, composed of a set of output nodes {Upq,} and a set of gating nodes

{gi}. It generates an interpolated, piecewise linear approximation of J. The network

architecture is illustrated in Figure 3-7. In this diagram, and for convenience in the

rest of this discussion, (Xl, X 2) = (x, y) and (zl, z 2) = (Op, Ot).

Each output node Upqj is a linear function of ' and F, corresponding to an element
Jpq of the matrix J:

Upqi = apqijxj + E bpqijzj + Cpqi (3.1)

Each gating node gi - one for every set of output nodes - is a radial gaussian unit
characterized by a mean ji. The receptive field of a node gi determines a region of
expertise for its associated output nodes upqi. That is, for some input {f, z-, the
weight given to the linear approximation wup in the final output is:

h = - -, gj = e (3.2)

The final output of the network is the weighted sum of all the linear approximations
contained therein:

JP = hiujqi (3.3)

Each output node upqi is thus an expert for inputs in a neighborhood about the mean
;ii; the output of the network is the sum of the experts' opinions, weighted by their

expertise.



This network is trained in two phases. First, competitive learning - an unsu-

pervised learning technique - is used on the gating network. A new input {I, i} is

presented to the gating nodes and the "fittest" node - the one with maximal hi -

is jostled closer to the input point via:

AjiA = p({A , } --1), (3.4)

where p is an appropriately chosen (i.e. small) learning rate constant. The overall

effect of this jostling is to distribute the gating nodes' receptive fields over the input

space. Although the input vectors are represented as members of some real space R"

(in this case, VR4), they may lie in a lesser dimensional manifold or be restricted to

some bounded subset. With competitive learning, the gating nodes find this subspace,
concentrating the efforts of the linear expert nodes where they are actually needed.

In the second phase of training, the output nodes {Upq,} are trained using gradient

descent with a least-mean-squares (LMS) learning rule, a standard supervised learning

technique (Hertz, Krogh & Palmer 1991). As mentioned earlier, the error signal is

simply Ah , the compensated output from a motion detector, since the system is

being trained to report zero motion. After propagating AX back through a sum-of-

square-error cost function, weight updates take the form:

Aapqij = 1 hi(6Szq)(AXcp)Xj (3.5)

Abpqij = 7lhi(6zg)(Axz,)zi (3.6)

Acpqi = ?h;(68Zq)(Az,) (3.7)

where l is another learning rate constant.

Both learning phases are applied to the network with every new data point, col-

lected in real-time from the motion detectors. Since each datum is a fresh, new piece

of information from the world-at-large, there is no danger of overtraining the network,
as there might be if the network were being trained from some fixed sample data set.
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Chapter 4

Performance

The algorithms described in the previous chapter have been implemented on Cog,
and they actually work, more or less. Several experimental runs were made to test

the performance of the system. All of these runs were with a network of 25 experts.

The network code uses L's software floating point, which is slow. Twenty-five experts

translates into 600 parameters to be adjusted at every time step, which translates

into a single detector sytem throughput of 3 motion vector updates per second.

In the experimental runs, I was interested in three aspects of the system perfor-

mance:

* RMS motion vector output vs. time. Recall that we assume that the world is

mostly still (especially at 4am) and that the motion vector output is used as

the training signal for the network. The average motion vector output is thus

a measure of the network error over time.

* Direct network output. The network is supposed to be learning the Jacobian J.

It is enlightening to compare the function it actually learns to the special-case

analytical solution from Section 3.2.1.

* Positions of the linear experts vs. time. The competitive learning phase forces

the experts to move around in the input space. Hopefully they behave in a

rational way.

The system performance is determined by three sets of parameters:

* the learning rates p and qi. The learning rates determine how much a network

weight is changed at each learning step, affecting the speed and stability of the
system.

* the number of linear experts. The number of experts determines how finely the

input space is partitioned by the network and the level of detail in the resulting

model. The trade-off is between accuracy and speed.

* the dimension of the input space. The input space is basically four dimensional

(Op, , , z,y), but for the sake of comparison some runs were made with the
motion detector fixed at center screen, constraining the input space to two
dimensions.



4.1 Overall Error

The primary performance measure for this system is the network training error. Fig-

ure 4-1 gives graphs of the root-mean-square (RMS) error for four different values of

the expert learning rate iq. Each data point in these graphs corresponds to the value

of the x or y component of the corrected motion vector, averaged over 1000 updates.

In each run, Cog's head moved around its entire range of motion, and the target

patch of the motion detector moved to a different location in the video frame every

two seconds. The compensation network had to model the entire four dimensional

input space, and the error is averaged over that entire space.

In each case the error decayed to a non-zero base level. I fit the data to the

function

E = Eo + ke-

to find the baseline error ,o and the time constant 7 for the convergence of the network.

Figures 4-2(a) and 4-2(b) summarize these results.

The time constants r varied roughly inversely with 1, as expected. The y-error

always converged faster than the x-error. This might be because values in the y

components of the network have a larger effect than in the x components, due to the

scaling and normalization of 0, and Ot. Those components of J did not have to grow

as large, so they converged faster.

The baseline error eo converged to roughly the same amount for all values of rj. I

had expected o, to be larger for larger 77, because of enhanced noise susceptibility in

the network. It is not, and this leads me to suspect another, larger source of noise

in the system which limits how much the network can learn. This noise amounts to

only 1 bit, however, so it could just be a limitation of the 3-bit motion detector.

For another comparison, I repeated the 71 = 5.0 run with the motion detector

target fixed at center screen. This constrained all the input data to lie on a single

plane in (0,, Ot, x, y)-space, and the twenty-five experts confined themselves to that

plane instead of exploring the entire space. Surprisingly, the network performance was

not much improved, if improved at all. Figure 4-3 shows the error results from this

run, and Figure 4-4 compares the curve fits of this run with original full 4-dimensional

run.

I also tried an additional run with q = 500, but the results were erratic and the

network never converged.

4.2 Network Output

The network does appear to converge, but what does it converge to? Figure 4-5 shows

a plot of the analytical solution of J vs. (0,, 6t, x, y) for (x, y) fixed at (0, 0). This is

not the exact solution for Cog, but an illustration of the basic functional form, taking

into account the scaling of ,p and Ot. Figure 4-6 shows the actual network output

(after training with 77 = 5.0 and p = 0.05) for the same case. They don't look very

much alike.

This strange outcome is most probably a result of the parallax error discussed at
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Figure 4-4: Comparison of fitted curves of motion detector error for learning over a
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Figure 4-5: Illustrative plot of the analytical solution of J, for (X, y) = (0, 0). p and

t correspond to O, and Ot.

the end of Section 3.2.1. The most suspicious clue is the Ot dependence of , which

should be Ot independent. As Cog looks up or down, it sees the ceiling and floor,
which are much closer than the far wall seen at center position. The closer an object

is, the greater effect a change in O, will have, so the magnitude of the learned 0= will

be larger.

Another possibility is that the twenty-five experts are too sparsely distributed

over the input space to accurately model J. To test this hypothesis, I looked at the

output from a network trained over two dimensions only. In such a case, the experts

are distributed over the one plane of interest, with a sufficient density to capture all

of the turning points in the analytical solution. The result is plotted in Figure 4-7.

This is qualitatively the same as the output from the sparse 4-dimensional case.

Unfortunately, it seems that Cog is learning some twisted depth map of the room.

The depth effects, combined with any other systematic effects which contribute to
the base error, prevent the network from learning the expected clean-cut analytical
solution.
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Figure 4-6: Plot of J as learned by the network, shown for (x, y) = (0, 0). p and t

correspond to 0, and Ot.
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4.3 Expert Positions

The positions of the linear experts in the compensation network are not fixed; com-

petitive learning causes them to move around and distribute themselves about the

input space. As long as the learning rate p is left non-zero, this is a continuous pro-

cess. The advantage of this is that the distribution of experts will adapt to track the

distribution of input data. The disadvantage is that the structure of the network is

always in flux, although this is not a problem if the experts learn fast enough to keep

up with the motion.

Figure 4-8 shows the positions of linear experts at five timesteps in a network

trained over two dimensions only. All the experts were contained in the plane of the

page. The density is large enough that once the experts have dispersed, they tend

to stay in about the same place. In this graph, each position is separated by 5000

network updates; since one expert is moved at each update, this amounts to about

200 updates per expert between data points.

Expert Positions, 2-D case
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Figure 4-8: Positions of linear experts every 5000 updates of the network. Learning

was constrained to the plane (x, y) = (0, 0). (r = 5.0, p = 0.05)

Figure 4-9 shows the expert positions for a network trained over all four dimen-

sions. The positions vary in x and y, but only the projection onto the Op-0t plane is

shown. The density of experts in this case is much lower, and the experts seem to

swim around without finding a stable configuration. Note that in this graph has only

100 updates per expert between data points. Despite this constant movement, the

4-D network did not perform any worse than the 2-D network.



Expert Positions, 4-D case
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Figure 4-9: Positions of linear experts every 2500 updates of the network, projected

onto a (O,, Ot)-plane. The experts are actually distributed through a four dimensional

space. (7 = 5.0, p = 0.05)
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Chapter 5

Future

To quote Karen Carpenter, "We've only just begun to live." The work presented here

is the precursor to better solutions for harder problems. Future work will proceed on

three levels:

* refinements to the current system

* extensions of the current system

* generalization to other systems

Much of the future work will require faster processing and distributed processing.

The work will progress hand-in-hand with the development of other systems on Cog.

Refinements

Refinements to the current system include all the changes which improve function

without really changing functionality. The causes of the baseline error in motion

detection need to be pinned down. If this error is just one-bit noise in a three bit

system, it could be reduced by improving the dynamic range, say by searching over

17 possible horizontal and vertical correlations to achieve a 4-bit result. Another

possibility is grabbing a sequence of video frames and producing some kind of multi-

scaled output that measures the movement over different time delays, using longer

delays to resolve slower movements.

Some other refinements will require faster processors. The network computation

would benefit from a hardware floating point unit. Before that becomes available, it

may be worthwhile to recode the network to use a fixnum-based fixed-point calcula-

tion. Motion detection might also be more accurate if images were not reduced to

black-and-white. However, any correlation more sophisticated than the current one

bit per pixel XOR cannot be accomplished in real-time on a 68332.

I would also like to see multiple motion detector processes running on multiple

cameras, so that Cog actually computes a motion vector field over the scene.



Extensions

The first and most simple extension to the current system is to account for all three

degrees of freedom in the neck: pan, tilt, and the yet unused roll. Roll is not necessary

to explore a scene, and analysis of the system was easier with only two degrees of

freedom instead of three, so I left out roll in these experiments. Adding roll just means

another adding another input parameter to the network, and running one more set of

motor handler processes to control the extra motor. This will slow the system down

even more.

The system also needs to account for depth. Adding depth to the network is easy,
"just one more input parameter" (although this would bring our total to six, which

is a very large input space). The tricky part is getting the depth information. This

requires vergence control of the two eyes, a whole visuomotor subsystem unto itself.

Furthermore, depth information will most likely pertain to the center of attention of

the foveal view, not to odd patches in the periphery. The neck-compensated motion

detection may be fated to always being a depth-free approximation. I am not sure

how Cog will be able to learn this if it is stationary in the room.

I do want to extend the network to incorporate dynamics. Right now, it only

models head kinematics, giving motion corrections based on neck joint position. The

system might yield better results if it could also process neck motor commands, and

anticipate neck motion. The network also needs to learn about delays in position

feedback from the motor control boards and delays in video output from the frame

grabbers. Control theories borrowed from the Smith predictor would help here.

Generalization

Sometime soon, the eyes have to start moving, instead of being fixed in place by cable-

ties. Once the eyes are darting around with saccades and VOR reflexes, everything

described here will cease to function. With eye movement, there will be at least three

interacting sensorimotor systems - neck control, eye control, and motion detection

- with mutual interactions and three maps to describe those interactions. How to

learn and compose those maps, even in the absence of saccades, vergence, and VOR,

is a wide-open question.



Appendix A

Budget Framegrabber v1.4.3

Just in case someone feels like building one

Budget Framegrabber v1.4.3. The schematic

from scratch, here is the parts list for

is on the next page.

Quantity Description Package DigiKey Part #'s

11 0.1,uF capacitor SMD DK/PCC104B

1 0.01ILF capacitor SMD DK/PCC1038

4 75Q, 1% resistor SMD DK/P75.0FBK-ND

1 50&f, 1% resistor SMD DK/P49.9FBK-ND

1 15Qt, 1% resistor SMD DK/P15.0FBK-ND

1 100f2, 1% resistor SMD DK/P100FBK-ND

1 20012, 1% resistor SMD DK/P200FBK-ND

1 10k0, 5% bussed res. network SIP DK/R5103

1 200U 4mm trimmer pot. SMD DK/P1D201

1 100Qt 4mm trimmer pot. SMD DK/P1D101

1 1Mf2 4mm trimmer pot. SMD DK/P1D106

1 dual 1N4148 diode (BAV99) SMD DK/BAV99PH

1 green LED (Pana. LN1351C) SMD DK/P501CT-ND

1 hex-coded switch DIP DK/SW215-ND

6 44-pin/2-row female header PC

1 3-pin rt.ang. .156" header PC DK/WM4701-ND

1 3-pin .156" housing - DK/WM2101-ND

3 .156" crimp terminals - DK/WM2300-ND

2 BNC jack, right-angle mount PC DK/ARF1065-ND

1 Bt218 video ADC PLCC

1 Btl21 video DAC PLCC
1 LM1881 sync separator SMD

1 19.6608 MHz clock oscillator DIP DK/CTX090

1 16v8 PAL PLCC

1 22v10 PAL PLCC
2 74HC4520 dual 4-bit counter SMD DK/CD74HCT4520E
1 74HC4024 7-bit ripple counter SMD
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Figure A-i: Schematic diagram for the Budget Framegrabber vl.4.3.
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Appendix B

InterProcess Socks v2.2

The following summary sheet lists the macros and functions defined by IPSv2 for ma-

nipulating svariables and sprocesses. This is an excerpt from the Humanoid Software

reference manual (Brooks et al. 1994, Ch. 9).

IPSv2 Summary Sheet

Svariables

def-svariable name {value-form}

make-svariable name {value}

data variable-expression

flag variable-expression

variable variable-expression

not if y variable-expression

[Macro]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

Sprocesses

def-sprocess name {options}* {body}

make-sprocess name {options}* {body}

def-stemplate name {options}* {body}

make-stemplate name {options}* {body}

destroy-sprocess name

spawn-sprocess name {arguments}*

kill-sprocess name

show-sprocess name

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]



spvref sproc name [Function]

References port variable name in sprocess sproc. name should evaluate to a symbol

(e.g. a quoted symbol).

Sprocess Options

* :VARIABLES signals a list of port variables. Each item in the rest of the list is

a port variable descriptor, with these formats:

- name - name will be, by default, a svariable with initial data NIL

- (name {value}) - name will be a svariable with initial data value

- (name type-spec { type-arg} { value}) - the port-variable name has a type

specified by type-spec and type-arg (if required). Valid type-specs are:

* :SHARED - specifies a svariable, the default type. No type-arg.

* : S-ARRAY - specifies an array of svariables. type-arg is a list of array

dimensions suitable for passing to make-array.

* :GENERIC - specifies that the port-variable is just a plain variable, as

opposed to a svariable. No type-arg.

In all of the above, the value form is optional and defaults to NIL. This form is

evaluated only once, when the sprocess is created.

* :ARGUMENTS signals a list of passed-in arguments. In the sprocess body, these

become variables whose value is initialized whenever the sprocess is spawned.

Each argument specifier can take one of two forms:

- arg - arg is a passed-in argument which defaults to NIL

- (arg {value}) - arg is a passed-in argument which defaults to value

(which is optional and defaults to NIL).

Default values for passed-in arguments can be overridden in spawn-sprocess

when the sprocess is spawned or respawned; if not overridden, a default value

form is evaluated every time a sprocess is spawned.

* :OPTIONS signals a list of spawning options for the sprocess. This is a list of

keywords and values, as you would find in an invocation of spawn. The following

options are available:

- :NO-SPAWN - specify t to not automatically spawn the sprocess after it is

created

- :TICKS - see spawn in the L manual

- : STACKSIZE - see spawn in the L manual

Any option available to spawn can be used here, except for :PATTERN and

:ARGLIST which are used specially by IPS.



* TEMPLATE - specify that the sprocess should be created from a pre-existing

template instead of from scratch. :TEMPLATE should be followed by the name

ofl a stemplate. A new sprocess will be created with the procedure body, port

variable, and passed-in argument structure specified by the template.

If an :OPTIONS list is given, its spawn options will supersede those of the tem-

plate. :VARIABLES and :ARGUMENTS lists can be used to specify new initializa-

tion forms, however they cannot specify new variables or arguments, nor can

they specify different variable types.

And, of course, you cannot specify a procedure body when using :TEMPLATE. If

you did, you wouldn't need the template!

lor an expression that evaluates to...
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