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Abstract

Autonomous robots must be able to learn and maintain models of their environ-
ments. Research on mobile robot navigation has produced two major paradigms
for mapping indoor environments: grid-based and topologica. While grid-based
methods produce accurate metric maps, their complexity often prohibits efficient
planning and problem solving in large-scale indoor environments. Topological
maps, on the other hand, can be used much more efficiently, yet accurate and
consistent topol ogical maps are considerably difficult to learn in large-scale envi-
ronments.

This paper describes an approach that integrates both paradigms. grid-based
and topological. Grid-based maps are learned using artificial neural networks
and Bayesian integration. Topological maps are generated on top of the grid-
based maps, by partitioning the latter into coherent regions. By combining both
paradigms—grid-based and topol ogical—, the approach presented here gains the
best of both worlds: accuracy/consistency and efficiency. The paper gives re-
sults for autonomously operating a mobile robot equipped with sonar sensors in
populated multi-room environments.
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1 Introduction

To efficiently carry out complex missions in indoor environments, autonomous
mobile robots must be able to acquire and maintain models of their environments.
The task of acquiring modelsisdifficult and far from being solved. The following
factors impose practical limitations on a robot’s ability to learn and use accurate
models:

1. Sensors. Sensors often are not capable of directly measuring the quantity of
interest. For example, cameras measure color, brightness and saturation of
light, whereas for navigation, one might be interested in assertions such as
“thereisadoor infront of therobot”

2. Perceptual limitations. The perceptua range of most sensors (such as ultra-
sonic transducers, cameras) islimited to asmall range around the robot. To
acquire global information, therobot hasto actively exploreitsenvironment.

3. Sensor noise. Sensor measurementsaretypically corrupted by noise. Often,
the distribution of thisnoiseis unknown (it is rarely Gaussian).

4. Drift/slippage. Robot motionisinaccurate. Unfortunately, odometric errors
accumulate with time. For example, even the smallest rotationa errors can
have huge effects on subsequent trandlational error when estimating the
robot’s position.

5. Complexity and dynamics. Robot environmentsare complex and dynamic,
making it principally impossible to maintain exact models.

6. Real-timerequirements. Time requirementsoften demand that theinternal
model must besimpleand easily accessible. For example, accuratefine-grain
CAD models of complex indoor environments are often disadvantageous if
actions have to be generated quickly.

Recent research has produced two fundamental paradigms for modeling indoor
robot environments: thegrid-based (metric) paradigmand thetopol ogical paradigm.
Grid-based approaches, such as those proposed by Moravec/Elfes [19] and Boren-
stein/Koren [2] and many others, represent environments by evenly-spaced grids.
Each grid cell may, for example, indicate the presence of an obstacle in the cor-
responding region of the environment. Topological approaches, such a those
describedin[7, 14, 15, 17, 22, 35], represent robot environmentsby graphs. Nodes
in such graphs correspond to distinct situations, places, or landmarks (such as
doorways). They are connected by arcs if there exists a direct path between them.
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Both approaches to robot mapping exhibit orthogona strengths and weak-
nesses. Occupancy grids are considerably easy to construct and to maintain even
in large-sca e environments[3]. Since the intrinsic geometry of agrid corresponds
directly to the geometry of the environment, the robot’s position within its model
can be determined by its position and orientation in the real world—which, as
shown below, can be determined sufficiently accurately using only sonar sensors,
in environments of moderate size. As a pleasing consegquence, different positions
for which sensors measure the same vaues (i.e., situationsthat look aike) are nat-
urally disambiguated in grid-based approaches. Thisisnot the casefor topological
approaches, which determine the position of the robot relative to the model based
on landmarks or distinct sensory features. For example, if the robot traverses two
places that ook alike, topological approaches often have difficulty determining if
these places are the same or not (particularly if these places have been reached via
different paths). Also, since sensory input usually depends strongly on the view-
point of the robot, topological approaches may fail to recognize geometrically
nearby places.

Ontheother hand, grid-based approaches suffer from their enormous space and
time complexity. This is because the resolution of a grid must be fine enough to
capture every important detail of the world. The key advantage of topological rep-
resentation is their compactness. The resolution of topological maps corresponds
directly to the complexity of the environment. The compactness of topological
representations gives them three key advantages over grid-based approaches: (a)
they permit fast planning, (b) they facilitate interfacing to symbolic planners and
problem-solvers, and (c) they provide more natura interfaces for human instruc-
tions (such as. “go to room A’). Since topological approaches usualy do not
reguire the exact determination of the geometric position of the robot, they often
recover better from drift and slippage—phenomenathat must constantly be moni-
tored and compensated in grid-based approaches. To summarize, both paradigms
have orthogonal strengths and weaknesses, which are summarized in Table 1.

This paper advocates to integrate both paradigms, to gain the best of both
worlds. The approach presented here combines grid-based (metric) and topolog-
ical representations. To construct a grid-based model of the environment, sensor
values areinterpreted by an artificial neural network and mapped into probabilities
for occupancy. Multipleinterpretationsare integrated over timeusing Bayes' rule.
On top of the grid representation, more compact topological maps are generated
by splitting the metric map into coherent regions, separated through critical lines.
Critical lines correspond to narrow passages such as doorways. By partitioning the
metric map into a small number of regions, the number of topological entitiesis
several orders of magnitude smaller than the number of cellsin the grid represen-
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Grid-based (metric) approaches

Topological approaches

easy to build, represent, and maintain
recognition of places (based on geome-
try) is non-ambiguous and view point-
independent

facilitates computation of shortest paths

planning inefficient, space-consuming
(resolution does not depend on the com-
plexity of the environment)

requires accurate determination of the
robot’sposition

poor interface for most symbolic prob-

permits efficient planning, low space
complexity (resolution depends on the
complexity of the environment)

does not require accurate determination
of the robot’s position

convenient representation for symbolic
planner/problem solver, natural lan-

guage

difficult to construct and maintain in
larger environments

recognition of places (based on land-
marks) often ambiguous, sensitivetothe
point of view

may yield suboptimal paths

lem solvers

Table 1: Advantages and disadvantages of grid-based and topologica approaches
to map building.

tation. Therefore, the integration of both representations has unique advantages
that cannot be found for either approach inisolation: the grid-based representation,
which is considerably easy to construct and maintain in environments of moderate
complexity (e.g., 20 by 30 meters), models the world consistently and disam-
biguates different positions. The topological representation, which is grounded in
the metric representation, facilitates fast planning and problem solving.

The robots used in our research are shown in Figure 1. Among other sensors,
all robotsare equipped with an array of 24 sonar sensors. Sonars sensorsreturn the
proximity of surrounding obstacles, along with noise. Throughout this paper, we
will restrict ourselves to the interpretation of sonar sensors, athough the methods
described here have (in a prototype version) also been operated using cameras and
infrared light sensors in addition to sonar sensors, using the image segmentation
approach described in [3]. The integrated approach to map building with sonar
sensors has extensively been tested in variousindoor environments.

The remainder of the paper is organized as follows. Section 2 describes our
approach for building grid-based maps, followed by the description of our approach
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Figure 1: Therobotsused inour research: RHINO (University of Bonn), XAVIER,
and AMELIA (both CMU).

to building topological maps, described in Section 3. Subsequently, Section 4
evaluatesthe utility of theintegrated approach empirically. The paper isconcluded
by adiscussionin Section 5.

2 Grid-Based Maps

The metric maps considered here are discrete, two-dimensional occupancy grids,
as originaly proposed in [6, 19] and since implemented successfully in various
systems. Each grid-cell (z,y) in a map has a value attached that measures the
subjective belief that this cell is occupied. More specificaly, it contains the belief
whether or not the center of the robot can be moved to the center of that cell (it
represents the configuration space of the robot, see eg., [16]). Occupancy values
are determined based on sensor readings.

This section describes the four major components of our approach to building
grid-based maps [31]:

1. Interpretation. Sensor readings are mapped to occupancy values.

2. Integration. Multiple sensor interpretations are integrated over time, to
yield acombined estimate of occupancy.
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3. Position estimation. The position of the robot is constantly monitored and
errors are corrected.

4. Exploration. Shortest path through unoccupied regions are generated to
move the robot towards unexplored terrain.

Examples of metric maps are shown in various places in this paper.

2.1 Sensor Interpretation

To build metric maps, sensor reading must be “tranglated” into occupancy values
oce,,, foreach grid cell (z, y). Theideahereistotrain an artificial neural network
[25] using Back-Propagation to map sonar measurementsto occupancy values[31].
Asshown in Figure 2, the input to the network consists of

¢ two valuesthat encode (z, y) in polar coordinates rel ative to therobot (angle
to thefirst of the four sensors, and distance), and

e thefour sensor readings closest to (z, y).

The output target for the network is 1, if (=, y) isoccupied, and O otherwise. Train-
ing examples can be obtained by operating a robot in a known environment, and
recording its sensor readings; notice that each sonar scan can be used to construct
many training examples for different x-y coordinates. In our implementation,
training examples are generated by a mobile robot simulator.

Once trained, the network generates values in [0, 1] that can be interpreted as
probability! for occupancy. Figure 3 showsthree examplesof sonar scans (top row,
bird’'s eye view) along with their neura network interpretation (bottom row). The
darker avdueinthecircular region around therobot, thelarger the occupancy value
computed by the network. Figure 3a&b show situationsin a corridor. Here the
network predictsthewallscorrectly. Notice theinterpretation of the erroneousiong
reading in theleft side of Figure 3a, and the erroneous short reading in 3b. For the
area covered by those readings, the network outputs roughly 0.5, which indicates
its uncertainty. Figure 3c shows a different situation in which the interpretation of
the sensor valuesis less straightforward. This exampleillustrates that the network
interprets sensors in the context of neighboring sensors. Long readings are only
interpreted as free-space, if the neighboring sensors agree. Otherwise, the network
returnsvaluescloseto 0.5, which againindicatesuncertainty. Situationssuch asthe

11t has been shown that, under certain assumption, a neural network trained to predict a binary
random variable approachesthe probability distribution of this random variable [11, 36]



Figure 2: An artificial neura network maps sensor measurements to probabilities
of occupancy.

one shown in Figure 3c—that defy simpleinterpretation—aretypical for cluttered
indoor environments.

Training a neura network to interpret sonar sensors has two key advantages
over hand-crafted approaches to sensor interpretation:

1. Since neura networks are trained based on examples, they can easily be
adapted to new circumstances. For example, the walls in the competition
ring of the 1994 AAAI robot competition [29] were much smoother than
the walls in the building in which the software was originally developed.
Even though timewas short, the neural network could quickly beretrained to
accommodatethisnew situation. Others, such as Pomerleau [23], a so report
a significant decrease in development time of integrated robotic systems
through the use of machine learning algorithms.

2. Multiple sensor reading are interpreted simultaneously. Maost current ap-
proachesinterpret each sensor reading individually, one-by-one, which amounts
to making a conditiona independence assumption between adjacent sonar
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Figure 3. Sensor interpretation: Three example sonar scans (top row) and local
occupancy maps (bottom row), generated by the neural network. Bright regions
indicate free-space, and dark regions indicate walls and obstacles (enlarged by a
robot diameter).

sensors. Thisassumptionisquestionablein practice. For example, thereflec-
tion properties of most surfaces depend strongly on the angle of the surface
to the sonar beam, which can only be detected by interpreting multiple sonar
sensors simultaneously.

2.2 Integration Over Time

Sonar interpretations must be integrated over time, to yield a single, consistent
map. To do so, it isconvenient to interpret the network’s output for the ¢-th sensor
reading (denoted by s(V)) as the probability that a grid cell (z,y) is occupied,
conditioned on the sensor reading s(*):

Prob(occ, 4| sM)

A mapisobtained by integrating these probabilitiesfor all avail ablesensor readings,
denoted by s, s ... s(T). In other words, the desired occupancy value for
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each grid call(z, y) can be written as the probability
Prob(occgw|s(l)7 s@ S(T)),

which isconditioned on all sensor reading. A straightforward approach to estimat-
ing this quantity isto apply Bayes' rule. To do so, one hasto assume independence
of the noisein different readings. More specifically, given the true occupancy of a
gridcell (=, y), theconditional probability Prob(s(*)|occ, ,,) must beassumedtobe
independent of Prob(s(*)|oce, ) ift # t'. Thisassumptionisnotimplausible—in
fact, it iscommonly made in approaches to building occupancy grids. The desired
probability can now be computed as follows:

Prob(ocey y|sM, s (1)) =

—1
1- (14 Prob(z) ﬁ Prob(ocey |s'7))  1— Prob(z)
1-Prob(z) -2, 1—Prob(occ, y|s(7)  Prob(x)

Here Prob(z) denotesthe prior probability for occupancy (which, if set to 0.5, can
be omitted in thisequation). The derivation of thisformulais straightforward and
can befoundin[19, 21]. Noticethat thisformulacan be used to update occupancy
values incrementally. An example map of a competition ring constructed at the
1994 AAAI autonomous robot competitionis shown in Figure 4.

2.3 Position Estimation

The accuracy of the metric map depends crucially on the aignment of the robot
with itsmap. Unfortunately, slippage and drift can have devastating effects on the
estimation of the robot position. Identifying and correcting for slippage and drift
istherefore an important issuein map building [9, 24].

Figure 5 gives an examplethat illustrates the importance of position estimation
in grid-based robot mapping. In Figure 5a, the position is determined solely based
on dead-reckoning. After approximately 15 minutesof robot operation, the position
error is approximately 11.5 meters. Obviously, the resulting map is too erroneous
to be of practical use. Figure 5b is the result of exploiting and integrating three
sources of information:

1. Whedl encoders. Wheel encoders measure the revolution of the robot’s
wheels. Based on their measurements, odometry yields an estimate of the
robot’s position at any point in time. We will denote this estimate by
(% oot Yrobot: Tronor) - AS can be seen from Figure 5a, odometry is very
accurate over short time intervals, but inaccurate in the long run.
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32.2 meters

Figure 4: Grid-based map, constructed at the 1994 AAAI autonomous mobile
robot competition with the techniques described here.

2. Map correlation. Whenever the robot interprets an actua sensor reading,
it constructs a “local” map (such as the ones shown in Figure 3). The
correlation of thelocal and the corresponding section of the global mapisa
measure of their correspondence [27]. Obviously, the more correlated both
maps are, the more similar the local map looks to the globa one, hence the
more plausible it is. The correlation is a function of the robot’s position
(@ oot Yrobot: Tronor) - THus, the correlation of the local with the global map
gives a second source of information for aligning the robot’s position.

3. Wall orientation. A third component memorizesthe global wall orientation
[4, 12]. This approach rests on the restrictive assumption that walls are
either parallel or orthogonal to each other, or differ by more than 15 degrees
from these canonical wall directions. In the beginning of map building, the
global orientation of wallsis estimated by analyzing consecutive sonar scans
(cf. Figure 6). Thisis done by searching straight lines that connect the
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@

(b)

Figure 5: Map constructed without (a) and with (b) the position estimation mecha
nism described in this paper. In (&), only thewheel encoders are used to determine
therobot’s position. The positional error accumulates to more than 11 meters, and
the resulting map is clearly unusable. This illustrates the importance of sensor-
based position estimation for map building.
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Figure 6: Wall, detected by considering five adjacent sonar measurements. Wall

orientations are used to correct for dead-reckoning errors in the robot orientation
Brobot.-

endpoints of five or more adjacent sonar measurements. Once the global
wall orientation (denoted by 6,4)) has been determined, subsequent sonar
are used to realign the robot’s orientation. More specifically, suppose the
robot detects alinein asonar scan. Let § be the angle of thislinerdative to
therobot. Then—in theidea case—

should be zero, i.e, , the detected wall should be orthogona or parald to
Awal. If thisisnot the case, the robot correctsits orientation accordingly,i.e.,
by minimizing

_ ) (ol = 15°)% if]a| <15°
0'(04) = { 0 if |Oé| > 15°

Thisfunctionisgraphically depicted inFigure 7. Ascan be seen by the shape
of thecurve, small deviationsareweighted themost, and wall orientationsare
only incorporated when they do not deviate from the expected orientation by
morethan 15°. Wefound empirically that thisposition estimation mechanism
is extremely robust to noise and errorsin wall detection.

All three mechanismshbasically provideaprobability density for therobot’sposition
[33]. The exact function that is being minimized when calculating the robot’s
positionisthe following:

J = 5K [(w?obot - ﬂCrobot)z + (yr*obot - yrobot) 2}
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Figure 7: Thefunction o and its derivative. o ismost sensitive to values close to
zero. Thus, small deviations of the expected and observed wall orientation have
the strongest effect. If this deviation is larger than 15°, it is completely ignored.
Consequently, wallsthat deviate from the expected wall orientation by more than
15° have no effect.

+ B2 (Orobot — Orobot)z
- [33 corr (wrobob Yrobot, erobot)
— B4 0 (Orobot + 0 — Owall) (1)

Here (1, (2, (3, and (4 are gain parameters that trades off the different sources
of information. The first two terms in (1) correspond to the odometry of the
robot. The third term measures the correlation between the globa and the local
map, and the fourth term relates the global wall orientation to the observed wall
orientation. In our implementation, Equation (1) is differentiable, and gradient
descent is employed to minimize /. When a new sonar reading arrives, the
previous gradient search isterminated and itsresult isincorporated into the current
position estimation.

Position control based on odometry and map correlation aone (items 1 and
2 above) works well if the robot travels through mapped terrain, but seizes to
function if the robot explores and maps unknown terrain. The third mechanism,
which arguably relies on a restrictive assumption concerning the nature of indoor
environments, has proven extremely valuable when autonomously exploring and
mapping large-scale indoor environments. Noticethat all maps shownin this paper
(with the exception of the map shown in Figure 5a) have been generated using this
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position estimation mechanisms.

2.4 Exploration

To autonomously acquire maps, the robot has to explore. The idea for (greedy)
explorationisto let the robot aways move on a minimum-cost path to the nearest
unexplored grid cell; The cost for traversing a grid cell is determined by its oc-
cupancy value. The minimum-cost path is computed using a modified version of
valueiteration, a popular dynamic programming algorithm [1, 13]:

1. Initialization. Unexplored grid cells are initialized with O, explored ones
with oc:

0, if (z,y) unexplored

Vey {oo, if (, ) explored

Grid cellsare considered explored if their occupancy value Prob(occ, ) has
been updated at least once. Otherwise, they are unexplored.

2. Updateloop. For al explored grid cells (z, y) do:

Viey = min  {Viye e+ Prob(occsieyic)}

£=-1,0,1
(=-1,0,1

Value iteration updates the value of al explored grid cells by the value of
their best neighbors, plus the costs of moving to this neighbor (just like A*
[20]). Cost is here equivaent to the probability Prob(occ, ,) that agrid cell
(z,y) isoccupied. The update ruleisiterated. When the update converges,
each value V, , measures the cumulative cost for moving to the nearest
unexplored cell. However, control can be generated at any time [5], long
before value iteration converges.

3. Determine motion direction. To determine where to explore next, the
robot generates a minimum-cost path to the unexplored. This is done by
steepest descent in 1/, starting at the actual robot position. Determining the
motion direction is done in regular time intervas, and is fully interleaved
with updating V.

Figure 8ashows V' after convergence, using the map shownin Figure 8b. All white
regions are unexplored, and the grey-level indicates the cumulative costs V' for
moving towards the nearest unexplored point. Notice that the all minima of the
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Figure 8: Autonomousexploration. (a) Explorationvalues 1, computed by value
iteration. White regions are completely unexplored. By following the grey-scale
gradient, the robot moves to the next unexplored area on a minimum-cost path.
(b) Actua path traveled during autonomous exploration, aong with the resulting
metric map. The large black rectangle in (@) indicates the globa wall orientation

Owall -

value function correspond to unexplored regions—there are no local minima. For
every point (z, y), steepest descent in V' leads to the nearest unexplored area.
Unfortunately, plain value iteration is too inefficient to allow the robot to
exploreinreal-time. Strictly speaking, the basic val ue iteration algorithm can only
beappliedif thecost function doesnot i ncrease (which frequently happenswhenthe
map isupdated). Thisisbecauseif the cost function increases, previously adjusted
values V' might become too small. While valueiteration quickly decreases values
that are too large, increasing values can be arbitrarily slow [31]. Consequently,
the basic value iteration algorithm requires that the value function be initiaized
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completely (Step 1) whenever the map—and thus the cost function—is updated.
This is very inefficient, since the map is updated amost constantly. To avoid
complete re-initializations, and to further increase the efficiency of the approach,
the basic paradigm was extended in the following way:

4. Selectivereset phase. Every timethe map isupdated, only values V,, , that
aretoo small areidentified and reset. Thisisachieved by the following loop,
which isiterated:

For al explored (z, y) do:

. . V,
Voy¢—oc if V., < min rEyte
em_oq | Probloccoreyic)
C:_17071

Notice that the remaining V. ,-values are not affected. Resetting the value
table in this way bears close resemblance to the value iteration agorithm
described above.

5. Bounding box. To focus value iteration, a rectangular bounding box
[Zmins Tmax] X [Ymin, Ymax] 1S Maintained that contains all grid cellsin which
Vz,, may change. Thisbox iseasily maintained in the value iteration update.
As aresult, valueiteration focuses on small fraction of the grid only, hence
converges much faster. Notice that the bounding box bears similarity to
prioritized sweeping [18].

Figure 8b showsa snapshot of autonomousexploration in the environment depicted
in Figure 4. Theright plot, 8b, sketches the path taken during autonomous explo-
ration. At the current point, the robot has already explored the magjor hallways, and
is about to continue exploration of aroom. Circular motion, such as found in the
bottom of this plot, occur when two unexplored regions are about equally far away
(=same costs). Notice that the complete exploration run shown here took less than
15 minutes. The robot moved constantly, and frequently reached a vel ocity of 80
to 90 cm/sec (see dso [3, 10]).

Value iteration is a very general procedure, which has severa properties that
make it attractive for real-time mobile robot navigation:

e Any-timealgorithm. Asmentioned above, valueiteration can beunderstood
as an any-time planner [5]. Any-time algorithms are able to make decisions
regardless of thetime spent for computation. Themoretimethat isavailable,
however, the better the results. Value iteration allows the robot to explorein
real-time.
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e Full exception handling. Value iteration pre-plans for arbitrary robot lo-
cations. Thisis because V' is computed for every location in the map, not
just the current location of the robot. Consequently, the robot can quickly
react if it findsitself to be in an unexpected location, and generate appropri-
ate motion directions without any additional computationa effort. Thisis
particularly important in our approach, since the robot uses afast routinefor
avoiding collisions with obstacles, which may modify the motion direction
commanded by the planner at its own whim [10].

e Multi-agent exploration. Since value iteration generates values for al
grid-cells, it can easily be used for collaborative multi-agent exploration.

¢ Point-to-point navigation. By changing theinitializationof V' (Step 1), the
same approach is used for point-to-point navigation [31].

In grid maps of size 30 by 30 meters, optimized valueiteration, done from scratch,
reguires approximately 2 to 10 secondson a SUN Sparc station. In cases wherethe
selective reset step does not reset large fractions of the map (which isthe common
situation), value iteration converges in less than a second. For example, the
planning timein the map shown in Fig. 4 typically under 2 seconds, usually under
atenth of asecond. Inthelight of these results, one might be inclined to think that
grid-based maps are sufficient for autonomous robot navigation. However, value
iteration (and similar planning approaches) requires time quadratic in the number
of grid cells, imposing intrinsic scaling limitations that prohibit efficient planning
in large-scale domains. Due to their compactness, topological maps scale much
better to large environments. In what follows we will describe our approach for
deriving topological graphs from grid maps.

3 Topological Maps

3.1 Constructing Topological M aps

Topological maps are built on top of the grid-based maps. The key ideais simple
but very effective: The free-space of a grid-based map is partitioned into a small
number of regions, separated by critical lines. Critical lines correspond to narrow
passages such asdoorways. The partitioned map isthen mapped into anisomorphic
graph. The precise dgorithm isillustrated in Figure 9, and works as follows:

1. Thresholding. Initialy, each occupancy value in the occupancy grid is
thresholded. Cells whose occupancy value is below the threshold are con-



Figure 9: Extracting topological maps. (& Metric map, (b) Voronoi diagram,
(c) critical paints, (d) critical lines, (€) topologica regions, and (f) the topol ogical
graph.

sidered free-space (denoted by C'). All other pointsare considered occupied
(denoted by C).

2. Voronoi diagram. For each point in free-space (z, y) € C', thereisone or
more nearest point(s) in the occupied space C'. We will call these pointsthe
basis points of (z, y), and the distance between (z, y) and its basis points
the clearance of (x,y). The Voronoi diagram [16] is the set of points in
free-space that have at least two different (equidistant) basis-points. Figure
9b depicts a Voronoi diagram.

3. Critical points. The key idea for partitioning the free-space is to find
“critical points” Critical points (z, y) are points on the Voronoi diagram
that minimize clearance localy. In other words, each critical point (z, y)
has the following two properties: () it is part of the Voronoi diagram, and
(b) the clearance of dl pointsin an <-neighborhood of (x, y) is not smaller.
Figure 9c illustrates critical points.

4. Critical lines. Critical lines are obtained by connecting each critical point
with its basis points (cf. Figure 9d). Critical points have exactly two basis
points (otherwise they would not be local minimaof the clearance function).
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Critical lines partition the free-space into disjoint regions (see also Figure
%e).

5. Topological graph. The partitioning is mapped into an isomorphic graph.
Each region corresponds to anode in the topol ogical graph, and each critical
lineto an arc. Figure 9f shows an example of atopological graph.

Critical lines are motivated by two observations. Firstly, when passing through a
critical line, therobot isforced to movein aconsiderably small region. Hence, the
loss in performance inferred by planning using the topol ogical map (as opposed
to the grid-based map) is considerably small. Secondly, narrow regions are more
likely blocked by obstacles (such as doors, which can be open or closed).

Figure 10 illustrates the topological map extracted from the grid-based map
depictedin Figure4. Figure10ashowstheVoronoi diagram of thethresholded map,
and Figure 10b depictsthe critical lines (the critical points are on the intersections
of critical lines and the Voronoi diagram). The resulting partitioning and the
topological graph are shown in Figure 10c&d. As can be seen, the free-space has
been partitioned into 67 regions. Additional examples of metric and topological
maps are shown in Figures 11 and 12. These maps are partitioned into 22 (Figure
11c&d) and 39 regions (Figure 12c& d).

3.2 Planning with Topological M aps

The enormous compactness of topological maps—when compared to the under-
lying grid-based map—facilitates efficient planning. To replace the grid-based
planner by a topological planner, the planning problem is split into three sub-
prablems, dl of which can be tackled separately and very efficiently.

1. Topological planning. First, paths are planned using the abstract, topo-
logical map. Shortest paths in the topological maps can easily been found
using one of the standard graph search agorithms, such as Dijkstra's or
Floyd/Warshal’s shortest path algorithm, A*, or dynamic programming. In
our implementation, we used the value iteration approach described in Sec-
tion2.4.

2. Triplet planning. To trandate topological plans into motion commands,
a so-caled “triplet planner” generates (metric) paths for each set of three
adjacent topological regions in the topological plan. More specificaly,
let T1,T5, ..., T, denote the plan generated by the topologica planner,
where each T; corresponds to a region in the map. Then, for each triplet
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Figure 10: Extracting the topological graph from the map depicted in Figure 4: (a)
Voronoi diagram, (b) Critical points and lines, (c) regions, and (d) thefina graph.

(e) and (f) show a pruned version (see text).
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(a) Grid-based map (b) Voronoi diagram and critical lines

(c) Regions (d) Topological graph

1]
d—h—N

Figure 11: Another example of an integrated grid-based, topologica map.
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(a) Grid-based map (b) Voronoi diagram and critical lines

(c) Regions (d) Topological graph

25
363433 B7

(e) Pruned regions (f) Pruned topological graph

Figure 12: A third example.
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<Ti7 TZ'_|_17 Ti-|—2> (l = ].7 ceey n—1and Tn_|_1 = Tn), and each gl’ld cdlin T,
the triplet planner generates shortest paths to the cost-nearest point in 754 »
in the grid-based map, under the constraint that the robot exclusively moves
through 7’; and T;1. For each triplet, al shortest paths can be generated in
a single value iteration run: Each point in 7, is marked as a (potentia)
goal point (just likethe unexplored pointsin Section 2.4), and val ueiteration
is used to propagate costs through 7’41 to 7} just as described in Section
24. Triplet plans are used to “trandate” the topologica plan into concrete
motion commands: When therobot isin T3, it moves according to thetriplet
plan obtained for (T}, 111, T;+2). When the robot crosses the boundary of
two topological regions, the next triplet plan (751, 742, 1:+3) is activated.

The triplet planner can be used to move the robot to the region that contains
the goal location.

3. Final goal planning. Thefinal step involves moving to the actual goal loca-
tion, which again isdone with valueiteration. Notice that the computational
cost for this final planning step does not depend on the size of the map.
Instead, it depends on the size and the shape of the final topological region
T,, and the location of the goal.

The key advantage of this decomposition is that aimost al computation can be
done off-ling, for al path planning problems. For example, the map shown in
Figure 10, which is the most complex map investigated here, has 67 topological
nodes. Thus, there are only 67 x 66 = 4422 topologica plans, only haf of which
must be memorized (since topological plans are symmetric). The map also has
approximately 200 triplets, for which al triplet plansare easily computed. Thus, by
decomposing the planning in atopol ogical planning problem and atriplet planning
problem, and by pre-computing and memorizing al topologica and triplet plans,
path planning amounts to table-lookup.

However, it should be noted that the topol ogical decomposition does not change
the (worst-case) complexity of the planning problem, so that all one can hope for
is a constant speed-up. Assuming that the number of topological regions grows
linearly with the size of the grid-based map, and assuming that the size of each
region does not depend on the size of the map, topological planning using value
iteration is quadratic in the size of the environment (just like planning using the
grid-based map). The computational complexity of computing al triplet plans
is linear in the length of the path and hence in the size of the map), as is the
computation of all final goa-plans. In fact, computing all triplet plansand all final
goa plansis still linear in the size of the grid-based map, so that the topological
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planner isthe only non-linear component in the approach proposed here. Although
both—regular grid-based planning and topological planning—requirein the worst
case time quadratic in the size of the world, the fact that topologica maps are
orders of magnitude more compact |eads to a relative difference of several orders
of magnitude. This huge difference isimportant in practice.

4 Performance Results

Topological maps are abstract representations of metric maps. As is generally
the case for abstract representations and abstract problem solving, there are three
criteriafor assessing the appropriateness of the abstraction: consistency, loss, and
efficiency.

1. Consistency. Two maps are consistent with each other if every solution
(plan) in one of the maps can be represented as a solution in the other map.

2. Loss. Theloss measures the loss in performance (path length), if paths are
planned in the more abstract, topologica map as opposed to the grid-based

map.

3. Efficiency. Theefficiency measurestherelative time complexity of problem
solving (planning).

Typically, when using abstract models, efficiency is traded off with consistency
and performance | oss.

4.1 Consistency

The topologica map is always consistent with the grid-based map. For every
abstract plan generated using the topological map, there exists a corresponding
plan in the grid-based map (in other words, the abstraction has the downward
solution property [26]). Conversely, every path that can be found in the grid-based
map has an abstract representation which is a admissible plan in the topological
map (upward solution property). Notice that athough consistency appearsto bea
trivial property of the topological maps, not every topological approach proposed
in the literature generates maps that are consistent with their corresponding metric
representation.



Figure 13: Two examplesin which the approach presented here yields suboptimal
results. In both cases, the problem is to plan a path from “A” to “B”. (a) The
topologica planner will chose a sub-optimal path, since it leads only through
two intermediate regions (as opposed to three). Such situations occur only if the
topologica graph contains cycles (which correspond to isolates obstacles in the
thresholded grid-based map). (b) The triplet planner fails to move the robot on a
straight line, since it looks only two topol ogical regions ahead.

4.2 Loss

Abstract representations lack detail. Thus, paths generated from topological maps
may not be as short as paths found using the metric representation. For example,
Figure 13a shows a situation in which atopologica planner would chose a detour,
basi cally because of thedifferent sizesand shapesof thetopol ogical regions. Figure
13b depictsasituation in which the triplet-planner woul d give non-optimal results,
since is determines the motion direction based on alimited |ook-ahead.

To measure the average performance loss, we empiricaly compared shortest
paths found in a metric map with those generated using the corresponding topo-
logical approach, for each of the three maps shown in Figures 4, 10, 11, and 12.
Theresults are summarized in Table 2. For example, for the map shownin Figures
4 and 10d, we conducted a total of 23,881,062 experiments, each using a different
starting and goa positionthat were generated systematically with an evenly-spaced
grid. The results are intriguing. Planning with the topological map increases the
length of the paths by an average of 3.24%. In other words, the average length of
ashortest path is 15.88 meters, which increases on average by 0.51 meters if robot
motion is planned using the topological map. 0.28 meters (1.82%) are due to sub-
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map 1 (Figs. 4,10) | map 2 (Figures11) | map 3 (Figures 12)
grid cells 27,280 20,535 19,236
resolution 15¢cm 10cm 15cm
cycles 8 0 1
topological regions 67 22 39
triplets 626 184 352
average shortest path length
... Mmeters 15.87 9.42 11.55
...grid-cells 94.2 84.8 68.5
... topological regions 7.84 4.82 6.99
averageloss
... due to topological planning 1.82% 0.00% 0.03%
... dueto triplet-planning 1.42% 1.19% 1.28%
...total loss 3.24% 1.19% 1.31%
total experiments 23,881,062 1,928,540 4,576,435
complexity
... grid-based planning 2.56-10° 1.74.10° 1.32.10°
... topological planning 525 106 273
... difference (factor) 4.89.10° 1.64-10* 4.83.10°

Table 2: Survey of the results.

optimal choices by thetopological planner, and the remaining 0.23 meters (1.42%)
are due to suboptimal action choices made by the triplet planner. It isremarkable
that in 83.4% of all experiments, the topological planner returns a loss-free plan.
The largest loss that we found in our experiments was 11.98 meters, which was
observed in 6 of the 23,881,062 experiments.

Figure 14a shows the average loss as a function of the length of the shortest
path. Ascan be seen there, for shorter paths the lossisamonotonically increasing
function of the path length. As the path length exceeds 22.5 meters, the loss
decreases. We attribute the latter observation to the fact that these paths are among
thelongest possible paths given the size of the environment, thus even atopol ogical
planner cannot increase the length of these paths any further.

The empirical loss for the maps shown in Figure 11 and 12 is even smaller,
partialy because there are fewer cycles in those maps. As summarized in Table
2, the average loss for the map depicted in Figure 11 is 1.19%, and the average
loss for the map shown in Figure 12 is 1.31%. Figures 15a and 16a depict the
loss as a function of optimal path length. Notice because there are no cycles in
the second map (Figure 11), the topological planner aways produces the optimal
plan (i.e, a plan that includes the shortest path). Consequently, the 1.19% loss
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(a) Loss (map 1) (b) Loss (pruned map 1)
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Figure 14: Lossfor paths generated for the map shown in Figures 4 and 10, using
(a) the regular and (b) the pruned topological map. They grey portion of the loss
is due to suboptimal action choices by the topological planner, while the white
portion is due to the triplet representation.
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Figure 15: Paths generated for the map shown in Figure 11, using (a) the regular
and (b) the pruned topological map.
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Figure 16: Paths generated for the map shown in Figure 12, using (a) the regular
and (b) the pruned topological map.
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map 1 (Figs. 4,10) | map 2 (Figures11) | map 3 (Figures 12)
grid cells 27,280 20,535 19,236
resolution 15¢cm 10cm 15cm
cycles 8 0 1
topological regions 40 10 19
triplets 222 30 166
average shortest path length
... Mmeters 15.87 9.42 11.55
...grid-cells 94.2 84.8 68.5
... topological regions 6.12 3.25 4.65
averageloss
... due to topological planning 3.11% 0.00% 0.83%
... dueto triplet-planning 0.94% 0.37% 5.22%
...total loss 4.05% 0.37% 6.05%
total experiments 23,881,062 1,928,540 4,576,435
complexity
... grid-based planning 2.56-10° 1.74.10° 1.32.10°
... topological planning 245 325 88.4
... difference (factor) 1.05.10* 5.36-10* 1.49-10*

Table 3: Results for the pruned maps.

can be exclusively attributed to suboptimal action choices by the triplet planner.
The 1.31% loss for the map shown in Figure 12 is mostly due to the triplet
planner (1.23%), although rare topologica detours infer an additiona loss of
0.03%. Graphsillustrating the relative loss as afunction of shortest path length are
shown in Figures 15aand 16a.

We d so investigated even more compact representations, such as those shown
in Figures 10e&f, 11e&f, and 12e&f. These maps were obtained by pruning the
original topological map: Pairs of adjacent regions are combined into a single
region, if neither of them has more than two neighbors. Pruning subsumesseries of
nodesin long corridorsinto asingle node (such asnodes 4, 13, 21, and 24 inFigure
10c&d), and also eliminates certain end-nodes (such as theregion 17, 56, and 66,
in 10c&d). The results of experiments measuring the loss for these pruned maps
are summarized in Table 3. For example, in 23,881,062 experiments using the
pruned graph depicted in Figure 10e&f, the average loss was 0.64 meters (4.05%),
which is 26.1% larger than the loss inferred by the un-pruned graph. For the map
shown in Figures 11e&f, pruning actually reduced the overall lossto 0.37% (0.03
meters), which isonly 31.0% of the lossinferred by the un-pruned map. Finally,
the pruned map shown in Figure 12e& f produces an average detour of 5.18% (0.70
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meter), which issignificantly larger (361%) than thelossinferred by the un-pruned
map—this difference is due to the fact that along corridor is pruned into asingle
topologica entity in Figure 12e&f. Figures 14b, 15b, and 16b depict the loss for
the pruned map as afunction of optimal path length. The shape of the curves here
are similar to those obtained for the un-pruned maps. Figure 15 illustrates once
again that pruning reduces the loss for the cycle-free second map. We conclude
that the pruned graph is generally more compact, but unlessthe metric map is free
of cycles, pruning increases the average loss.

4.3 Efficiency

The most important advantage of topological planning liesin its efficiency. Vaue
iteration is quadratic in the number of grid cells. For example, the map shown
in Figure 4 happens to possess 27,280 explored cells. In the average case, the
number of iterations of value iteration is roughly equivaent to the length of the
shortest path, which in our example map is 94.2 cells. Thus, in this example
map, value iteration requires on average 2.57-10° backups. Planning using the
topological representation is severa orders of magnitudes more efficient. The
average topologica path length is 7.84. Since the topologica graph shown in
Figure 10d has 67 nodes, topologica planning requires on average 525 backups.
Notice the enormous gainin efficiency! Planning using the metric map is4.89-10°
more expensive than planning with the topological map. In other words, planning
on the topological level increases the efficiency by more than three orders of
magnitude, whileinducing a performance loss of only 3.24%.

The computational reduction is even more dramatic for the pruned maps, such
as the one shown in Figure 10e&f. This map consists of 40 nodes, and the
average topological path length is 6.12. Consequently, topological planning is
1.05-10* more efficient than planning with the metric map, which is more than
twice as efficient as planning with the un-pruned map. However, as can be seen by
comparing the results shown in Table 2 and 3, the performance lossinduced by the
pruned map is 25% larger than the lossinferred by the un-pruned map.

The map shown in Figure 11, which is smaller than the other maps but was
recoded with a higher resolution, consists of 20,535 explored grid cells and 22
topological regions (un-pruned map), or 10 regions (pruned map). On average,
paths in the grid-based map lead through 84.8 cells. The average length of a
topological plan is 4.82 (un-pruned map), or 3.25 (pruned map, averaged over
1,928,540 systematically generated path planning problems). Here the complexity
reduction is even more significant than in the first example. Planning using the
metric mapisafactor of 1.64-10* more expensivethan planning with thetopol ogical



Learning Maps for Indoor Mobile Robot Navigation 29

map when using the un-pruned map. This factor increases to 5.36-10* when using
the pruned map. Clearly, sincethe pruned map exhibitsasmaller loss, itis superior
to the un-pruned version in both categories: lossand efficiency.

Similar resultsare obtained for themap depicted in Figure 12. Heretheplanning
complexity isreduced by afactor of 4.83-102 (un-pruned map), or 1.49-10% (pruned
map). While these numbers are empirical and only correct for the particular maps
investigated here, we conjecture that the relative quotient is roughly correct for
other maps as well.

It should be noted that in our implementation, every topological plan is pre-
computed and memorized in a look-up table. Our most complex example maps
contain 67 nodes, hencethereareonly 2,211 different plansthat are easily generated
and memorized. If a new path planning problem arrives, topologica planning
amounts to looking up the correct plan.

5 Discussion

This paper proposes an integrated approach to mapping indoor robot environ-
ments. It combinesthe two mgjor existing paradigms:. grid-based and topological.
Grid-based maps are learned using artificial neural networks and Bayes rule.
Topological maps are generated by partitioning the grid-based map into critical
regions.

Building occupancy maps is a fairly standard procedure, which has proven
to yield robust maps at various research sites. To the best of our knowledge,
the maps exhibited in this paper are significantly larger than maps constructed
from sonar sensors by other researchers. Since neural networks interpret sonar
readings in the context of adjacent sensor measurements, they does not make a
commonly made conditional independence assumption between adjacent sensor
measurements—resulting in more accurate interpretations of sonar measurements.
This paper also demonstrates that by integrating multiple sources of information,
the robot position can be tracked accurately and in real-time in environments of
moderate size—which is crucial for building metric maps.

The most important aspect of this research, however, is the way topological
graphs are constructed. Previous approaches have constructed topologica maps
from scratch, memorizing only partial metric information aong the way. This
often led to problems of disambiguation (e.g., different places that look aike), and
problems of establishing correspondence (e.g., different views of the same place).
This paper advocatestointegrate both, grid-based and topol ogical maps. Asadirect
consequence, different placesarenaturally disambiguated, and nearby locationsare
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detected as such. In theintegrated approach, landmarks play only an indirect role,
through the grid-based position estimation mechanisms. Integration of landmark
information over multi plemeasurementsat multiplelocationsisautomatically done
in a consistent way. Visua landmarks, which often come to bear in topological
approaches, can certainly be incorporated into the current approach, to further
improve the accuracy of position estimation (see eg., [14, 32]). In fact, sonar
sensors can be understood as |landmark detectors that indirectly—through the grid-
based map—help determine the actual positionin the topological map (cf. [30]).

One of thekey empirical results of thisresearch concerns the cost-benefit anal -
ysis of topological representations. While grid-based maps yield more accurate
control, planning with more abstract topological maps is severa orders of mag-
nitude more efficient. A large series of experiments showed that in a map of
moderate size, the efficiency of planning can be increased by three to four orders
of magnitude, whilethelossin performanceisnegligible(eg., 1.82%). We believe
that the topological maps described here will enable us to control an autonomous
robot in multiple floors in our university building—complex mission planning in
environments of that size was completely intractable with our previous methods.

Despitethese encouraging results, thereisavariety of important open questions
that warrant future research.

e Sensor dynamics. The current approach does not account for sensor drift
or sensor failure. Once trained, the weights of the interpretation network
are frozen. However, in principleit is possible to use a map as to generate
targetsfor the interpretation network. Asaresult, the robot could constantly
re-adjust its own interpretations. Empirically, we have found our approach
to be surprisingly robust with respect to the failure of sensors.

e Other sensors. A second goal of future research is to incorporate other
typessensors. In aninitial study, we extended the current approach by using
a camera for floor segmentation, and 24 infrared light sensors that measure
proximity by measuring the intensity of reflected light [3]. The Bayesian
approach to sensor integration described in this paper is general flexible
enough to accommodate other types of sensor information as well. In fact,
in our initial experiments we found that the grid-based maps were more
accurate when additional sensors were incorporated.

e Dynamic environments. Currently, we are unable to model environment
dynamics (such as people, doors). It is an open question as to how to
incorporate models of moving objects into a grid-base representation. A
recent study [28] has demonstrated that “ semi-dynamic obstacles’ (these are
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obstacl es such as doors, whose presence might change but which aretight to
acertain location) can be modeled by avariance analysisof grid-cell vaues.
Further research is warranted to evaluate the robustness and utility of such
approaches.

A key disadvantage of grid-based methods, whichisinherited by the approach pre-
sented here, isthe need for accurately determining the robot’s position. Since the
difficulty of position control increases with the size of the environment, one might
be inclined to think that grid-based approaches generaly scale poorly to large-
scale environments (unless they are provided with an accurate map). Although
this argument is convincing, we are optimistic concerning the scaling properties
of the approach taken here. The largest cycle-free map that was generated with
this approach was approximately 100 meters long; the largest single cycle mea-
sured approximately 58 by 20 meters. We are not aware of any purely topological
approach to robot mapping that would have been demonstrated to be capable of
producing consistent maps of comparable size. Moreover, by using more accurate
sensors (such as laser range finders), and by re-estimating robot positions back-
wards in time (which would be mathematically straightforward, but is currently
not implemented because of its enormous computational complexity), we believe
that maps can be learned and maintained for environments that are an order of
magnitude larger than those investigated here.

The approach described here has become part of alarger software package that
isnow distributed through one of the major mobilerobot suppliersinthe US. It has
successfully mapped many different environments. Part of the software packageis
afast, reactive collision avoidance routine[10]. The advantage of integrating afast
collision avoidance routine is that dynamic obstacles and inaccuracies in the map
do not lead to collisions. This module, combined with the mapping and planning
approach described here, has found to navigate the robot reliably and with a speed
of up to 90 cm/sec even in dynamic and cluttered environments (see [3]).
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