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Chapter 1 – Introduction

Recent work in model-based reinforcement learning uses dynamic Bayesian net-

work (DBN) models to compactly represent the transition dynamics of the actions

and the structure of the reward function. DBN models require much less space

than tabular models (Dean & Kanazawa, 1989), and they are able to generalize

to novel parts of the state space. Additional compactness can be obtained by rep-

resenting each conditional probability distribution by a regression tree (Boutilier

et al., 1995), a structure we will refer to as a Tree-structured Dynamic Bayesian

Network (TDBN). Boutilier and colleagues have developed a family of approximate

value iteration and policy iteration algorithms that manipulate tree-structured rep-

resentations of the actions, the rewards, and the value functions (Boutilier et al.,

2000).

An additional advantage of DBN representations is that they explicitly identify

which state variables at time t influence the state variables at time t+1. By analyz-

ing the structure of such dependencies, it is possible to identify state abstractions

in hierarchical reinforcement methods such as MAXQ (Dietterich, 2000). In recent

work, Jonsson and Barto (2006) and Mehta, et al. (2007) (2008) have shown how

to automatically discover subroutine hierarchies through structural analysis of the

action and reward DBNs.

Algorithms for learning TDBNs generally employ the standard set of techniques



2

for learning classification and regression trees (Breiman et al., 1984). Internal

nodes split on one or more values of discrete variables or compare continuous val-

ues against a threshold. If the target variable is discrete, a classification tree is

constructed (Quinlan, 1993), and each leaf node contains a multinomial distribu-

tion over the values of the target variable. One variation on this is to search for a

decision graph (i.e., a DAG, Chickering et al., 1997). Search is typically top-down

separate-and-conquer with some form of pruning to control overfitting, although

Chickering et al. (1997) employ a more general search and control overfitting via

a Bayesian scoring function. If the target variable is continuous, a regression tree

is constructed. Each leaf node contains a Gaussian distribution with a mean and

(implicitly) a variance (Breiman et al., 1984).

Many generalizations of the basic methods have been developed. One gener-

alization is to allow the splits at the internal nodes of the tree to be relational

(e.g., by evaluating a predicate that takes multiple variables as arguments or by

evaluating a function of one or more variables and comparing it against a threshold

Kramer, 1996; Blockeel, 1998). Another is to allow the leaf nodes of regression

trees to contain regression models (so-called Model Trees; Quinlan, 1992) or other

functions (Torgo, 1997). Gama’s (2004) Functional Trees combine functional splits

and functional leaves. Vens et al. (2006) combine relational splits with model trees.

It is interesting to note that for discrete random variables, the multinomial

distribution in each leaf represents stochasticity as random choice across a fixed

set of alternatives. However, in all previous work with regression trees, each leaf

represents stochasticity as Gaussian noise added to a deterministic function.
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In many reinforcement learning and planning problems, this notion of stochas-

ticity is not appropriate. Consider, for example, the GOTO(agent, loc) action in

the real-time strategy game Wargus (2007). If the internal navigation routine can

find a path from the agent’s current location to the target location loc, then the

agent will move to the location. Otherwise, the agent will move to the reachable

location closest to loc. If we treat the reachability condition as unobserved, then

this is a stochastic choice between two deterministic outcomes, rather than a de-

terministic function with additive Gaussian noise. Another case that arises both

in benchmark problems and in real applications is where there is some probability

that when action a is executed, a different action a′ is accidentally executed in-

stead. A third, more mundane, example is the case where an action either succeeds

(and has the desired effects) or fails (and has no effect).

The purpose of this thesis is to present a new regression tree learning algorithm,

DMT (for Discrete Mixture Trees), that is appropriate for learning TDBNs when

the stochasticity is best modeled as stochastic choice among a finite number of de-

terministic alternatives. Formally, each leaf node in the regression tree is modeled

as a multinomial mixture over a finite set of alternative functions. The learning

algorithm is given a (potentially large) set of candidate functions, and it must de-

termine which functions to include in the mixture and what mixing probabilities to

use. We describe an efficient algorithm for the top-down induction of such TDBNs.

Rather than pursuing the standard (but expensive) EM-approach to learning fi-

nite mixture models (McLachlan & Krishnan, 1997) (Friedman et al., 1998), we

instead apply the greedy set cover algorithm to choose the mixture components



4

to cover the data points in each leaf. The splitting heuristic is a slight variation

of the standard mutual information (information gain) heuristic employed in C4.5

(Quinlan, 1993).

Like most other tree learning procedures, there exists the possibility of over-

fitting. To combat this, we implemented two forms of pruning, the first a simple

pre-pruning technique based on the expected change in entropy from inserting a

split. The second is a post-pruning technique that employs two methods to reduce

overfitting, one for pruning the mixtures in the leaves based on the log likelihood

over a holdout set and then calculating the log likelihood of a sub-tree to determine

if it should be pruned away or not. In order to discourage splits resulting in very

similar distributions to the parent, a penalty term based on the KL-Divergence

(Kullback & Leibler, 1951) is added to the log likelihood of a potential split.

We study three variants of DMT along side our post-pruning algorithm. The

full DMT algorithm employs relational splits at the internal nodes and mixtures

of deterministic functions at the leaves (DMT). DMT-S (“minus splits”) is DMT

but with standard propositional splits. DMT-F (“minus functions”) is DMT but

with constant values at the leaves. We compare these algorithms against standard

regression trees (CART) and model trees (M5P). Unless indicated, all trials use the

simple pre-pruning technique; however we also test the full version of our algorithm

using the aforementioned post-pruning method (DMT-p).

All six algorithms are evaluated in three challenging domains, with two stochas-

tic variations. In the evaluation, we compute three metrics: (a) root relative

squared error (RRSE; which is most appropriate for Gaussian leaves), (b) Recall
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over relevant variables (the fraction of relevant variables included in the fitted

model), and (c) Precision over relevant variables (the fraction of the included

variables that are relevant). The results show that in all 5 domains, DMT gives

superior results in all metrics the exception of DMT-S, which has a slight advan-

tage in two domains. They also show that the post-pruning algorithm, DMT-p,

performs comparably with DMT in most cases, and improves its performance in

several areas.
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Chapter 2 – Tree Representations of DBNs

Figure 2.1(a) shows a DBN model involving the action variable a, three state

variables x1, x2, x3, and the reward value r. In this model (and the models employed

in this thesis), there are no probabilistic dependencies within a single time step (no

synchronic arcs). Consequently, each random variable at time t+1 is conditionally

independent of other variables at time t + 1 given the variables at time t. As

always in Bayesian networks, each node x stores a representation of the conditional

probability distribution P (x|pa(x)), where pa(x) denotes the parents of x.

In this paper, we present a new algorithm for learning functional tree rep-

resentations of these conditional probability distributions. Figure 2.1(b) shows

an example of this representation. The internal nodes of the tree may contain

relational splits (e.g., x2(t) < x3(t)) instead of simple propositional splits (e.g.,

x2(t) < 1). The leaves of the tree may contain multinomial distributions over

functions. Hence the left leaf in Figure 2.1(b) increments x1 with probability 0.7

and decrements it with probability 0.3.

There are many ways in which functional trees provide more compact rep-

resentations than standard propositional regression trees (Figure 2.1(c)). First,

relational splits are much more compact than propositional splits. To express

the condition x2(t) < x3(t), a propositional tree must check the conjunction of

x2(t) < θ and x3(t) ≥ θ for each value of θ. Second, functional leaves are more
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a(t)

x1(t)

x2(t)

x3(t)

r(t+1)

x1(t+1)

x2(t+1)

x3(t+1)

x2(t) < x3(t)

0.3: x1(t) – 1

0.7: x1(t) + 1
0

x2(t) < 1

x2(t) < 2x3(t) < 2

x1(t) < 1

0.3: –1

0.7: +1
x1(t) < 2

0.3: 0

0.7: 2
0.3: 1

0.7: 3

0 … …

(a) (b) (c)

Figure 2.1: (a) time slice representation of the DBN. The square action node a(t)
affects all nodes at time t + 1, but for readability those arcs have been omitted.
Circles represent state variables, and the diamond is the reward node. (b) a tree
representation for P (x1(t+1)|x1(t), x2(t), x3(t)) with relational internal nodes and a
probability distribution over functions (x1(t+1) := x1(t)+1 and x1(t+1) := x1(t)−
1) in the left leaf. (c) a tree with propositional nodes and constant leaves must be
much more complex to represent the same conditional probability distribution.
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compact than constant leaves. To express the leaf condition x1(t+ 1) := x1(t) + 1,

a standard regression tree must introduce additional splits on x1(t) < θ for each

value of θ. Finally, standard regression trees approximate the distribution of real

values at a leaf by the mean. Hence, the left-most leaf of Figure 2.1(c) would be

approximated by the constant 0.4 with a standard deviation (mean squared error)

of 0.92.

This compactness should generally translate into faster learning, because in the

functional trees, the data are not subdivided into many “small” leaves. However,

if the learning algorithm must consider large numbers of possible splits and leaf

functions, this will introduce additional variance into the learning process which

could lead to overfitting and poor generalization. Hence, to obtain the benefits of

functional trees, the engineer must identify a constrained set of candidate relational

splits and functional leaves. We adopt a method of defining these functions that

can easily be generated with a context-free grammar, an approach from inductive

logic programming (Lavrac & Dzeroski, 1994).

Because different actions exhibit different probabilistic dependencies, our work

learns a separate set of regression trees for each action.

As mentioned above, other researchers have studied regression trees with rela-

tional splits and functional leaves. Our contribution is to extend these to handle

multinomial mixtures of functions in the leaves.
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Chapter 3 – Algorithm

To construct a regression tree for xi(t + 1), we follow the standard recursive top-

down divide-and-conquer approach using the values of x1(t), . . . , xn(t) as the in-

put features and xi(t + 1) as the response variable. However, we introduce two

modifications. First, given a set of N values for xi(t + 1) (i.e., at a leaf), we

fit a mixture of functions by applying the well-known greedy set cover algorithm

(Johnson, 1973). That is, we score our candidate leaf functions according to the

number of training values that they fit and choose the function that fits the most

points. Those points are then removed from consideration, and the process is re-

peated until all points are covered. The result of the set cover is a list of the form

((f1, n1), (f2, n2), . . . , (fk, nk)), where each fj is a function and nj is the number

of data points covered by fj that were not covered by functions f1, . . . , fj−1. We

then estimate the multinomial distribution as P (fj) = nj/N .

This approach introduces two approximations. First, greedy set cover is not

optimal set cover (although it does give very good approximations; Slav́ık, 1996).

Second, there may be points that are consistent with more than one of the functions

f1, . . . , fk. Strictly speaking, the probability mass for such points should be shared

equally among the functions, whereas we are assigning it to the first function in

the greedy set cover. In our application problems, this second case occurs very

rarely and typically only affects one or two data points.
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Our second modification concerns the loss function to use for scoring candidate

splits. Virtually all regression tree algorithms employ the expected squared error

of the children and choose the split that minimizes this squared error. This is

equivalent to assuming a Gaussian likelihood function and maximizing the expected

log likelihood of the training data. If we followed the same approach here, we

would score the expected log likelihood of the training data using the multinomial

mixture models. However, this does not work well because we assume that the

mixture components (i.e., the individual functions) are themselves deterministic,

so if a leaf node contains a single function with assigned probability of 1, the log

likelihood of a data point is either 0 (if the function matches a data point) or −∞

(if it does not). This leads to a very non-smooth function that does not work

well for scoring splits. Instead, we adopt the approach that has worked well for

learning classification trees (Quinlan, 1993): we score each candidate split by the

expected entropy of the probability distributions in the leaves and choose the split

that minimizes this expected entropy.

To prevent overfitting we employ two forms of pruning. One is a pre-pruning

method based on the expected entropy of a potential split. The other is a post-

pruning method using the log likelihood of the model over a holdout set. The

details of both methods will be discussed later.

Algorithm 1 shows the DMT algorithm. It follows the standard recursive divide-

and-conquer schema for top-down induction of decision trees. Ties in split selection

are broken in favor of splits that introduce fewer new variables into the tree.
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Algorithm 1 DMT: Grow a decision tree top-down
1: GrowTree(examples: E, treenode: T , setcover: C, real: ε)
2: E is the set of training examples
3: T is a tree node (initially a leaf)
4: C is the set cover (with associated probability distribution) of the node
5: let hroot := Entropy(C)
6: Initialize variables to hold information about the best split:
7: let h∗ := hroot

8: let E∗
left := E∗

right := empty set
9: let C∗

left := C∗
right := empty set cover

10: let s∗ := null
11: for all candidate splits s do

12: let Eleft := {e ∈ E|s(e)} {Examples for which s is true}
13: let Eright := {e ∈ E|¬s(e)} {Examples for which s is false}

14: let Pleft :=
|Eleft|
|E| ;Pright :=

|Eright|
|E|

15: let Cleft := GreedySetCover(Eleft)
16: let Cright := GreedySetCover(Eright)
17: let hs = Pleft · Entropy(Cleft) + Pright · Entropy(Cright)
18: if hs < h∗ then

19: let h∗ := hs; s
∗ := s

20: E∗
left := Eleft;E

∗
right := Eright;C

∗
left := Cleft;C

∗
right := Cright

21: if |hroot − h∗| > ε then

22: set T.split := s∗

23: let Tleft := new treenode(LEAF,C∗
left)

24: let Tright := new treenode(LEAF,C∗
right)

25: set T.left := GrowTree(E∗
left, Tleft, C

∗
left, ε)

26: set T.right := GrowTree(E∗
right, Tright, C

∗
right, ε)
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3.1 Efficient Splitting Function Search

Algorithm 1 requires performing two greedy set cover computations to evaluate

each potential split. Despite the fact that greedy set cover is very efficient, this is

still extremely time-consuming, especially if the set of candidate leaf functions is

large. We therefore developed a method based on Uniform Cost Search (UCS) for

finding the best set cover without having to evaluate all candidate leaf functions

on all candidate splits. This method is shown in Algorithm 2.

Suppose we define a partial set cover to have the form ((f1, n1), (f2, n2), . . . ,

(fk−1, nk−1), (else, nk))).This represents the fact that there are nk data points that

have not yet been covered by any leaf function. A node in the UCS search consists

of the following information:

• the candidate splitting condition s, Pleft, and Pright

• partial set covers Cleft and Cright for the branches

• the entropy of the partial set covers hleft and hright

• the sets of uncovered response values Vleft and Vright

• the current expected entropy h = Pleft · hleft + Pright · hright

The key observation is that the current expected entropy is a lower bound on the

final expected entropy, because any further refinement of either of the partial set

covers Cleft or Cright will cause the entropy to increase.

The split selection algorithm starts by creating one UCS node for each candi-

date split s with empty set covers Cleft and Cright and pushing these nodes on to
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Algorithm 2 Efficent Split Selection Algorithm for DMT
1: BestSplitSearch(examples: E, treenode: T , real: ε)
2: E is the set of training examples
3: T is a tree node (initially a leaf)
4: Initialize variables to hold information about the best split search:
5: let hroot := Entropy(C)
6: let Qent be a priority queue of search nodes sorted on the partial entropy
7: for all candidate splits s do

8: let node be a new search node
9: node.s := s

10: node.Vleft := {e ∈ E|s(e)} {Examples for which s is true}
11: node.Vright := {e ∈ E|¬s(e)} {Examples for which s is false}
12: let node.Cleft := node.Cright := the empty set
13: let node.hleft := node.hright := 0
14: let node.Pleft := node.Pright := 0
15: Push(node,Qent)
16: while Peek(Qent).Vleft! = Peek(Qent).Vright! = the empty set do

17: let n := Pop(Qent)
18: let fleft be the function that covers the most examples in n.Vleft

19: let fright be the function that covers the most examples in n.Vright

20: let pleft be the proportion of examples in left branch covered by fleft

21: let pright be the proportion of examples in left branch covered by fright

22: Remove covered examples from n.Vleft and n.Vright

23: Update n.Cleft and n.Cright

24: n.h := n.h+ n.Pleft · pleft log pleft + n.Pright · pright log pright

25: Push(n,Qent)
26: let n := Pop(Qent)
27: if |hroot − n.h| > ε then

28: Return split n.s
29: else

30: Create leaf from examples
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a priority queue (ordered to minimize h). It then repeatedly pops the node with

smallest h, computes the best greedy addition of one leaf function to Cleft and one

to Cright to expand the two set covers, recomputes Vleft, Vright, and h, and pushes

this new node onto the priority queue. Note that the size of the priority queue

remains fixed, because each candidate split is expanded greedily rather than in all

possible ways (which would produce an optimal set cover instead of a greedy set

cover).

The algorithm terminates when a node popped off the priority queue has Vleft =

Vright = the empty set. In which case, this is the best split s∗, because it has the

lowest expected entropy and all other items on the priority queue have higher

entropy.

3.2 Pruning Methods

Overfitting can be a problem with any tree growth algorithm. There are two

common methods of pruning, early stopping of the tree growth upon some criterion

is known as pre-pruning and growing a full tree and then removing sub-trees is

known as post-pruning. Pre-pruning has the advantage of reducing tree growth

time. However because it does not look ahead beyond the current node and its

children, it can be caught in local minima. In contrast, with post-pruning, the tree

is grown to full size before pruning. This allows useful sub-trees to be discovered

that would not have been found with pre-pruning.

We employ two methods of pre-pruning in our tree growth algorithm. First,
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no split can be made from a node that contains too few examples. Second, if the

difference between the entropy of the best split and the entropy of the parent node

is less than a threshold ε, then the node is not expanded.

Algorithm 3 Discrete mixture pruning via log likelihood
1: PruneLeafLL(examples: E, holdout: H, treenode: T ) returns real: log likelihood
2: let LL∗ := −∞ be the Log Likelihood of the best mixture
3: let M∗ be the best mixture
4: for all candidate mixtures, M , of discrete mixture in T do

5: let LL := 0
6: let µ be the average value of examples in E not covered by M
7: let pµ be the probability that an example is not covered by M
8: for all examples (X, y) ∈ H do

9: LL := LL+ pµψ(µ, σ, y)
10: for all function, probability pairs (f, pf ) ∈M do

11: if f(X) == y then LL := LL+ pf

12: if LL > LL∗
then

13: LL∗ := LL

14: M∗ := M ∪ {(µ, pµ)}
15: T.M := M∗

16: return LL∗

Our post-pruning algorithm focuses on first pruning the mixtures at the leaves

and then replacing internal nodes with leaf nodes (see Algorithm 3). Here functions

are removed from the mixture, and the examples that were covered by them are

averaged into a pickup term. This term is not dependent on any variable and is

simply the average of the uncovered examples. The addition of this term to the

mixture allows the DMT algorithm to model a function where the stocasticity is

in the form of Gaussian noise. To find the best mixture for the leaf, we remove

functions starting with the least likely in the mixture and up from there. This is an

approximation to testing an exponential number of possible mixtures and proves
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Algorithm 4 DMT structure pruning

1: PruneLL(examples: E, holdout: H, treenode: T ) returns real: log likelihood
2: if T is a leaf then

3: LL = PruneLeafLL(E,H, T )
4: return LL
5: let T.s be the split function in T
6: let Eleft := {e ∈ E|T.s(e)}
7: let Eright := {e ∈ E|¬T.s(e)}
8: let Hleft := {h ∈ H|T.s(h)}
9: let Hright := {h ∈ H|¬T.s(h)}

10: let KLleft = KLD(T.M, T.left.M)
11: let KLright = KLD(T.M, T.right.M)
12: let LLleaf := PruneLeafLL(E,H, T )
13: let LLsubtree := PruneLL(Eleft,Hleft, T.left)+PruneLL(Eright,Hright, T.right)+

C
KLleft+KLright

14: if LLleaf > LLsubtree then

15: Delete children of T
16: return LLleaf

17: return LLsubtree

to be very accurate because functions that explain large numbers of examples

tend to have very low error in the test set, while those that cover fewer examples

tend to result from noise. Each possible mixture is scored via log likelihood, we

model the pickup term as a Gaussian with mean as its value and a variance of σ2

and the terms in the mixture as a discrete distribution. See equation 3.1, where

ψ(µ, σ, y) = 1
σ
√

2π
exp

(

−(µ−y)2

2σ2

)

.

LL(M, (µ, pµ)) =
∑

(X,y)∈H

log





∑

(f,pf )∈M

pfI(f(X) == y) + pµψ(µ, σ, y)



 (3.1)

In order to prune the tree, a post-order tree traversal tests the log likelihood of
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the pruned discrete mixture versus the log likelihood of the sub-tree rooted at that

node, Algorithm 4. Because this measure does not explicitly encourage smaller

trees, we also add a penalty term to this score to punish a split for having children

whose distributions are similar to the parent node’s distribution. To measure the

similarity between the parent and child distributions, we calculate the Kullback-

Liebler divergence (3.2) between their mixtures over the unique (S,A,R, S) tuples

in the holdout set.

KLD(Mparent,Mchild) =
∑

(X,y)∈H

Pr(f(X) = y|Mparent) log
Pr(f(X) = y|Mparent)

Pr(f(X) = y|Mchild)

(3.2)
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Chapter 4 – Experiments

To evaluate the effectiveness of our DMT algorithm, we compared it experimen-

tally to four other algorithms: CART (Breiman et al., 1984), Model Trees (Quin-

lan, 1992), DMT with propositional splits and functional leaves (DMT-S, “minus

splits”) and DMT with relational splits but constant leaves (DMT-F, “minus func-

tions”). In effect, CART is DMT-SF, DMT without relational splits or functional

leaves. We also compared the standard DMT algorithm that uses pre-pruning with

the same tree growth algorithm, but using post-pruning instead of pre-pruning

(DMT-p).

The experiment is structured as follows. We chose three domains: (a) a version

of the Traveling Purchase Problem (TPP) adapted from the ICAPS probabilis-

tic planning competition (5th International Planning Competition, 2006), (b) the

Trucks Problem, also adapted from ICAPS, and (c) a resource gathering task that

arises in the Wargus real-time strategy game (The Wargus Team, 2007). In each

domain, we generated 2048 independent trajectories. In TPP, TPP-R, Trucks and

Trucks-R each trajectory was generated by choosing at random a legal starting

state and applying a uniform random policy to select actions until a goal state was

reached. In Wargus, all trajectories started in the same state because they were

all generated from the same map, and there is only one legal starting state per

map. On average, the trajectories contained 101.4 actions in TPP (standard devi-
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ation of 50.5), 108.9 actions in TPP-R (s.d. of 56.1), 591.1 actions in Truck (s.d. of

295.8), 643 actions in Truck-R (s.d. of 335.2) and 1907 actions in Wargus (s.d. of

1808).The 2048 trajectories for each domain were partitioned into 32 groups of 64

trajectories each. To create training sets of increasing size, disjoint sets of sizes 1,

2, 4, 8, 16, 32 and 64 are selected from each group. Each training set contains all

trajectories used in the smaller sets. For each of these training sets, each of the

six algorithms was run. The resulting DBN models were then evaluated according

to three criteria:

• Root Relative Squared Error (RRSE). This is the root mean squared error in

the predicted value of each state variable divided by the RMS error of simply

predicting the mean. Some variables are actually 0-1 variables, in which case

the squared error is the 0/1 loss and the RRSE is proportional to the square

root of the total 0/1 loss.

• State variable Recall. Because we wish to use the learned trees to guide

subroutine discovery algorithms (Jonsson & Barto, 2006; Mehta et al., 2007;

Mehta et al., 2008), we want algorithms that can correctly identify the set

of parents pa(x) of each variable x. The recall is the fraction of the true

parents pa(x) that are correctly identified in the DBN model.

• State variable Precision. We also measure precision, which is the fraction of

parents in the learned DBN that are parents in the true DBN.
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4.1 Domains

Here are the detailed specifications of the three domains.

4.1.1 Traveling Purchase Problem

The Traveling Purchase Problem (TPP) is a logistics domain where an agent con-

trols a truck that must purchase a number of goods from different markets and

then return them to a central depot. Each market has a supply of goods, as well

as its own price, both of which are random for each problem instance and are

provided as state variables. The state also contains variables that represent the

remaining demand. These variables are initialized with the total demand for that

product, and they are decremented as the agent buys goods from the markets.

Actions in this domain consist of goto actions, actions that buy units of products

from markets, and an action to deliver all purchased products to the central depot.

In a variation of this domain, TPP-R, stochasticity is added to the domain

by introducing a 10% failure probability to each action. Upon failure all pick up

actions receive a random amount of product less than the intended amount, the

movement actions put the truck at a random location, and the drop off action fails

to drop off the product.

For these experiments, the domain was restricted to two markets, one central

depot, and three products. This results in an MDP with 15 state variables and 10

actions. Initial values for product supply and demand can range from zero to 20,

which produces an MDP with over 1012 states. The price variables do not count
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toward the size of the state space, because their values are constant throughout

an instance of the problem.

4.1.2 The Truck Problem

The Truck Problem is another logistics problem. However in this domain, the focus

is on the logistics of picking up packages, placing them in the right order on the

truck, dropping them off, and delivering them to their proper destination. Here

the agent is in control of two trucks; each truck has two areas (front and rear) in

which it can hold packages. As in a real delivery truck, these areas must be loaded

and unloaded in the proper order. For example, if there is a package in the front

area, an action that attempts to remove the package from the rear of the truck

fails.

In a variation of this domain, TRUCK-R, a failure rate of 10% was added to

every action. Failure of movement actions result in the truck to be moved ending up

at a random location, and when all other actions fail the state remains unchanged.

For our experiments, the two trucks are asked to deliver three packages from

one of five locations to another of the five locations. Once a package is dropped

off at the correct location, an action must be taken by the agent to deliver the

package to the customer. Actions in this domain include loading and unloading a

package on a truck, driving a truck to a location, and delivering a package to the

customer once it is at its goal location. The domain has 25 actions and 12 state

variables, with 4.3 · 108 states.
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4.1.3 Wargus

Wargus is a resource gathering domain where an agent controls one or more peas-

ants and directs them in a grid world that contains gold mines, stands of trees,

and town halls. The agent can navigate to anywhere on the map with a set of goto

actions. These are temporally extended actions that bring a peasant to specified

region of the map. The regions are defined by the “sight radius” of the peasants.

Within this radius, they can execute other actions such as mining gold, chopping

wood, and depositing their payload in the town hall. Once the peasant has de-

posited one set of gold and one set of wood to the town hall, the episode ends and

reward is received.

For this set of experiments, we use a single peasant on a map with a single gold

mine and a single town hall. Trees are distributed randomly around the map. The

state contains variables that list the position of the peasant on the map, what the

peasant is holding, what objects of interest are within sight radius of the peasant

(wood, gold, town hall), and the status of the gold and wood quotas. The domain

has 19 actions and 9.8 · 104 states.

This domain differs from the other two domains because it is not fully observ-

able. The map that the peasant is navigating is a hidden variable that determines

not only the navigation dynamics but the presence of trees, gold mines, and town

halls within the peasant’s sight radius.
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4.2 Results

For each combination of a domain, training set, output state variable (or reward),

and action, we measured the three metrics. Overall, we see that the DMT algo-

rithm as good as or better than the baselines in the majority of trials. When post

pruning is applied, we see an improvement in both error and model size, and com-

parable scores in both precision and recall. Overall, the methods introduced by the

DMT algorithm prove to be an improvement over existing methods of modeling

trees in the tested domains.

We performed an analysis of variance on each metric, holding the domain, ac-

tion, variable and training set size constant and treating the multiple training sets

as replications. We treated DMT as the baseline configuration and tested the hy-

pothesis that the metric obtained by each of the other algorithms was significantly

worse (a “win”), better (a “loss”), or indistinguishable (a “tie”) at the p < 0.05

level of significance. The test is a paired-differences t test.

Table 4.1 aggregates the results of these statistical tests over all state variables

and all actions in each domain. The large number of ties in each cell is largely an

artifact of algorithms tending to converge to the correct model given large training

set sizes. Let us first compare DMT with DMT-F (constant leaves). In TTP,

TPP-R, Truck and Truck-R, DMT performs much better than DMT-F. In Wargus,

DMT out-performs DMT-F consistently in RRSE and precision; however in recall,

the number of wins is overshadowed by the number of ties, so the improvement

over DMT-F is marginal at best. Next, consider DMT and DMT-S (propositional
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splits). In this case, DMT is dominant except for Wargus precision and recall,

Truck and Truck-R precision. Numbers of wins and losses in TPP precision and

recall, TPP-R precision and recall, Truck precision, and Wargus precision and

recall are overshadowed by the number of ties, therefore the wins and losses in

those categories are not significant.

Next, compare DMT with CART (i.e., DMT-SF). Here, DMT is superior on

all metrics. Note in particular that for RRSE, it is superior in 96.5% of cases

in TTP, 95.5% of cases in TTP-R, 99.6% of cases in Truck, 96.4% of cases in

Truck-R, and 95.8% in Wargus. Finally, compare DMT with M5P, which is the

Weka implementation of model trees. DMT is again dominant in the TPP, TPP-

R, Truck-R, and Wargus domains. In the Truck domain, DMT is dominant for

both precision and RRSE; however in recall M5P has 116 wins to DMT’s 276 wins.

This is a victory for DMT, however by a smaller margin than in other domains

and measures.

Table 4.2 shows the statistical wins, losses and ties for DMT with pre-pruning

versus DMT with post pruning. These tables are in the same format as Table 4.1

with wins describing those cases where DMT with pre-pruning out-performs DMT

with post-pruning. For domains TPP and TPP-R, we see that the post-pruning

algorithm does better in precision and RRSE, while it does so at a cost to recall.

This suggests that the post-pruning algorithm was too aggressive in this domain

and could be further tuned with a validation. In the Truck domain, the pre-pruning

algorithm wins overall on RRSE but loses in terms of recall. In the Truck-R

domain, post pruning wins in all 3 categories, but the margin is small in recall. In
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Table 4.1: Statistical wins, losses and ties for DMT versus all other tested algo-
rithms on each domain. These results are over all non-reward variable models. A
win (or loss) is a statistically significant difference between DMT and the indicated
algorithm (p < 0.05; paired t test).

TTP
DMT-F DMT-S CART M5P

W L T W L T W L T W L T
Prec 734 0 386 26 2 1092 887 6 227 356 1 763

Recall 385 1 674 34 0 1026 421 0 639 384 1 675
RRSE 821 12 287 79 23 1018 1081 19 20 517 24 579

TTP-R
DMT-F DMT-S CART M5P

W L T W L T W L T W L T
Prec 721 1 398 19 10 1091 863 27 230 370 12 738

Recall 393 1 666 35 0 1025 441 0 619 380 0 680
RRSE 797 25 298 53 25 1042 1070 34 16 522 37 561

Truck
DMT-F DMT-S CART M5P

W L T W L T W L T W L T
Prec 692 8 1398 0 17 2081 1428 6 664 576 0 1522

Recall 299 120 1604 84 0 1939 370 93 1560 276 116 1631
RRSE 1178 84 838 179 21 1900 2083 10 7 837 35 1228

Truck-R
DMT-F DMT-S CART M5P

W L T W L T W L T W L T
Prec 630 20 1449 34 77 1988 1301 105 693 511 27 1561

Recall 298 40 1686 142 0 1882 440 30 1554 369 54 1601
RRSE 1124 105 871 195 57 1848 2025 46 29 798 56 1246

Wargus
DMT-F DMT-S CART M5P

W L T W L T W L T W L T
Prec 291 16 756 0 16 1047 497 14 552 247 12 804

Recall 66 16 982 1 7 1056 118 15 931 65 15 984
RRSE 745 49 270 415 24 625 1019 33 12 779 77 208
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Table 4.2: Statistical wins, losses and ties for DMT versus the DMT with the post
pruning algorithm on each domain. These results are over all non-reward variable
models. A win (or loss) is a statistically significant difference between DMT and
the indicated algorithm (p < 0.05; paired t test).

TTP TTP-R
W L T W L T

Prec 0 72 1048 0 113 1007
Recall 111 0 949 118 0 942
RRSE 58 103 959 42 88 990

Truck Truck-R
W L T W L T

Prec 18 14 2066 59 100 1940
Recall 74 108 1841 41 62 1921
RRSE 201 106 1793 69 143 1888

Wargus
W L T

Prec 68 37 958
Recall 16 28 1020
RRSE 520 76 468

the Wargus domain, the pre-pruning algorithm wins in both RRSE and precision.

Table 4.1 hides the effect of increasing sample size. To visualize this, Figure 4.1

shows the win/loss/tie percentages as a function of training set size for Recall

comparing DMT versus CART, and Figure 4.2 shows the same for precision. Each

vertical bar is divided into three parts indicating wins, losses, and ties (reading

from bottom to top). In all cases, there are very few if any losses, which means

that DMT’s precision and recall are almost always better than or equal to CART’s

precision and recall. Note also that as the size of the training set gets large,

we observe more ties in the recall plots for all domains but Wargus. This is
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because as CART receives more training data, it produces larger trees that include

more variables. We see in Figure 4.2 that, for small input sizes, CART produces

models with comparable precision but as the size of the input set increases, CART’s

precision falls as it attempts to model the more complex interactions between

variables.

Figure 4.3 presents learning curves for RRSE. In the interest of conciseness, we

show one variable-action pair from each domain rather than listing plots for every

possible variable and action. For the TPP-R Supply variable (Purchase action),

we see that for training sets of size 8 and above, DMT has the lowest RRSE;

followed by DMT-S, DMT-p (full DMT with post pruning) and M5P. DMT-F

and CART perform the worst. For the TPP domain, a similar ordering occurs for

training sets of size 8 and above. For the Truck variable Product Location (Unload

action), DMT has the lowest RRSE until 8 trajectories, when it is overtaken by

DMT-p and DMT-f. This suggests not only that using relational splits is critical

in this domain, but that the use of functional leaves can be detrimental unless

a post pruning method is used. This graph shape is observed across all Product

Location models in Unload actions. In the Truck-R domain, we see that DMT-p

has the lowest RRSE, joined by DMT at a training set size of 4, and DMT-F at a

training set size of about 16. All other methods have higher RRSE scores. As in

the Truck domain, we see that both relational splits and post pruning are useful.

The added stochasticity of the Truck-R domain forces the pre-pruning methods

to grow the tree large enough to create a more accurate model. Finally, for the

Wargus Agent Resource variable (Harvest Wood action), the DMT variants have
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Figure 4.1: Recall of DMT vs. CART for state variables for TPP, TPP-R, Truck,
Truck-R, and Wargus. Each bar is divided into three sections (wins, losses, and
ties). Wins are the bottom bar with the lightest texture, ties are the top bar with
the gray texture, and losses are in the middle with a heavy black texture.
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Figure 4.2: Precision of DMT vs. CART for state variables for TPP, TPP-R, Truck,
Truck-R, and Wargus. Each bar is divided into three sections (wins, losses, and
ties). Wins are the bottom bar with the lightest texture, ties are the top bar with
the gray texture, and losses are in the middle with a heavy black texture.
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Figure 4.3: RRSE as a function of the number of trajectories in the training set for
one chosen action and variable in each domain. Top: RRSE for Market Supply for
the Purchase action in TTP and TPP-R; Middle: RRSE for Product Location for
the Unload action in Truck and Truck-R; Bottom: RRSE of the Agent Resource
for the Harvest Wood action in Wargus
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training set for one chosen action and variable in each domain. Top: Model size
for Market Supply for the Purchase action in TTP and TPP-R; Middle: Model
sizae for Product Location for the Unload action in Truck and Truck-R; Bottom:
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the lowest RRSE, starting with DMT, then DMT-p and DMT-S, all three of which

converge to zero RRSE by training set size of 8. DMT-F comes next, followed by

M5P and CART. The ability to use functional splits and mixtures of functions in

the leaves gives the best results in this domain.

Shown in Figure 4.4 are the model sizes for the variable-action pairs depicted

in the corresponding RRSE plots shown in Figure 4.3. For the Supply variable

(Purchase action) in the TPP and TPP-R domains, DMT-p performs the best

followed closely by both DMT and DMT-S. M5P, CART and DMT-F produce the

largest models. In the Truck domain’s Unload action (Truck Area variable), DMT

and DMT-S produce the smallest models, converging to a single node, while DMT-

p makes slightly larger models and M5P, CART and DMT-F bring up the rear.

Viewing the difference in size here between DMT with pre-pruning and DMT-p,

which implements post-pruning, we see that the ability to examine the entire tree

before pruning allows for more accurate models in many cases. In the Truck-R

domain for the same actions, we see that DMT-S creates the smallest models,

followed by DMT-p, DMT, M5P, CART and DMT-F. It is worth noting here that

while DMT-S creates the smallest model, its RRSE score for this action is the worst

of the DMT variants, and while DMT-F converges to join DMT and DMT-p in

terms of RRSE, it creates the largest model. Finally, in the Agent Resource node

for the Harvest Wood action in Wargus, we see that DMT-p and DMT create the

smallest model, quickly leveling out to three nodes, followed shortly by the other

DMT variants, with M5P and CART rounding out the set. CART has a dramatic

spike in model size, this is most likely the result of a tree pruning within CART.
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Figure 4.5: Precision profiles for each domain when trained on 8 trajectories and
compared to the true DBN models. These curves aggregate over all variables,
actions, and training sets in each domain. Each plotted point specifies the fraction
of learned models with Precision less than the value specified on the horizontal
axis. Hence, the ideal curve would be a flat line at 0, corresponding to the case
where all learned models had Precision of 1.0.
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Figure 4.6: Recall profiles for each domain when trained on 8 trajectories and
compared to the true DBN models. These curves are generated in the same manner
as Fig. (4.5)
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To understand the Precision and Recall behavior of the algorithms, it is not

sufficient to plot learning curves of the average Precision and Recall. This is

because the distribution of measured Precision and Recall scores is highly skewed,

with many perfect scores. Instead, we developed the profiles shown in Figures 4.5

and 4.6 as a way of visualizing the distribution of Precision and Recall scores. For

each domain, action, result variable, and training set, we computed the Precision

and Recall of the fitted TDBN with respect to the set of variables included in

the model compared to the variables included in the true DBN. For each domain,

we sorted all of the observed scores (either Precision or Recall, depending on the

graph) into ascending order and then for each value θ of the score we plotted the

fraction of TDBNs where the score was < θ. The ideal profile would be a flat line

corresponding to the case where all learned TDBNs had a perfect score of θ = 1.0,

so none of them were less than θ. The higher and more rapidly the profile rises,

the worse the performance. In short, these are cumulative distribution functions

for Precision and Recall. Figure 4.5 shows these profiles for precision over cases

where the training set contains 8 trajectories, and Figure 4.6 shows the same for

recall. We chose this as the middle point on the learning curves (with respect to

log sample size).

For the TPP and TPP-R domains shown in Figure 4.5, DMT and DMT-S track

each other very closely and are consistently superior to all of the other algorithms

other than DMT-p, which follows the bottom axis very closely with less than 1%

of trials having a precision of less than 1.0. Only 10% of DMT and DMT-S trials

had a precision of less than 1.0. M5P comes next with excellent Precision. CART
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had the worst precision, and DMT-F was also quite bad. For Recall, shown in

Figure 4.6, we see that DMT and DMT-p have better recall overall than the other

methods. However, DMT is consistently better than DMT-p. This indicates that

the post-pruning methods were more aggressive than the pre-pruning methods in

this domain.

As in the TPP domains, CART gives extremely bad precision in the truck

domains. About half of the runs had Precision of around 0.5 or less. All of

the other methods do much better with DMT, DMT-S and DMT-p reporting a

precision score of 1.0 in almost all cases. In Truck-R, the results are similar,

but with DMT, DMT-S and DMT-p converging to about 10% of cases below a

precision score of 1.0. On recall, all of the algorithms do fairly well with, DMT-

p doing the best in the end, followed closely by DMT and DMT-F. The other

algorithms performed slightly worse.

Finally, for Wargus DMT-F has the among best Precision for low values but

the third-worst Precision at high values, where it performs worse than the other

DMT variants which dominate the precision scores. For Recall, DMT-p starts out

with the best score, but soon converges with DMT and DMT-S at about 6% of

cases less than a recall score of 1.0. This is followed by DMT-F, M5P and CART

whom all perform worse, but still respectable with less than 10% of cases reporting

less than 1.0 recall.
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Chapter 5 – Conclusions

This thesis has presented a new algorithm, Discrete Mixture Trees, for learning

regression tree models of conditional probability distributions for DBNs. The

algorithm is designed to handle domains in which stochasticity is best modeled as

stochastic choice over a small number of deterministic functions. This stochasticity

is represented as a finite mixture model over deterministic functions in each leaf

of the regression tree. These mixture models are learned via greedy set cover. To

combat overfitting, two methods of pruning are introduced, one that focuses on

stopping the tree growth early, and another that allows the full model to be built

before pruning back to a more succinct and correct tree.

Experiments on three challenging domains, two with stochastic variants, pro-

vide evidence that this approach gives excellent performance, both in terms of

prediction accuracy but also, perhaps more importantly, in terms of the ability to

correctly identify the relevant parents of each random variable. In four of the do-

mains, DMT is clearly superior to CART and M5P. In the fifth domain (Wargus),

there are many cases where DMT performs well, but not by as large a margin as

in the other domains.

Experiments also included a more advanced form of pruning than was imple-

mented on DMT and its variants. This post-pruning technique allows for infor-

mative branches to be present in the tree that would have been removed by the
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pre-pruning method. In three domains (TPP, TPP-R and Truck-R), the post-

pruning algorithm performed better in terms of precision. In Truck and Wargus,

DMT performed better, although in Truck the wins and losses are very close. Sim-

ilarly, in recall DMT-p wins in 3 domains but loses to DMT in both TTP and

TPP-R. This suggests that the post pruning algorithm itself is not well tuned

for the TPP domain. However it does perform well in general. Much like other

pruning methods, our post pruning algorithm has a tunable parameter that can

be determined via the use of a validation set.

In future work, we plan to use the TDBNs learned by DMT as input to the

MAXQ discovery algorithm developed by Mehta et. al. (2007). We would also

like to study methods analogous to the Pessimistic Pruning algorithm employed

by Ross Quinlan in C4.5. Finally, we are interested in extending model trees to

handle mixtures of fitted linear models in the leaves.
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