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Learning Methods for Dynamic Topic Modeling in
Automated Behavior Analysis

Olga Isupova, Danil Kuzin, and Lyudmila Mihaylova, Senior Member, IEEE

Abstract— Semisupervised and unsupervised systems provide
operators with invaluable support and can tremendously reduce
the operators’ load. In the light of the necessity to process large
volumes of video data and provide autonomous decisions, this
paper proposes new learning algorithms for activity analysis
in video. The activities and behaviors are described by a
dynamic topic model. Two novel learning algorithms based on
the expectation maximization approach and variational Bayes
inference are proposed. Theoretical derivations of the posterior
estimates of model parameters are given. The designed learning
algorithms are compared with the Gibbs sampling inference
scheme introduced earlier in the literature. A detailed comparison
of the learning algorithms is presented on real video data. We also
propose an anomaly localization procedure, elegantly embedded
in the topic modeling framework. It is shown that the developed
learning algorithms can achieve 95% success rate. The proposed
framework can be applied to a number of areas, including
transportation systems, security, and surveillance.

Index Terms— Behavior analysis, expectation maximization,
learning dynamic topic models, unsupervised learning, varia-
tional Bayesian approach, video analytics.

I. INTRODUCTION

BEHAVIOR analysis is an important area in intelligent
video surveillance, where abnormal behavior detection

is a difficult problem. One of the challenges in this field
is informality of the problem formulation. Due to the broad
scope of applications and desired objectives, there is no unique
way, in which normal or abnormal behavior can be described.
In general, the objective is to detect unusual events and inform
in due course a human operator about them.

This paper considers a probabilistic framework for anomaly
detection, where less probable events are labeled as abnormal.
We propose two learning algorithms and an anomaly localiza-
tion procedure for spatial detection of abnormal behaviors.

A. Related Work

There is a wealth of methods for abnormal behavior
detection, for example, pattern-based methods [1]–[3]. These

Manuscript received July 28, 2016; revised March 5, 2017; accepted
July 25, 2017. Date of publication September 27, 2017; date of current
version August 20, 2018. The work of O. Isupova was supported by the
EC Seventh Framework Programme [FP7 2013-2017] TRAcking in compleX
sensor systems under Grant 607400. The work of L. Mihaylova was supported
in part by the EC Seventh Framework Programme [FP7 2013-2017] TRAcking
in compleX sensor systems under Grant 607400 and in part by the U.K.
Engineering and Physical Sciences Research Council for the support through
the Bayesian Tracking and Reasoning over Time under Grant EP/K021516/1.
(Corresponding author: Olga Isupova.)

The authors are with the Department of Automatic Control and Sys-
tems Engineering, University of Sheffield, Sheffield S10 2TN, U.K.
(e-mail: o.isupova@sheffield.ac.uk; dkuzin1@sheffield.ac.uk; l.s.mihaylova@
sheffield.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2017.2735364

methods extract explicit patterns from data and use them as
behavior templates for decision-making. In [1], the sum of
the visual features of a reference frame is treated as a normal
behavior template. Another common approach for representing
normal templates is using clusters of visual features [2], [3].
Visual features can range from raw intensity values of pixels
to complex features that exploit the data nature [4].

In the testing stage, new observations are compared
with the extracted patterns. The comparison is based on
some similarity measure between observations, e.g., the
Jensen–Shannon divergence in [5] or the Z -score value in [2]
and [3]. If the distance between the new observation and any
of the normal patterns is larger than a threshold, then the
observation is classified as abnormal.

Abnormal behavior detection can be considered as a clas-
sification problem. It is difficult in advance to collect and
label all kind of abnormalities. Therefore, only one-class
label can be expected and one-class classifiers are applied to
abnormal behavior detection, e.g., a one-class support vector
machine [6], a support vector data description algorithm [7],
a neural network approach [8], and a level set method [9] for
normal data boundary determination [10].

Another class of methods relies on the estimation of
probability distributions of the visual data. These estimated
distributions are then used in the decision-making process.
Different kinds of probability estimation algorithms are pro-
posed in the literature, e.g., based on nonparametric sample
histograms [11], Gaussian distribution modeling [12]. Spatio-
temporal motion data dependence is modeled as a coupled
Hidden Markov Model (HMM) in [13]. Autoregressive process
modeling based on self-organized maps is proposed in [14].

An efficient approach is to seek for feature sets that tend
to appear together. These feature sets form typical activi-
ties or behaviors in the scene. Topic modeling [15], [16] is
an approach to find such kinds of statistical regularities in a
form of probability distributions. The approach can be applied
for abnormal behavior detection (see [17]–[19]). A number
of variations of the conventional topic models for abnormal
behavior detection have been recently proposed: clustering of
activity distributions [20]; modeling temporal dependencies
among activities [21]; and a continuous model for an object
velocity [22].

Within the probabilistic modeling approach [12], [13], [17],
[18], [20], [22] the decision about abnormality is mainly made
by computing likelihood of a new observation. The comparison
of the different abnormality measures based on the likelihood
estimation is provided in [19].

Topic modeling is originally developed for text
mining [15], [16]. It aims to find latent variables called
“topics” given the collection of unlabeled text documents
consisted of words. In probabilistic topic modeling documents
are represented as a mixture of topics, where each topic is
assumed to be a distribution over words.
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There are two main types of topic models: probabilistic
latent semantic analysis (PLSA) [15] and latent Dirichlet allo-
cation (LDA) [16]. The former considers the problem from
the frequentist perspective, while the later studies it within the
Bayesian approach. The main learning techniques proposed for
these models include maximum likelihood estimation via the
Expectation–Maximization (EM) algorithm [15], variational
Bayes (VB) inference [16], Gibbs sampling (GS) [23], and
maximum a posteriori (MAP) estimation [24].

B. Contributions

In this paper, inspired by ideas from [21], we propose
an unsupervised learning framework based on a Markov
Clustering Topic Model (MCTM) for behavior analysis and
anomaly detection. It groups possible topic mixtures of visual
documents and forms a Markov chain for the groups.

The key contributions of this paper consist in developing
new learning algorithms, namely MAP estimation using the
EM algorithm and VB inference for the MCTM, and in
proposing an anomaly localization procedure that follows con-
cepts of probabilistic topic modeling. We derive the likelihood
expressions as a normality measure of newly observed data.
The developed learning algorithms are compared with the
GS scheme proposed in [21]. A comprehensive analysis of
the algorithms is presented over real video sequences. The
empirical results show that the proposed methods provide more
accurate results than the GS scheme in terms of anomaly
detection performance.

Our preliminary results with the EM algorithm for behavior
analysis are published in [25]. In contrast to [25] we now
consider a fully Bayesian framework, where we propose the
EM algorithm for MAP estimates rather than the maximum
likelihood ones. We also propose here a novel learning algo-
rithm based on VB inference and a novel anomaly localization
procedure. The experiments are performed on more challeng-
ing data sets in comparison to [25].

The rest of this paper is organized as follows. Section II
describes the overall structure of visual documents and visual
words. Section III introduces the dynamic topic model. The
new learning algorithms are presented in Section IV, where
the proposed MAP estimation via the EM algorithm and
VB algorithm are introduced first and then the GS scheme
is reviewed. The methods are given with a detailed discussion
about their similarities and differences. The anomaly detection
procedure is presented in Section V. The learning algorithms
are evaluated with real data in Section VI, and Section VII
concludes this paper.

II. VIDEO ANALYTICS WITHIN THE TOPIC

MODELING FRAMEWORK

Video analytics tasks can be formulated within the frame-
work of topics modeling. This requires a definition of visual
documents and visual words (see [20], [21]). The whole video
sequence is divided into nonoverlapping short clips. These
clips are treated as visual documents. Each frame is divided
next into grid cells of pixels. Motion detection is applied to
each of the cells. The cells where motion is detected are called
moving cells. For each of the moving cells the motion direction
is determined. This direction is further quantized into four
dominant ones—up, left, down, and right (see Fig. 1). The
position of the moving cell and the quantized direction of its
motion form a visual word.

Fig. 1. Structure of the visual feature extraction. From an input frame (left),
a map of local motions is calculated (center). The motion is quantized into
four directions to get the feature representation (right).

Each of the visual documents is then represented as a
sequence of visual words’ identifiers, where identifiers are
obtained by some ordering of a set of unique words. This
discrete representation of the input data can be processed by
topic modeling methods.

III. MARKOV CLUSTERING TOPIC MODEL FOR

BEHAVIORAL ANALYSIS

A. Motivation

In topic modeling, there are two main kinds of
distributions—the distributions over words, which correspond
to topics, and the distributions over topics, which charac-
terize the documents. The relationship between documents
and words is then represented via latent low-dimensional
entities called topics. Having only an unlabeled collection of
documents, topic modeling methods restore a hidden structure
of data, i.e., the distributions over words and the distributions
over topics.

Consider a set of distributions over topics and a topic
distribution for each document is chosen from this set. If the
cardinality of the set of distributions over topics is less than
the number of documents, then documents are clustered into
groups such that documents have the same topic distribution
within a group. A unique distribution over topics is called
a behavior in this paper. Therefore, each document corre-
sponds to one behavior. In topic modeling, a document is
fully described by a corresponding distribution over topics,
which means in this case a document is fully described by a
corresponding behavior.

There are a number of applications where we can observe
documents clustered into groups with the same distribution
over topics. Let us consider some examples from video ana-
lytics where a visual word corresponds to a motion within
a tiny cell. As topics represent words that statistically often
appear together, in video analytics applications topics define
some motion patterns in local areas.

Let us consider a road junction regulated by traffic lights.
A general motion on the junction is the same with the same
traffic light regime. Therefore, the documents associated with
the same traffic light regimes have the same distributions over
topics, i.e., they correspond to the same behaviors.

Another example is a video stream generated by a video
surveillance camera from a train station. Here it is also
possible to distinguish several types of general motion within
the camera scene: getting off and on a train and waiting
for it. These types of motion correspond to behaviors, where
the different visual documents showing different instances of
the same behavior have very similar motion structures, i.e., the
same topic distribution.
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Each action in real life lasts for some time, e.g., a traffic
light regime stays the same and people get on and off a train
for several seconds. Moreover, often these different types of
motion or behaviors follow a cycle and their changes occur
in some order. These insights motivate to model a sequence
of behaviors as a Markov chain, so that the behaviors remain
the same during some documents and change in a predefined
order. The model that has these described properties is called
an MCTM in [21]. The next section formally formulates the
model.

B. Model Formulation

This section starts from the introduction of the main nota-
tions used through this paper. Denote by X the vocabulary
of all visual words, by Y the set of all topics, by Z the set
of all behaviors, and x , y, and z are used for elements from
these sets, respectively. When an additional element of a set is
required, it is denoted with a prime, e.g., z′ is another element
from Z .

Let xt = {xi,t }
Nt

i=1 be a set of words for the document t ,
where Nt is the length of the document t . Let x1:Ttr = {xt}

Ttr

t=1
denote a set of all words for the whole data set, where Ttr

is the number of documents in the data set. Similarly, denote
by yt = {yi,t }

Nt

i=1 and y1:Ttr = {yt }
Ttr

t=1 a set of topics for the
document t and a set of all topics for the whole data set,
respectively. Let z1:Ttr = {zt }

Ttr

t=1 be a set of all behaviors for
all documents.

Note that x , y, and z without subscript denote possible
values for a word, topic, and behavior from X , Y , and Z ,
respectively, while the symbols with subscript denote word,
topic, and behavior assignments in particular places in a data
set.

Here, � is a matrix corresponding to the distributions
over words given the topics, � is a matrix correspond-
ing to the distributions over topics given behaviors. For
a Markov chain of behaviors, a vector π for a behav-
ior distribution for the first document and a matrix � for
transition probability distributions between the behaviors are
introduced

� = {φx,y}x∈X ,y∈Y, φx,y = p(x |y), φy = {φx,y}x∈X

� = {θy,z}y∈Y,z∈Z, θy,z = p(y|z), θz = {θy,z}y∈Y

π = {πz}z∈Z , πz = p(z)

� = {ξz′,z}z′∈Z,z∈Z , ξz′,z = p(z′|z), ξ z = {ξz′,z}z′∈Z

where the matrices �, �, and � and the vector π are
formed as follows. An element of a matrix on the i th row
and j th column is a probability of the i th element given
the j th one, e.g., φx,y is a probability of the word x in the
topic y. The columns of the matrices are then distributions for
corresponding elements, e.g., θ z is a distribution over topics
for the behavior z. Elements of the vector π are probabilities
of behaviors to be chosen by the first document. All these
distributions are categorical.

The introduced distributions form a set

	 = {�,�,π ,�} (1)

of model parameters, and they are estimated during a learning
procedure.

Fig. 2. Graphical representation of the MCTM.

Prior distributions are imposed to all the parameters.
Conjugate Dirichlet distributions are used

φ y ∼ Dir(φ y|β), ∀y ∈ Y

θ z ∼ Dir(θ z |α), ∀z ∈ Z

π ∼ Dir(π |η)

ξ z ∼ Dir(ξ z |γ ), ∀z ∈ Z

where Dir(·) is a Dirichlet distribution and β, α, η, and γ are
the corresponding hyperparameters. As topics and behaviors
are not known a priori and will be specified via the learning
procedure, it is impossible to distinguish two topics or two
behaviors in advance. This is the reason why all the prior
distributions are the same for all topics and all behaviors.

The generative process for the model is as follows. All the
parameters are drawn from the corresponding prior Dirichlet
distributions. At each time moment t , a behavior zt is chosen
first for a visual document. The behavior is sampled using the
matrix � according to the behavior chosen for the previous
document. For the first document, the behavior is sampled
using the vector π .

Once the behavior is selected, the procedure of choosing
visual words repeats for the number of times equal to the
length of the current document Nt . The procedure consists of
two steps—sampling a topic yi,t using the matrix � according
to the chosen behavior zt followed by sampling a word xi,t

using the matrix � according to the chosen topic yi,t for each
token i ∈ {1, . . . , Nt }, where a token is a particular place
inside a document where a word is assigned. The generative
process is summarized in Algorithm 1. The graphical model,
showing the relationships between the variables, can be found
in Fig. 2.

The full likelihood of the observed variables x1:Ttr , the hid-
den variables y1:Ttr and z1:Ttr , and the set of parameters 	 can
be written then as follows:

p(x1:Ttr , y1:Ttr , z1:Ttr ,	|β,α, η, γ )

= p(π |η) p(�|γ ) p(�|α) p(�|β)︸ ︷︷ ︸
Priors

×p(z1|π)

[
Ttr∏

t=2

p(zt |zt−1,�)

]
Ttr∏

t=1

Nt∏

i=1

p(xi,t |yi,t ,�)p(yi,t |zt ,�)

︸ ︷︷ ︸
Likelihood

.

(2)

In [21], GS is implemented for parameters learning in the
MCTM. We propose two new learning algorithms: based on



ISUPOVA et al.: LEARNING METHODS FOR DYNAMIC TOPIC MODELING IN AUTOMATED BEHAVIOR ANALYSIS 3983

Algorithm 1 Generative Process for the MCTM
Require: The number of clips – Ttr , the length of each clip

– Nt ∀t = {1, . . . , Ttr }, the hyperparameters – β, α, η, γ ;
Ensure: The data set x1:Ttr = {x1,1, . . . , xi,t , . . . , xNTtr ,Ttr };

1: for all y ∈ Y do

2: draw a word distribution for the topic y:

φ y ∼ Dir(φ y|β);

3: for all z ∈ Z do

4: draw a topic distribution for behavior z:

θ z ∼ Dir(θ z |α);

5: draw a transition distribution for behavior z:

ξ z ∼ Dir(ξ z |γ );

6: draw a behavior probability distribution for the initial
document

π ∼ Dir(φ|η);

7: for all t ∈ {1, . . . , Ttr } do

8: if t = 1 then

9: draw a behavior for the document from the initial
distribution: zt ∼ Cat (zt |π)1;

10: else

11: draw a behavior for the document based on the behav-
ior of the previous document: zt ∼ Cat (zt |ξ zt−1

);
12: for all i ∈ {1, . . . , Nt } do

13: draw a topic for the token i based on the chosen
behavior: yi,t ∼ Cat (yi,t |θ zt );

14: draw a visual word for the token i based on the chosen
topic: xi,t ∼ Cat (xi,t |φyi,t

);

an EM algorithm for the MAP estimates of the parameters and
based on VB inference to estimate posterior distributions of
the parameters. We introduce the proposed learning algorithms
below and briefly reviewed the GS scheme.

IV. PARAMETERS LEARNING

A. Learning: EM Algorithm Scheme

We propose a learning algorithm for MAP estimates of the
parameters based on the EM algorithm [26]. The algorithm
consists of repeating E- and M-steps. Conventionally, the EM
algorithm is applied to get maximum likelihood estimates.
In that case, the M-step is

Q(	,	old) −→ max
	

(3)

where 	old denotes the set of parameters obtained at the

previous iteration, and Q(	,	old) is the expected logarithm
of the full likelihood function of the observed and hidden
variables

Q(	,	old)

= Ep(y1:Ttr ,z1:Ttr |x1:Ttr ,	old) log p(x1:Ttr , y1:Ttr , z1:Ttr |	). (4)

1Here, Cat (·|v) denotes a categorical distribution, where components of a
vector v are probabilities of a discrete random variable to take one of possible
values.

The subscript of the expectation sign means the distribu-
tion, with respect to which the expectation is calculated.
During the E-step, the posterior distribution of the hidden
variables is estimated given the current estimates of the
parameters.

In this paper, the EM algorithm is applied to get MAP
estimates instead of traditional maximum likelihood ones. The
M-step is modified in this case as

Q(	,	old) + log p(	|β,α, η, γ ) −→ max
	

(5)

where p(	|β,α, η, γ ) is the prior distribution of the parame-
ters.

As the hidden variables are discrete, the expectation con-
verts to a sum of all possible values for the whole set of
the hidden variables {y1:Ttr , z1:Ttr }. The substitution of the
likelihood expression from (2) into (5) allows to marginalize
some hidden variables from the sum. The remaining distrib-
utions that are required for computing the Q-function are as
follows:

• p(z1 = z|x1:Ttr ,	
old)—the posterior distribution of a

behavior for the first document;
• p(zt = z′, zt−1 = z|x1:Ttr ,	

old)—the posterior distribu-
tion of two behaviors for successive documents;

• p(yi,t = y|x1:Ttr ,	
old)—the posterior distribution of a

topic assignment for a given token;
• p(yi,t = y, zt = z|x1:Ttr ,	

old)—the joint posterior
distribution of a topic and behavior assignments for a
given token.

With the fixed current values for these posterior distributions
the estimates of the parameters that maximize the required
functional of the M-step (5) can be computed as

φ̂ EM
x,y =

(
βx + n̂ EM

x,y − 1
)
+∑

x ′∈X

(
βx ′ + n̂ EM

x ′,y
− 1

)
+

, ∀x ∈ X , y ∈ Y (6)

θ̂ EM
y,z =

(
αy + n̂ EM

y,z − 1
)
+∑

y′∈Y

(
αy′ + n̂ EM

y′,z
− 1

)
+

, ∀y ∈ Y, z ∈ Z (7)

ξ̂ EM
z′,z =

(
γz′ + n̂ EM

z′,z − 1
)
+∑

ž∈Z

(
γž + n̂ EM

ž,z
− 1

)
+

, ∀z′, z ∈ Z (8)

π̂ EM
z =

(
ηz + n̂ EM

z − 1
)
+∑

z′∈Z

(
ηz′ + n̂ EM

z′ − 1
)
+

, ∀z ∈ Z (9)

where (a)+
def
= max(a, 0) [27]; βx , αy , and γz′ are the elements

of the hyperparameter vectors β, α, and γ , respectively;
n̂ EM

x,y =
∑Ttr

t=1

∑Nt

i=1 p(yi,t = y|x1:Ttr ,	
old)I(xi,t = x) is the

expected number of times, when the word x is associated
with the topic y, where I(·) is the indicator function; n̂ EM

y,z =∑Ttr

t=1

∑Nt

i=1 p(yi,t = y, zt = z|x1:Ttr ,	
old) is the expected

number of times, when the topic y is associated with the
behavior z; n̂ EM

z = p(z1 = z|x1:Ttr ,	
old) is the “expected

number of times,” when the behavior z is associated with the
first document, in this case the “expected number” is just a
probability, the notation is used for the similarity with the
rest of the parameters; and n̂ EM

z′,z =
∑Ttr

t=2 p(zt = z′, zt−1 =

z|x1:Ttr ,	
old) is the expected number of times, when the

behavior z is followed by the behavior z′.
During the E-step with the fixed current estimates of the

parameters 	old, the updated values for the posterior dis-
tributions of the hidden variables should be computed. The
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derivation of the updated formulas for these distributions is
similar to the Baum–Welch forward–backward algorithm [28],
where the EM algorithm is applied to the maximum likelihood
estimates for a HMM. This similarity appears because the
generative model can be viewed as extension of a HMM.

For effective computation of the required posterior distri-
butions, the additional variables άz(t) and β́z(t) are intro-
duced. A dynamic programming technique is applied for
computation of these variables. Having the updated values
for άz(t) and β́z(t), one can update the required posterior
distributions of the hidden variables. The E-step is then
formulated as follows (for simplification of notation the super-
script “old” for the parameters variables is omitted inside the
formulas):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

άz(t) =

Nt∏

i=1

∑

y∈Y

φxi,t ,y θy,z

×
∑

z′∈Z

άz′(t − 1)ξz,z̃, if t ≥ 2

άz(1) = πz

N1∏

i=1

∑

y∈Y

φxi,1,y θy,z

(10)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β́z(t) =
∑

z′∈Z

β́z′(t + 1)ξz′,z

×

Nt+1∏

i=1

∑

y∈Y

φxi,t+1,y θy,z′, if t < Ttr

β́z(Ttr ) = 1

(11)

K =
∑

z∈Z

άz(1)β́z(1) (12)

p(z1|x1:Ttr ,	
old) =

άz1(1)β́z1(1)

K
(13)

p(zt , zt−1|x1:Ttr ,	
old) =

άzt−1(t − 1)β́zt (t)ξzt ,zt−1

K

×

Nt∏

i=1

∑

y∈Y

φxi,t ,yθy,zt (14)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(yi,t , zt |x1:Ttr ,	
old) =

φxi,t ,yi,t θyi,t ,zt β́zt (t)

K

×
∑

z′∈Z

άz′(t − 1)ξzt ,z′

Nt∏

j=1
j �=i

∑

y′∈Y

φx j,t ,y′θy′,zt
, if t ≥ 2

p(yi,1, z1|x1:Ttr ,	
old) =

φxi,1,yi,1θyi,1,z1 β́z1(1)

K

×πz1

N1∏

j=1
j �=i

∑

y′∈Y

φx j,1,y′θy′,z1

(15)

p(yi,t |x1:Ttr ,	
old) =

∑

z∈Z

p(yi,t , z|x1:Ttr ,	
old) (16)

where K is a normalization constant for all the posterior
distributions of the hidden variables.

Starting with some random initialization of the parameter
estimates, the EM algorithm iterates the E- and M-steps until
convergence. The obtained estimates of the parameters are
used for further analysis.

B. Learning: Variational Bayes Scheme

We also propose a learning algorithm based on the
VB approach [29] to find approximated posterior distributions
for both the hidden variables and the parameters.

In the VB inference scheme, the true posterior distribution,
in this case the distribution of the parameters and the hidden
variables p(y1:Ttr , z1:Ttr ,	|x1:Ttr , η, γ ,α,β), is approximated
with a factorized distribution—q(y1:Ttr , z1:Ttr ,	). The approx-
imation is made to minimize the Kullback–Leibler divergence
between the factorized distribution and true one. We factorize
the distribution in order to separate the hidden variables and
the parameters

q̂(y1:Ttr , z1:Ttr ,	)

= q̂(y1:Ttr , z1:Ttr )q̂(	)

def
= argmin KL(q(y1:Ttr , z1:Ttr )q(	)||

p(y1:Ttr , z1:Ttr ,	|x1:Ttr , η, γ ,α,β)) (17)

where KL denotes the Kullback–Leibler divergence. The min-
imization of the Kullback–Leibler divergence is equivalent to
the maximization of the evidence lower bound. The maximiza-
tion is done by coordinate ascent [29].

During the update of the parameters, the approximated
distribution q(	) is further factorized

q(	) = q(π)q(�)q(�)q(�). (18)

Note that this factorization of approximated parameter
distributions is a corollary of our model and not an
assumption.

The iterative process of updating the approximated dis-
tributions of the parameters and the hidden variables can
be formulated as an EM-like algorithm, where during the
E-step, the approximated distributions of the hidden variables
are updated and during the M-step, the approximated distrib-
utions of the parameters are updated.

The M-like step is as follows:
⎧
⎨
⎩

q(�) =
∏

y∈Y

Dir(φy; β̃ y)

β̃x,y = βx + n̂ VB
x,y , ∀x ∈ X , y ∈ Y

(19)

⎧
⎨
⎩

q(�) =
∏

z∈Z

Dir(θ z; α̃z)

α̃y,z = αy + n̂ VB
y,z , ∀y ∈ Y, z ∈ Z

(20)

{
q(π) = Dir(π; η̃)

η̃z = ηz + n̂ VB
z , ∀z ∈ Z

(21)

⎧
⎨
⎩

q(�) =
∏

z∈Z

Dir(ξ z; γ̃ z)

γ̃z′,z = γz′ + n̂VB
z′,z

, ∀z′, z ∈ Z

(22)

where β̃ y , α̃z , η̃, and γ̃ z are updated hyperparameters of the
corresponding posterior Dirichlet distributions, and n̂ VB

x,y =∑Ttr

t=1

∑Nt

i=1 I(xi,t = x)q(yi,t = y) is the expected number of
times, when the word x is associated with the topic y. Here and
below the expected number is computed with respect to the
approximated posterior distributions of the hidden variables;
n̂ VB

y,z =
∑Ttr

t=1

∑Nt

i=1 q(yi,t = y, zt = z) is the expected number
of times, when the topic y is associated with the behavior z;
n̂ VB

z = q(z1 = z) is the “expected number” of times,
when the behavior z is associated with the first document;



ISUPOVA et al.: LEARNING METHODS FOR DYNAMIC TOPIC MODELING IN AUTOMATED BEHAVIOR ANALYSIS 3985

and n̂ VB
z′,z

=
∑Ttr

t=2 q(zt = z′, zt−1 = z) is the expected
number of times, when the behavior z is followed by the
behavior z′.

The following additional variables are introduced for the
E-like step:

π̃z = exp

⎛
⎝ψ(η̃z) − ψ

⎛
⎝∑

z′∈Z

η̃z′

⎞
⎠

⎞
⎠ (23)

ξ̃z̃,z = exp

⎛
⎝ψ(γ̃z̃,z) − ψ

⎛
⎝∑

z′∈Z

γ̃z′,z

⎞
⎠

⎞
⎠ (24)

φ̃x,y = exp

(
ψ(β̃x,y) − ψ

( ∑

x ′∈X

β̃x ′,y

))
(25)

θ̃y,z = exp

⎛
⎝ψ(α̃y,z) − ψ

⎛
⎝∑

y′∈Y

α̃y′,z

⎞
⎠

⎞
⎠ (26)

where ψ(·) is the digamma function.
Using these additional notations, the E-like step is formu-

lated the same as the E-step of the EM algorithm, replac-
ing everywhere the estimates of the parameters with the
corresponding tilde introduced notation and true posterior
distributions of the hidden variables with the corresponding
approximated ones in (10)–(16).

The point estimates of the parameters can be obtained by
expected values of the posterior approximated distributions.
An expected value for a Dirichlet distribution (a posterior
distribution for all the parameters) is a normalized vector of
hyperparameters. Using the expressions for the hyperparame-
ters from (19)–(22), the final parameters’ estimates can be
obtained by

φ̂ VB
x,y =

βx + n̂ VB
x,y∑

x ′∈X

(
βx ′ + n̂ VB

x ′,y

) , ∀x ∈ X , y ∈ Y (27)

θ̂ VB
y,z =

αy + n̂ VB
y,z∑

y′∈Y

(
αy′ + n̂ VB

y′,z

) , ∀y ∈ Y, z ∈ Z (28)

ξ̂ VB
z′,z =

γz′ + n̂ VB
z′,z∑

ž∈Z

(
γž + n̂ VB

ž,z

) , ∀z′, z ∈ Z (29)

π̂ VB
z =

ηz + n̂ VB
z∑

z′∈Z

(
ηz′ + n̂ VB

z′

) , ∀z ∈ Z. (30)

C. Learning: Gibbs Sampling Algorithm

In [21], the collapsed version of GS is used for parameter
learning in the MCTM. The Markov chain is built to sample
only the hidden variables yi,t and zt , while the parameters
�, �, and � are integrated out (note that the distribution for
the initial behavior choice π is not considered in [21]).

During the burn-in stage, the hidden topic and behav-
ior assignments to each token in the data set are drawn
from the conditional distributions given all the remaining
variables. Following the Markov Chain Monte Carlo frame-
work, it would draw samples from the posterior distribution
p(y1:Ttr , z1:Ttr |x1:Ttr ,β,α, η, γ ). From the whole sample for

{y1:Ttr , z1:Ttr }, the parameters can be estimated as in [23]

φ̂ GS
x,y =

n̂ GS
x,y + βx∑

x ′∈X

(
n̂ GS

x ′,y
+ βx ′

) , ∀x ∈ X , y ∈ Y (31)

θ̂ GS
y,z =

n̂ GS
y,z + αy∑

y′∈Y

(
n̂ GS

y′,z + αy′

) , ∀y ∈ Y, z ∈ Z (32)

ξ̂ GS
z′,z =

n̂ GS
z′,z

+ γz′

∑
ž∈Z

(
n̂ GS

ž,z
+ γž

) , ∀z′, z ∈ Z (33)

where n̂ GS
x,y is the count for the number of times, when the

word x is associated with the topic y; n̂ GS
y,z is the count for

the topic y and the behavior z pair; n̂ GS
z′,z is the count for

the number of times, when the behavior z is followed by the
behavior z′.

D. Similarities and Differences of the Learning Algorithms

The point parameter estimates for all three learning algo-
rithms (6)–(9), (27)–(30), and (31)–(33) have a similar form.
The EM algorithm estimates differ up to the hyperparameters
reassignment—adding one to all the hyperparameters in the
VB or GS algorithms ends up with the same final equations
for the parameters estimates in the EM algorithm. We explore
this in the experimental part. This “-1” term in the EM algo-
rithm formulas (6)–(8) occurs because it uses modes of the
posterior distributions, while the point estimates obtained by
the VB and GS algorithms are means of the corresponding
posterior distributions. For a Dirichlet distribution, which is a
posterior distribution for all the parameters, mode and mean
expressions differ by this “-1” term.

The main differences of the methods consist in the ways the
counts nx,y , ny,z , and nz′,z are estimated. In the GS algorithm,
they are calculated by a single sample from the posterior dis-
tribution of the hidden variables p(y1:Ttr , z1:Ttr |x1:Ttr ,β,α, γ ).
In the EM algorithm, the counts are computed as expected
numbers of the corresponding events with respect to the
posterior distributions of the hidden variables. In the VB algo-
rithm, the counts are computed in the same way as in the
EM algorithm up to replacing the true posterior distributions
with the approximated ones.

Our observations for the dynamic topic model confirm the
comparison results for the vanilla PLSA and LDA models
provided in [30].

V. ANOMALY DETECTION

This paper presents on-line anomaly detection with the
MCTM in video streams. The decision-making procedure is
divided into two stages. At a learning stage, the parameters are
estimated using Ttr visual documents by one of the learning
algorithms, presented in Section IV. After that during a testing
stage a decision about abnormality of new upcoming testing
documents is made comparing a marginal likelihood of each
document with a threshold. The likelihood is computed using
the parameters obtained during the learning stage. The thresh-
old is a parameter of the method and can be set empirically,
for example, to label 2% of the testing data as abnormal. This
paper presents a comparison of the algorithms (Section VI)
using the measure independent of threshold value selection.

We also propose an anomaly localization procedure during
the testing stage for those visual documents that are labeled
as abnormal. This procedure is designed to provide spatial
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information about anomalies, while documents labeled as
abnormal provide temporal detection. The following sections
introduce both the anomaly detection procedure on a document
level and the anomaly localization procedure within a video
frame.

A. Abnormal Documents Detection

The marginal likelihood of a new visual document xt+1
given all the previous data x1:t can be used as a normality
measure of the document [21]

p(xt+1|x1:t )

=

∫∫∫
p(xt+1|x1:t ,�,�,�)p(�,�,�|x1:t )d�d�d�.

(34)

If the likelihood value is small it means that the current
document cannot be fit to the learnt behaviors and topics,
which represent typical motion patterns. Therefore, this is
an indication for an abnormal event in this document. The
decision about abnormality of a document is then made by
comparing the marginal likelihood of the document with the
threshold.

In real world applications, it is essential to detect anomalies
as soon as possible. Hence an approximation of the integral
in (34) is used for efficient computation. The first approxi-
mation is based on the assumption that the training data set
is representative for parameter learning, which means that the
posterior probability of the parameters would not change if
there is more observed data

p(�,�,�|x1:t ) ≈ p(�,�,�|x1:T r ) ∀t ≥ Ttr . (35)

The marginal likelihood can be then approximated as∫∫∫
p(xt+1|x1:t ,�,�,�)p(�,�,�|x1:t )d�d�d�

≈

∫∫∫
p(xt+1|x1:t ,�,�,�)p(�,�,�|x1:Ttr )d�d�d�.

(36)

Depending on the algorithm used for learning the integral
in (36) can be further approximated in different ways. We con-
sider two types of approximation.

1) Plug-in Approximation: The point estimates of the para-
meters can be plug-in in the integral (36) for approximation∫∫∫

p(xt+1|x1:t ,�,�,�)p(�,�,�|x1:T r )d�d�d�

≈

∫∫∫
p(xt+1|x1:t ,�,�,�)δ

�̂
(�)δ

�̂
(�), δ

�̂
(�)d�d�d�

= p(xt+1|x1:t , �̂, �̂, �̂) (37)

where δa(·) is the delta-function with the center in a; �̂, �̂, �̂
are point estimates of the parameters, which can be computed
by any of the considered learning algorithms using (6)–(8),
(27)–(29), or (31)–(33).

The product and sum rules, the conditional independence
equations from the generative model are then applied and the
final formula for the plug-in approximation is as follows:

p(xt+1|x1:t ) ≈ p(xt+1|x1:t , �̂, �̂, �̂)

=
∑

zt

∑

zt+1

[p(xt+1|zt+1, �̂, �̂)p(zt+1|zt , �̂)

×p(zt |x1:t , �̂, �̂, �̂)] (38)

where the predictive probability of the behavior for the current
document, given the observed data up to the current document,
can be computed via the recursive formula

p(zt |x1:t , �̂, �̂, �̂)

=
∑

zt−1

p(xt |zt , �̂, �̂)p(zt |zt−1, �̂)p(zt−1|x1:t−1, �̂, �̂, �̂)

p(xt |x1:t−1, �̂, �̂, �̂)
.

(39)

The point estimates can be computed for all three learning
algorithms; therefore, a normality measure based on the plug-
in approximation of the marginal likelihood is applicable for
all of them.

2) Monte Carlo Approximation: If samples {�s ,�s,�s}
from the posterior distribution p(�,�,�|x1:Ttr ) of the para-
meters can be obtained, the integral (36) is further approxi-
mated by the Monte Carlo method
∫∫∫

p(xt+1|x1:t ,�,�,�)p(�,�,�|x1:Ttr )d�d�d�

≈
1

S

S∑

s=1

p(xt+1|x1:t ,�
s ,�s ,�s) (40)

where S is the number of samples. These samples can
be obtained: 1) from the approximated posterior distribu-
tions q(�), q(�), and q(�) of the parameters, computed
by the VB learning algorithm or 2) from the independent
samples of the GS scheme. For the conditional likelihood
p(xt+1|x1:t ,�

s,�s ,�s), the formula (38) is valid.
Note that for the approximated posterior distribution of

the parameters, i.e., the output of the VB learning algorithm,
the integral (36) can be resolved analytically, but it would be
computationally infeasible. This is the reason why the Monte
Carlo approximation is used in this case.

Finally, in order to compare documents of different lengths
the normalized likelihood is used as a normality measure s

s(xt+1) =
1

Nt+1
p(xt+1|x1:t ). (41)

B. Localization of Anomalies

The topic modeling approach allows to compute a likelihood
function not only of the whole document but of an individual
word within the document too. Recall that the visual word
contains the information about a location in the frame. We pro-
pose to use the location information from the least probable
words (e.g., 10 words with the least likelihood values) to
localize anomalies in the frame. Note, we do not require
anything additional to a topic model, e.g., modeling regional
information explicitly as in [31] or comparing a test document
with training ones as in [32]. Instead, the proposed anomaly
localization procedure is general and can be applied in any
topic modeling-based method, where spatial information is
encoded to visual words.

The marginal likelihood of a word can be computed in a
similar way to the likelihood of the whole document. For the
point estimates of the parameters and plug-in approximation
of the integral, it is

p(xi,t+1|x1:t ) ≈ p(xi,t+1|x1:t , �̂, �̂, �̂). (42)
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Fig. 3. Sample frames of the real data sets. (a) and (b) Two sample frames
from the QMUL data. (c) and (d) Two sample frames from the Idiap data.

For the samples from the posterior distributions of the para-
meters and the Monte Carlo integral approximation, it is

p(xi,t+1|x1:t ) ≈
1

S

S∑

s=1

p(xi,t+1|x1:t ,�
s,�s,�s). (43)

VI. PERFORMANCE VALIDATION

We compare the two proposed learning algorithms, based on
EM and VB, with the GS algorithm, proposed in [21], on two
real data sets.

A. Setup

The performance of the algorithms is compared on the
QMUL street intersection data [21] and Idiap traffic junc-
tion data [19]. Both data sets are 45-min video sequences,
captured busy traffic road junctions, where we use a 5-min
video sequence as a training data set and others as a testing
one. The documents that have less than 20 visual words are
discarded from consideration. In practice, these documents can
be classified to be normal by default as there is no enough
information to make a decision. The frame size for both data
sets is 288 × 360. Sample frames are presented in Fig. 3.

The size of grid cells is set to 8 × 8 pixels for spatial
quantization of the local motion for visual word determination.
Nonoverlapping clips with a 1-s length are treated as visual
documents.

We also study the influence of the hyperparameters on
the learning algorithms. In all the experiments, we use the
symmetric hyperparameters: α = {α, . . . , α}; β = {β, . . . , β};
γ = {γ, . . . , γ }; and η = {η, . . . , η}. The three groups of
the hyperparameters settings are compared: {α = 1, β = 1,
γ = 1, η = 1} (referred as “prior type 1”); {α = 8,
β = 0.05, γ = 1, η = 1} (“prior type H”); and
{α = 9, β = 1.05, γ = 2, η = 2} (“prior type H + 1”).
Note that the first group corresponds to the case when in
the EM algorithm learning scheme the prior components
are canceled out, i.e., the MAP estimates in this case are
equal to the maximum likelihood ones. The equations for
the point estimates in the EM learning algorithm with the
prior type H + 1 of the hyperparameters’ settings are equal
to the equations for the point estimates in the VB and GS

Fig. 4. Dirichlet distributions with different symmetric parameters ξ . For
the representation purposes, the 3-D space is used. Colors correspond to the
Dirichlet probability density function values in the area (top row). Samples
generated from the corresponding density functions (bottom row). The sample
size is 500.

learning algorithms with the prior type H of the settings. The
corresponding Dirichlet distributions with all used parameters
are presented in Fig. 4.

Note that parameter learning is an ill-posed problem in
topic modeling [27]. This means there is no unique solution
for parameter estimates. We use 20 Monte Carlo runs for all
the learning algorithms with different random initializations
resulting with different solutions. The mean results among
these runs are presented below for comparison.

All three algorithms are run with three different groups of
hyperparameters’ settings. The number of topics and behaviors
is set to 8 and 4, respectively, for the QMUL data set, 10 and 3
are used for the corresponding values for the Idiap data set.
The EM and VB algorithms are run for 100 iterations. The
GS algorithm is run for 500 burn-in iterations and independent
samples are taken with a 100-iterations delay after the burn-in
period.

B. Performance Measure

Anomaly detection performance of the algorithms depends
on threshold selection. To make a fair comparison of the
different learning algorithms, we use a performance measure,
which is independent of threshold selection.

In binary classification, the following measures [28] are
used: TP—true positive, a number of documents, which are
correctly detected as positive (abnormal in our case); TN—true
negative, a number of documents, which are correctly detected
as negative (normal in our case); FP—false positive, a number
of documents, which are incorrectly detected as positive, when
they are negative; FN—false negative, a number of documents,
which are incorrectly detected as negative, when they are
positive; precision = (TP/(TP + FP))—a fraction of correct
detections among all documents labeled as abnormal by an
algorithm; recall = (TP/(TP + FN))—a fraction of correct
detections among all truly abnormal documents.

The area under the precision-recall curve is used as a
performance measure in this paper. This measure is more
informative for detection of rare events than the popular area
under the receiver operating characteristic curve [28].

C. Parameter Learning

We visualize the learnt behaviors for the qualitative assess-
ment of the proposed framework (Figs. 5 and 6). For illus-
trative purposes, we consider one run of the EM learning
algorithm with the prior type H + 1 of the hyperparameters
settings.

The behaviors learnt for the QMUL data are shown in Fig. 5
(for visualization words representing 50% of probability mass



3988 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

Fig. 5. Behaviors learnt by the EM learning algorithm for the QMUL data. The arrows represent the visual words: the location and direction of the motion.
(a) First behavior corresponds to the vertical traffic flow. (b) Second and (c) third behaviors correspond to the left and the right traffic flow, respectively.
(d) Fourth behavior corresponds to turns that follow the vertical traffic flow.

Fig. 6. Behaviors learnt by the EM learning algorithm for the Idiap data. The arrows represent the visual words: the location and direction of the motion.
(a) First behavior corresponds to the pedestrian motion. (b) Second and (c) third behaviors correspond to the upward and downward traffic flows, respectively.

of a behavior are used). One can notice that the algorithm cor-
rectly recognizes the motion patterns in the data. The general
motion of the scene follows a cycle: a vertical traffic flow [the
first behavior in Fig. 5(a)], when cars move downward and
upward on the road; left and right turns [the fourth behavior
in Fig. 5(d)]: some cars moving on the “vertical” road turn
to the perpendicular road at the end of the vertical traffic
flow; a left traffic flow [the second behavior in Fig. 5(b)],
when cars move from right to left on the “horizontal” road;
and a right traffic flow [the third behavior in Fig. 5(c)],
when cars move from left to right on the “horizontal” road.
Note that the ordering numbers of behaviors correspond to
their internal representation in the algorithm. The transition
probability matrix � is used to recognize the correct behaviors
order in the data.

Fig. 6 presents the behaviors learnt for the Idiap data. In this
case, the learnt behaviors have also a clear semantic meaning.
The scene motion follows a cycle: a pedestrian flow [the first
behavior in Fig. 6(a)], when cars stop in front of the stop
line and pedestrians cross the road; a downward traffic flow
[the third behavior in Fig. 6(c)], when cars move downward
along the road; and an upward traffic flow [the second behavior
in Fig. 6(b)], when cars from left and right sides move upward
on the road.

D. Anomaly Detection

In this section, the anomaly detection performance achieved
by all three learning algorithms is compared. The data sets
contain the number of abnormal events, such as jaywalking,
car moving on the opposite lane, and disruption of the traffic
flow (see Fig. 7).

For the EM learning algorithm, the plug-in approximation of
the marginal likelihood is used for anomaly detection. For both
the VB and GS learning algorithms, the plug-in and Monte
Carlo approximations of the likelihood are used. Note that for
the GS algorithm, samples are obtained during the learning
stage, the more samples are used for integral approximation
the more computational cost of the learning stage. We test 5

Fig. 7. Examples of abnormal events. (a) Car moving on the opposite lane.
(b) Disruption of the traffic flow. (c) Jaywalking. (d) Car moving on the
sidewalk.

and 100 independent samples. For the VB learning algorithm,
samples are obtained after the learning stage from the posterior
distributions, parameters of which are learnt. This means that
the number of samples that are used for anomaly detection
does not influence on the computational cost of learning.
We test the Monte Carlo approximation of the marginal like-
lihood with 5 and 100 samples for the VB learning algorithm.

As a result, we have 21 methods to compare: obtained by
three learning algorithms; three different groups of hyperpa-
rameters’ settings; one type of marginal likelihood approx-
imation for the EM learning algorithm; and two types of
marginal likelihood approximation for the VB and GS learning
algorithms, where two Monte Carlo approximations are used
with 5 and 100 samples. The list of methods’ references can
be found in Table I.

Note that we achieve a very fast decision-making per-
formance in our framework. Indeed, anomaly detection
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TABLE I

METHODS’ REFERENCES

is made for approximately 0.0044 s / visual document by
the plug-in approximation of the marginal likelihood, for
0.0177 s / document by the Monte Carlo approximation with
5 samples and for 0.3331 s / document by the Monte Carlo
approximation with 100 samples.2

The mean areas under precision-recall curves for anomaly
detection for all 21 compared methods can be found in Fig. 8.
Below we examine the results with respect to hyperparameters
sensitivity, an influence of the likelihood approximation on the
final performance, we also compare the learning algorithms
and discuss anomaly localization results.

1) Hyperparameters Sensitivity: This section presents sen-
sitivity analysis of the anomaly detection methods with respect
to changes of the hyperparameters.

The analysis of the mean areas under curves (Fig. 8)
suggests that the hyperparameters almost do not influence
on the results of the EM learning algorithm, while there is
a significant dependence between hyperparameters’ changes
and results of the VB and GS learning algorithms. These con-
clusions are confirmed by examination of the individual runs
of the algorithms. For example, Fig. 9 presents the precision-
recall curves for all 20 runs with different initializations of four
methods for the QMUL data: the VB learning algorithm using
the plug-in approximation of the marginal likelihood with the
prior types 1 and H of the hyperparameters’ settings and
the EM learning algorithm with the same prior groups of the
hyperparameters’ settings. One can notice that the variance of
the curves for the VB learning algorithm with the prior type 1
is larger than the corresponding variance with the prior type
H, while the similar variances for the EM learning algorithm
are very close to each other.

Note that the results of the EM learning algorithm with the
prior type 1 do not significantly differ from the results with the

2The computational time is provided for a laptop computer with i7-4702HQ
CPU with 2.20GHz, 16 GB RAM using MATLAB R2015a implementation.

Fig. 8. Results of anomaly detection. (a) Mean areas under precision-recall
curves for the QMUL data. (b) Mean areas under precision-recall curves for
the Idiap data.

Fig. 9. Hyperparameters sensitivity of the precision-recall curves. Indepen-
dent runs of the VB learning algorithm with (a) prior type 1 and (b) prior
type H. Independent runs of the EM learning algorithm with (c) prior type 1
and (d) prior type H. The red color highlights the curves with the maximum
and minimum areas under curves.

other priors, despite of the fact that the prior type 1 actually
cancels out the prior influence on the parameters’ estimates
and equates the MAP and maximum likelihood estimates.
We can conclude that the choice of the hyperparameters’
settings is not a problem for the EM learning algorithm and
we can even simplify the derivations considering only the
maximum likelihood estimates without the prior influence.

The VB and GS learning algorithms require a proper choice
of the hyperparameters’ settings as they can significantly
change the anomaly detection performance. This choice can be
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TABLE II

MEAN AREA UNDER PRECISION-RECALL CURVES

Fig. 10. Precision-recall curves with the maximum and minimum areas under
curves for the three learning algorithms (maximum and minimum are among
all the runs with different initializations for all groups of hyperparameters’
settings and all types of marginal likelihood approximations). (a) “Best”
curves for the QMUL data, i.e., the curves with the maximum area under
a curve. (b) “Worst” curves for the QMUL data, i.e., the curves with the
minimum area under a curve. (c) “Best” curves for the Idiap data. (d) “Worst”
curves for the Idiap data.

performed empirically or with the type II maximum likelihood
approach [28].

2) Marginal Likelihood Approximation Influence: In this
section, the influence of the type of the marginal likelihood
approximation on the anomaly detection results is studied.

The average results for both data sets (Fig. 8) demonstrate
that the type of the marginal likelihood approximation does
not influence remarkably on anomaly detection performance.
As the plug-in approximation requires less computational
resources both in terms of time and memory (as there is no
need to sample and store posterior samples and average among
them), this type of approximation is recommended to be used
for anomaly detection in the proposed framework.

3) Learning Algorithms Comparison: This section com-
pares the anomaly detection performance obtained by three
learning algorithms.

The best results in terms of a mean area under a precision-
recall curve are obtained by the EM learning algorithm,
the worst results are obtained by the GS learning algo-
rithm (Fig. 8 and Table II). In Table II, for each learning
algorithm the group of hyperparameters’ settings and the type
of marginal likelihood approximation is chosen to have the
maximum of the mean area under curves, where a mean
is taken over independent runs of the same method and
maximum is taken among different settings for the same
learning algorithm.

Fig. 10 presents the best and the worst precision-recall
curves (in terms of the area under them) for the individual runs
of the learning algorithms. The figure shows that among the
individual runs the EM learning algorithm also demonstrates

TABLE III

BEST CLASSIFICATION ACCURACY FOR THE EM LEARNING ALGORITHM

Fig. 11. Example of anomalies localization. The red rectangle is the manual
localization. The arrows represent the visual words with the smallest marginal
likelihood, the locations of the arrows are the results of the algorithmic
anomaly localization. (a) and (b) Examples of anomaly localization for the
QMUL data. (c) and (d) Samples of anomaly localization for the Idiap data.

Fig. 12. Recall results of the proposed anomaly localization procedure.

the most accurate results. Although, the minimum area under
the precision-recall curve for the EM learning algorithm is
less than the area under the corresponding curve for the
VB algorithm. It means that the variance among the individual
curves for the EM learning algorithm is larger in comparison
with the VB learning algorithm.

The variance of the precision-recall curves for both VB and
GS learning algorithms is relatively small. However, the VB
learning algorithm has the curves higher than the curves
obtained by the GS learning algorithm. It can be con-
firmed by examination of the best and worst precision-recall
curves (Fig. 10) and the mean values of the area under
curves (Fig. 8 and Table II).

We also present the results of classification accuracy, i.e., the
fraction of the correctly classified documents, for anomaly
detection, which can be achieved with some fixed threshold.
The best classification accuracy for the EM learning algorithm
in both data sets can be found in Table III.

4) Anomaly Localization: We apply the proposed method
for anomaly localization, presented in Section V-B, and get
promising results. We demonstrate the localization results for
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the EM learning algorithm with the prior type H + 1 on
both data sets in Fig. 11. The red rectangle is manually set
to locate the abnormal events within the frame, the arrows
correspond to the visual words with the smallest marginal
likelihood computed by the algorithm. It can be seen that the
abnormal events correctly localized by the proposed method.

For quantitative evaluation, we analyze 10 abnormal
events (5 from each data set). For each clip, for a given
number Ntop of the least probable words, we measure the
recall: recall = (TP/Nan), where Nan is the maximum possible
number of abnormal words among Ntop, i.e., Nan = Ntop if
Ntop ≤ Ntotal an, where Ntotal an is the total number of abnormal
words, and Nan = Ntotal an if Ntop > Ntotal an. Fig. 12 presents
the mean results for all events. One can notice, for exam-
ple, that when the localization procedure can possibly detect
45% of the total number of abnormal words, it correctly finds
≈ 90% of them.

VII. CONCLUSION

This paper presents two learning algorithms for the dynamic
topic model for behavior analysis in video: the EM algorithm
is developed for the MAP estimates of the model parameters
and a VB inference algorithm is developed for calculating the
posterior distributions of them. A detailed comparison of these
proposed learning algorithms with the GS-based algorithm
developed in [21] is presented. The differences and the similar-
ities of the theoretical aspects for all three learning algorithms
are well emphasized. The empirical comparison is performed
for abnormal behavior detection using two unlabeled real video
data sets. Both proposed learning algorithms demonstrate more
accurate results than the algorithm proposed in [21] in terms
of anomaly detection performance.

The EM learning algorithm demonstrates the best results in
terms of the mean values of the performance measure, obtained
by the independent runs of the algorithm with different random
initializations. Although it is noticed that the variance among
the precision-recall curves of the individual runs is relatively
high, the VB learning algorithm shows the smaller variance
among the precision-recall curves than the EM algorithm. The
results show that the VB algorithm answers are more robust
to different initialization values. However, it is shown that the
results of the algorithm are significantly influenced by the
choice of the hyperparameters. The hyperparameters require
additional tuning before the algorithm can be applied to data.
Note that the results of the EM learning algorithm only slightly
depend on the choice of the hyperparameters’ settings. More-
over, the hyperparameters can be even set in such a way as
the EM algorithm is applied to obtain the maximum likelihood
estimates instead of the MAP ones. Both the proposed learning
algorithms—EM and VB—provide more accurate results in
comparison to the GS-based algorithm.

We also demonstrate that consideration of marginal like-
lihoods of visual words rather than visual documents can
provide satisfactory results about locations of anomalies within
a frame. To our best knowledge, the proposed localization
procedure is the first general approach in probabilistic topic
modeling that requires only the presence of spatial information
encoded in visual words.

APPENDIX A
EM ALGORITHM DERIVATIONS

This appendix presents the details of the proposed EM
learning algorithm derivation. The objective function in the

EM algorithm is

Q(	,	old) + log p(	|β,α, η, γ )

=
∑

y1:Ttr

∑

z1:Ttr

(p(y1:Ttr , z1:Ttr |x1:Ttr ,	
Old)

× log p(x1:Ttr , y1:Ttr , z1:Ttr |	,α,β, γ , η))

+ log p(	|β,α, η, γ )

= Const +
∑

z1∈Z

(log πz1 p(z1|x1:Ttr ,	
Old))

+

Ttr∑

t=2

∑

zt ∈Z

∑

zt−1∈Z

(log ξzt ,zt−1 p(zt , zt−1|x1:Ttr ,	
Old))

+

Ttr∑

t=1

Nt∑

i=1

∑

yi,t ∈Y

(log φxi,t ,yi,t p(yi,t |x1:Ttr ,	
Old))

+

Ttr∑

t=1

Nt∑

i=1

∑

zt ∈Z

∑

yi,t ∈Y

(log θyi,t ,zt p(yi,t , zt |x1:Ttr ,	
Old))

+
∑

z∈Z

(ηz − 1) log πz +
∑

z∈Z

∑

z′∈Z

(γz − 1) log ξz,z′

+
∑

z∈Z

∑

y∈Y

(αy − 1) log θy,z +
∑

y∈Y

∑

x∈X

(βx − 1) log φx,y.

(44)

On the M-step, the function (44) is maximized
with respect to the parameters 	 with fixed
values for p(z1|x1:Ttr ,	

Old), p(zt , zt−1|x1:Ttr ,	
Old),

p(yi,t |x1:Ttr ,	
Old), p(yi,t , zt |x1:Ttr ,	

Old). The optimization
problem can be solved separately for each parameter, which
leads to (6)–(8).

On the E-step, for the efficient implementation, the forward–
backward steps are developed for the auxiliary variables άz(t)

and β́z(t)

άz(t)
def
= p(x1, . . . , xt , zt = z|	Old)

=
∑

z1:t−1

πOld
z1

⎡
⎣

t−1∏

t́=2

ξOld
z t́ ,z t́−1

⎤
⎦

⎡
⎣

t−1∏

t́=1

Nt́∏

i=1

∑

y∈Y

φOld
xi,t́ ,yθ

Old
y,z t́

⎤
⎦

×ξOld
zt =k,zt−1

Nt∏

i=1

∑

y∈Y

φOld
xi,t ,yθ

Old
y,zt=z . (45)

Reorganization of the terms in (45) leads to the recursive
expressions (10).

Similarly for β́z(t)

β́k(t)
def
= p(xt+1, . . . , xTtr |zt = z,	Old)

=
∑

zt+1:Ttr

ξOld
zt+1,zt =z

⎡
⎣

Ttr∏

t́=t+2

ξOld
z t́ ,z t́−1

⎤
⎦

×

Ttr∏

t́=t+1

Nt́∏

i=1

∑

y∈Y

φOld
xi,t́ ,yθ

Old
y,z t́

. (46)

The recursive formula (11) is obtained by interchanging the
terms in (46).

The required posterior of the hidden variables
terms p(z1|x1:Ttr ,	

Old), p(zt , zt−1|x1:Ttr ,	
Old),
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p(yi,t |x1:Ttr ,	
Old), p(yi,t , zt |x1:Ttr ,	

Old) are then expressed
via the axillary variables άz(t) and β́z(t), which leads
to (13)–(16).

APPENDIX B
VB ALGORITHM DERIVATIONS

This appendix presents the details of the proposed VB infer-
ence derivation. We have separated the parameters and the
hidden variables. Let us consider the update formula of the
VB inference scheme [28] for the parameters

log q(	)

= Const+Eq(y1:Ttr ,z1:Ttr )logp(x1:Ttr , y1:Ttr , z1:Ttr ,	|η,γ ,α,β)

= Const+Eq(y1:Ttr ,z1:Ttr )

⎛
⎝∑

z∈Z

(ηz − 1) log πz

+
∑

z∈Z

∑

z̃∈Z

(γz̃ − 1) log ξz̃,z +
∑

z∈Z

∑

y∈Y

(αy − 1) log θy,z

+
∑

y∈Y

∑

x∈X

(βx − 1) log φx,y +
∑

z∈Z

I(z1 = z) log πz

+

Ttr∑

t=2

∑

z∈Z

∑

z̃∈Z

I(zt = z̃)I(zt−1 = z) log ξz̃,z

+

Ttr∑

t=1

Nt∑

i=1

∑

y∈Y

I(yi,t = y) log φxi,t ,y

+

Ttr∑

t=1

Nt∑

i=1

∑

z∈Z

∑

y∈Y

I(yi,t = y)I(zt = z) log θy,z

⎞
⎠. (47)

One can notice that log q(	) is further factorized as in (18).
Now each factorization term can be considered independently.
Derivations of (19)–(22) are very similar to each other. We pro-
vide the derivation only of the term q(�)

log q(�) = Const+Eq(y1:Ttr ,z1:Ttr )

⎛
⎝ ∑

y∈Y

∑

x∈X

(βx − 1) log φx,y

+

Ttr∑

t=1

Nt∑

i=1

∑

y∈Y

I(yi,t = y) log φxi,t ,y

⎞
⎠

= Const +
∑

y∈Y

∑

x∈X

(βx − 1) log φx,y

+

Ttr∑

t=1

Nt∑

i=1

∑

y∈Y

log φxi,t ,y Eq(y1:Ttr ,z1:Ttr )(I(yi,t = y))
︸ ︷︷ ︸

q(yi,t =y)

= Const +
∑

y∈Y

∑

x∈X

log φx,y

×

(
βx − 1 +

Ttr∑

t=1

Nt∑

i=1

I(xi,t = x)q(yi,t = y)

)
.

(48)

It can be noticed from (48) that the distribution of � is a
product of the Dirichlet distributions (19).

The update formula in the VB inference scheme for the
hidden variables is as follows:

log q(y1:Ttr , z1:Ttr )

= Const + Eq(π)q(�)q(�)q(�) log p(x1:Ttr , y1:Ttr , z1:Ttr ,

	|η, γ ,α,β)

= Const +
∑

z∈Z

I(z1 = z)Eq(π) log πz

+

Ttr∑

t=2

∑

z∈Z

∑

z̃∈Z

I(zt = z̃)I(zt−1 = z)Eq(�) log ξz̃,z

+

Ttr∑

t=1

Nt∑

i=1

∑

y∈Y

I(yi,t = y)Eq(�) log φxi,t ,y

+

Ttr∑

t=1

Nt∑

i=1

∑

z∈Z

∑

y∈Y

I(yi,t = y)I (zt = z)Eq(�) log θy,z. (49)

We know from the parameters update (19)–(22) that their
distributions are Dirichlet. Therefore, Eq(π) log πz = ψ(η̃z) −
ψ(

∑
z′∈Z η̃z′) and similarly for all the other expected value

expressions.
Using the introduced notations (23)–(26), the update for-

mula (49) for the hidden variables can be then expressed as

log q(y1:Ttr , z1:Ttr )

= Const +
∑

z∈Z

I(z1 = z) log π̃z

+

Ttr∑

t=2

∑

z∈Z

∑

z̃∈Z

I(zt = z̃)I(zt−1 = z) log ξ̃z̃,z

+

Ttr∑

t=1

Nt∑

i=1

∑

y∈Y

I(yi,t = y) log φ̃xi,t ,y

+

Ttr∑

t=1

Nt∑

i=1

∑

z∈Z

∑

y∈Z

I(yi,t = y)I(zt = z) log θ̃y,z. (50)

The approximated distribution of the hidden variables is
then

q(y1:Ttr , z1:Ttr )

=
1

K̃
π̃z1

[
Ttr∏

t=2

ξ̃zt ,zt−1

]
Ttr∏

t=1

Nt∏

i=1

φ̃xi,t ,yi,t θ̃yi,t ,zt (51)

where K̃ is a normalization constant. Note that the expression
of the true posterior distribution of the hidden variables is the
same up to replacing the true parameters’ variables with the
corresponding tilde variables

p(y1:Ttr , z1:Ttr |x1:Ttr ,	)

=
1

K
πz1

[
Ttr∏

t=2

ξzt ,zt−1

]
Ttr∏

t=1

Nt∏

i=1

φxi,t ,yi,t θyi,t ,z . (52)

Therefore, to compute the required expressions of the hidden
variables q(z1 = z), q(zt−1 = z, zt = z′), q(yi,t =
y, zt = z), and q(yi,t = y) one can use the same forward–
backward procedure and update formula as in the E-step of the
EM algorithm replacing all the parameter variables with the
corresponding introduced tilde variables.
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