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Abstract

Mixtures of gaussian (or normal) distributions arise in a variety of application areas. Many tech-

niques have been proposed for the task of finding the component gaussians given samples from the

mixture, such as the EM algorithm, a local-search heuristic from Dempster, Laird and Rubin (1977).

However, such heuristics are known to require time exponential in the dimension (i.e., number of

variables) in some cases, even when the number of components is 2.

This paper presents the first algorithm that provably learns the component gaussians in time

that is polynomial in the dimension. The gaussians may have arbitrary shape provided they satisfy

a “nondegeneracy” condition, which requires their high-probability regions to be not “too close”

together.

1 Introduction

Finite mixture models are ubiquitous in a host of areas that use statistical techniques, including AI,

computer vision, medical imaging, psychology, geology etc. (see [13, 18]). A mixture of distributions

D1,D2, . . . with mixing weights w1,w2,w3, . . . (where
∑
iw1 = 1) is the distribution in which a sample

is produced by first picking a component distribution —the ith one is picked with probabilitywi— and

then producing a sample from that distribution. In many applications the component distributions are

multivariate gaussians.

Given samples from the mixture distribution, how can one learn (i.e., reconstruct) the component

distributions and their mixing weights? The most popular method is probably the EM algorithm of

Dempster, Laird and Rubin (1977). EM is a local search heuristic that tries to converge to a maximum

likelihood description of the data by trying to cluster samplepoints according to which gaussian they

came from. Though moderately successful in practice, it often fails to converge or gets stuck in local

optima. Much research has gone into fixing these problems, but has not yet resulted in an algorithm

that provably runs in polynomial time.

Recently, Dasgupta (1999) took an important step towards the design of such an algorithm by show-

ing how a mixture of “spherelike” gaussians could be learned in polynomial time provided they have

approximately the same “radius.” (Roughly speaking, “spherelike” gaussians are those in which most

of the probability mass is concentrated in a thin spherical shell; see Section 2.1.) Dasgupta’s algorithm

uses a statistical technique called projection pursuit (Huber [9]): first he projects data into a random

subspace of logarithmic dimension and then performs simple clustering to identify the gaussian clus-

ters (which have become spheres after projection). Recently, independently of our work, Dasgupta

and Schulman [5] generalized and strengthened this result, so that the spherelike gaussians can have

different radii provided the spheres are nonoverlapping. (By contrast, we will allow spheres to overlap,

and also consider gaussians of arbitrary shape.)

In this paper we design a variety of polynomial-time algorithms for learning gaussians. Each algo-

rithm has its own strong points, and we do not yet have a single algorithm that combines these strong

points. In general, if the gaussians in the mixture are restricted to be spherelike (possibly of different
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radii), the algorithms are quite efficient and work correctly and in polynomial time even if the compo-

nent gaussians are quite close together. If the gaussians could have arbitrary shape, then our algorithm

requires a somewhat more stringent pairwise separation. If the separation condition is violated, our

algorithm may detect “inbetween” gaussians which do not really exist in the mixture. The running time

is polynomial in n, the number of dimensions. The running time is polynomial also on k, the number

of components, except for one of the algorithms this dependence is quasipolynomial (it is polynomial

only if k < 2log1/4 n). We do not consider this a serious constraint, since even the case k = 2 was open

thus far.

We also present a combinatorial algorithm for (approximately) maximum likelihood fit of a mixture

of identical spherical gaussians to to any (possibly unstructured) set of data points. The exact problem

is NP-hard.

Practical matters. Our algorithm’s running time is measured asymptotically, assuming the number of

dimensions is “large.” Our algorithms for mixtures of spherical gaussians in Section 3.2 and Section 5

may even be practical when the number of dimensions is small, say < 20. The other algorithms are

less practical for so few dimensions.

2 Definitions and Overview

The univariate distribution N(µ,σ) on < has the density function f(x) = (
√

2πσ)−1 exp(− (x−µ)22σ2 ).

It satisfies E[x2] = σ 2. The analogous distribution in <n is the axis-aligned gaussian N(µ,σ) where

µ,σ ∈ <n and the density function is the product distribution of N(µ1, σ1), N(µ2, σ2), . . . , N(µn, σn).
A random sample (x1, x2, . . . , xn) satisfies E[

∑
i x

2
i ] =

∑
i σ

2
i . (Similarly, E[

∑
i x

2
i /σ

2
i ] = n.)

A general gaussians in<n is obtained from an axis-aligned gaussian by applying an arbitrary rotation.

Specifically, its probability density function has the form

FQ,p(x) = (2π)−n/2
∏

i

√
λi(Q) exp

(
−(x − p)TQ(x − p)/2

)
. (1)

where Q is an n × n positive definite matrix with eigenvalues λ1(Q), . . . , λn(Q) > 0, and p ∈ <n
is the center. Since Q can be rewritten as R−1diag(λi(Q))R where R is a rotation, the quantities

1/λi(Q) play the same role as the variances σ 2
i in the axis-aligned case. For this reason the quantity

(x−p)TQ(x−p) is a norm, called Mahalonobis distance with respect to Q. >From our earlier discussion,

E[(x−p)T (x−p)] (the “radius”) is
∑
i λ
−1
i (Q) and E[(x−p)TQ(x−p)] =

∫
x FQ,p(x−p)TQ(x−p) = n.

For any finite sample of points in R
n we can try to fit a gaussian by computing their variance-

covariance matrix. Let x1, x2, . . . xN be N points in R
n. Let X be the n×N matrix whose columns are

the vectors x1 − q,x2 − q, . . . xN − q, where q = 1
N (x1 + x2 + . . . xN) is the sample mean. Then the

variance-covariance matrix1 A = 1
NXX

T ; note that it is positive definite by definition. The maximum

likelihood gaussian fit for these points is FA,q.

This fit is, of course, poor for an arbitrary point set. But if the points are from gaussian FG,p, then

FA,p converges rapidly to FG,p : with Ω(n logn/cε) samples (where cε is a constant depending upon

ε), FA,q is whp a (1 + ε)-fit to FG,p in every direction [2, 17]. (The proof is elementary for Ω(n2/ε2)
samples.)

2.1 Distance Concentration: Spherical and Spherelike gaussians

In an axis-aligned gaussian with coordinate variances σ 2
1 , . . . , σ

2
n, the quantity

∑
i x

2
i /σ

2
i is the sum

of n iid variables from N(0,1) so this sum is tightly concentrated about its mean n. In a spherical

gaussian, all σi’s are the same, so even
∑
i x

2
i is tightly concentrated. (These observations go back

to Borel.) More generally, E[
∑
i x

2
i ] =

∑
i σ

2
i . Since

∑
i x

2
i is also the square of the distance from

(x1, x2, . . . , xn) to the origin, we call (
∑
i σ

2
i )
−1/2 the radius of the gaussian. If the σi’s are not “too

different”, then moment-generating methods (see Lemma 8 in the appendix) show that that almost all

of the probability mass is concentrated in a thin spherical shell about this radius; such gaussians may

1The name “variance-covariance” refers to the fact that the i, jth term in A is is
1
N

∑
k≤N(xk − q)i(xk − q)j , the covariance

of the ith and jth coordinates. The diagonal terms represent variances.
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be thought of as spherelike. The sharpness of this concentration depends roughly on the quantity

σmax/R, which we call the eccentricity 2. The larger the eccentricity, the more “smeared” the gaussian

is. Our algorithm will deal with both types of gaussians.

Section 3 will also use a related parameter, called the median radius of the gaussian. This is the

radius R′ such that 1/2 the probability mass of the gaussian lies in a ball of radius R′. It is related

to radius defined above, for example R′ ≤
√

2R. Other relationships between the two follow from

Lemma 8

2.2 Likelihoods, classification, etc.

Let (w1, F1,w2, F2, . . . ,wm, Fm) be a mixture of gaussians in <n. With any point x ∈ <n, one can

associate m numbers (Fi(x))i=1,..,m corresponding to the probabilities assigned to it by the various

gaussians according to formula (1). For any sample S ⊆ <n this imposes a natural partition into m
blocks: each point x ∈ S is labelled with an integer l(x) ∈ {1, , , ,m} indicating the distribution that

assigns the highest probability to x. (Ties are broken arbitrarily.) The likelihood of the sample is

∏

x∈S
Fl(x)(x).

It is customary to work with the logarithm of this likelihood.

Thus one may mean several things when talking about “learning mixtures of gaussians” [16].

1. In Max Likelihood estimation, we are given an arbitrary sample S ⊆ <n, a number k, and desire

the gaussian mixture with k components that maximizes the likelihood of S.

2. In the classification problem, we are given a sample generated from an unknown mixture of k
gaussians. The goal is to find the “correct” labeling of the sampled points. (Note that this labeling

would immediately yield estimates of the unknown gaussians and their mixing weights.)

3. In the approximation version of Problem 1, one desires mixtures whose likelihood is only α-

approximate —by which we mean that the log-likelihood is within a factor α of the optimum.

4. In the approximation version of Problem 2, one desires labelings whose log-likelihood is within a

factor α of the optimum.

5. Versions of all the above problems in which labels for some of the samplepoints may be provided

as part of the input. This may happen for example if the sample is obtained from a census and

the labellings of most samplepoints are removed for privacy reasons [16].

Problem 2 is a subcase of Problem 1 and Problem 4 is a subcase of Problem 3.

Our results. Our results may be summarized as follows.

A. PTAS for Problem 4 when the gaussians are spherical. In fact, for spherical gaussians one can find

a classification whose loglikelihood is within a factor (1+ 1/n1/4−ε) of the optimum.

B. An exact solution for Problem 2 when the gaussians are reasonably well-separated (but could be of

arbitrary shape).

C. PTAS for Problem 3 when the gaussians are spheres of equal radii. This “PTAS” actually produces a

solution whose loglikelihood is within a constant additive factor of the optimum.

The algorithm of Part C is combinatorial and is outlined in Section 5. We note in this context that

obtaining maximum likelihood estimates is at least as hard as the clustering problem k-median (sum-

of-squares version), which is NP-hard. Indeed, our algorithm in Part C is obtained by reducing to the

k-median algorithm of [3] (recent more efficient k-median algorithms would also work).

Although a clustering is also sought in parts 2 and 4, we feel that these problems are simpler than

general clustering because the clusters are guaranteed to have a special structure. Our algorithms in

parts A, B exploit the properties of these clusters (i.e., of gaussians). Section 3 describes an algorithm

using distance-based clustering. The algorithm requires a known lowerbound on the smallest mixing

weightwmin. In Section 4 we describe a more complicated algorithm that does not have this restriction,

but its running time is quasipolynomial in k. Both algorithms have an underlying “bootstrapping” idea,

whereby we learn a little about the gaussians from a coarse examination of the data and then bootstrap

2Dasgupta defines eccentricity to be σmax/σmin. However, our definition has a closer connection to the concentration
properties of the gaussian.
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from that information to find a better clustering. Both sections omit many details for lack of space but

they appear in the Appendix.

We note that Dasgupta has suggested a variant of the classification problem in which the sample

comes from a “noisy” gaussian. Roughly speaking, the samples come from a mixture of sources, where

each source is within distance ε of a gaussian. This problem may be seen as somewhere in between

Problems 1 and 2. The algorithm of Section 4 can be adapted to this model when the “noise” level is

small.

3 Distance based Clustering

In this section, we give an algorithm for Problem 1 —find the correct labelling of all samples— of

Section 2.2. The gaussians in the mixture have to satisfy a certain separation condition. The algorithm

uses “distance-based” clustering: samples within a certain distance r of a particular sample x are all

put into one cluster. The choice of x, r is of course the crucial new element we provide.

Suppose F1, F2, . . .Fk are the gaussians in the mixture with centers p1, p2, . . .pk respectively in <n
and suppose the maximum variance of Fi in any direction is σi,max and the median radius of Fi is Ri
(i.e., the probability mass in a ball of radius Ri is Fi(B(pi, Ri)) = 1/2). In this section we will often

refer to Ri as just radius. Suppose also that the mixing weights are w1,w2, . . .wk respectively and the

algorithm is given a wmin such that each wi ≥ wmin.

The algorithm requires a sample S of i.i.d. samples from the mixture distribution, where |S| =
107n2k2 log(kn2)/w4

min. The running time is quadratic in |S| although this may be improveable.

Note that S can be partitioned into S = S1∪S2∪ . . . Sk where Si is the set of samples picked according

to Fi. The algorithm seeks to determine this partition. Note that this problem may be ill-posed in

general. It is easy to come up with a pair of nearby gaussians so that even if one knew the gaussians

exactly, the maximum-likelihood labeling (as defined in Section 2.2) is incorrect whp. However, if

the mixture is t-separated for some t ∈ O(log(|S| /δ)) (where δ > 0 is the failure probability of the

algorithm), then the maximum likelihood solution correctly labels all samplepoints with the gaussian

they came from.

Definition 1 For any t > 0, we say that the mixture is t-separated if every gaussian pair Fi, Fj satisfy:

|pi − pj|2 ≥ (R2
i − R2

j )
− + 500t(Ri + Rj)(σi,max + σj,max)+ 100t2(σ 2

i,max + σ 2
j,max). (2)

where (R2
i − R2

j )
− = R2

i − R2
j if R2

i ≤ R2
j and 0 otherwise.

Note that if the radii are unequal then (R2
i −R2

j )
− is negative, which allows one gaussian to be possibly

inside the other with even the same center.

To gain some intuition on our separation requirement, consider when all gaussians are spherical,

implying σi,max ≈ Ri/
√
n. Then the separation required is:

|pi − pj|2 ≥ (R2
i − R2

j )
− + c log(|S| /δ)(Ri + Rj)

2

√
n

. (3)

It can be shown that this separation is essentially necessary (within a factor of
√

logn) for the solution

to the Classification Problem to be unique with high probability; see Lemma 21 in the Appendix.

Now we describe why distance-based clustering works. Under our separation condition, we will show

below that for every pair of samples in Si, the distance between the samples lies in an interval Ii of the

real line and for every i 6= j, the distance between a point in Si and one in Sj lies in an interval Ii,j , so

that at least one of Ii or Ij is disjoint from Ii,j . Furthermore, there is a “guaranteed gap” between Iij and

this interval, allowing them to be distinguished whp. All this will follow from “distance concentration”

results stating that the random variable which is the distance between a sample in Si and one in Sj is

tightly concentrated about its median value.

Such distance concentration results were known prior to our work, at least for spherical or spherelike

gaussians. Here we prove such results for general Gaussians using a new approach: Isoperimetric

inequalities (see Theorem 1). Note that results about concentration about the median/mean value can
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be proven using the more traditional moment-generating function approach —indeed, we do this in

Lemma 8, which is stronger than the results of this section and useful in Section 4. However, the

approach using Isoperimetric inequality has two advantages. First, it applies to a more general class

of distributions than just Gaussians (which we do not use in this draft but plan to in the final version).

Second, they provide concentration results around values that are quite far from the mean/median. For

example, we will need the following result: If we have a ball containing at least 3/4 of the probability

mass according to a Gaussian, then for any positive λ, increasing the radius of the ball by an additive

λσmax captures all but
3e−λ

4 of the mass. Such concentration results (around values other than the

median/mean) are not in general provable by the moment-generating function approach.

Now we give an overview of the algorithm. Let Fi be the gaussian of smallest radius. Suppose

we try to identify Si by growing a ball from any x ∈ Si. Since we have proved the existence of the

guaranteed gap, it seems that we are essentially done. Indeed, this is the case for spherical Gaussians,

as explained in Section 3.2. Distances of points in Si to x are provably tightly concentrated so that

the first observed gap (in distances to x) signals the end of Si. We may peel off all samples up to this

distance, fit a gaussian to them, and continue to recover other gaussians.

But for general Gaussians, there is a “smear” possible in the pairwise distances in Si. So the first

observed gap in distances to some sample x does not necessarily signify the end of Si. However, even

here, we can say something. Suppose we are growing a ball centered at a point x. If we observe a gap

of Ω(σi,max), (namely, an annulus of thickness Ω(σi,max) devoid of samples), then indeed by distance

concentration results, one may show that the probability mass left outside is small. In other words,

incrementing the radius by Ω(σmax) after seeing the first gap captures all of the Si whp. But this

still leaves one problem - we do not know σmax . We tackle this by bootstrapping. We show that: (i)

if we have any fraction f of the samples in Si, then we may estimate σi,max to a factor of O(1/f 2).
We use this to get a rough estimate β of σi,max . Using β, we increment the radius in steps which are

guaranteed to be less than σi,max (which ensures that we do not step over the “gap” into another Sj)
until we observe a gap; by then, we have provably picked up most of Si. Now we use this to better

estimate σi,max (a kind of bootstrapping again) and then incrementing the radius again by Ω(σi,max),
we capture all of Si. (The guaranteed gap ensures that we have not picked up any of the other Sj .)

3.1 Concentration results using isoperimetric inequalities

Suppose we have some probability density F in <n and a point x in space. For proving distance

concentration results, we would like to measure the rate of growth / decline of F(B(x, r)) as a function

of r . This will be provided by the Isoperimetric inequality (see Corollary 2).

Theorem 1 [11] Let F(x) = e−xTA−1xg(x) be a function defined on R
n, where A is a positive definite

matrix whose largest eigenvalue is σ 2
max and g(x) is any positive real valued log-concave function. Then

for any measurable set K in R
n, whose surface ∂K is also measurable, we have

∫

∂K
F(x)dx ≥ 2√

π

1

σmax
min

(∫

K
F(x)dx,

∫

Rn\K
F(x)dx

)
.

Corollary 2 We borrow notation from Theorem 1 and assume that F(<n) = 1.

(i) If a ball B(x, r) has F(B(x, r)) ≤ 1/2, then

d(F(B(x, r)))

dr
≥ 2F(B(x, r))√

πσmax
.

(ii) If a ball B(x, r) has F(B(x, r)) ≥ 1/2, then

d(F(B(x, r)))

dr
≥ 2(1− F(B(x, r)))√

πσmax
.

Remark: Noting that
d ln(F(B(x, r)))

dr
= 1

F(B(x, r))

dF(B(x, r))

dr
,
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the corollary says that ln(F(B(x, r)) grows at a rate of Ω(1/σmax) until F(B(x, r)) is 1/2, and then

ln(1 − F(B(x, r))) declines at a rate of at a rate of Ω(1/σmax). Intuitively, it is easy to see that this

would lead to distance concentration results since once we increase (decrease) r by O(σmax) from its

median value, the mass outside B(x, r) (inside B(x, r)) is small. The first lemma below (Lemma 3)

is derived exactly on these lines; the subsequent three lemmas (4,5,6) discuss the distances between

different samples from the same and from different Gaussians.

Lemma 3 Suppose F is a general Gaussian in R
n with maximum variance in any direction σ , median

radius R and center p. Then for any t > 0, we have

F({x : R − tσ ≤ |x − p| ≤ R + tσ}) ≥ 1− e−t .
Ravi: What is the + sign below ???

Lemma 4 Let F,p,R,σ be as in Lemma 3 and suppose z is any point in space. Let t ≥ 1. If x is picked

according to F , we have that with probability at least 1− 2e−t ,

(R + tσ)2 + |z − p|2 + 2
√
t|z − p|σ ≥ |x − z|2 ≥ ((R − tσ)+)2 + |z − p|2 − 2

√
t|z − p|σ

Proof: We have

|x − z|2 = ((x − p)+ (p − z)) · ((x − p)+ (p − z)) = |x − p|2 + |p − z|2 + 2(x − p) · (p − z).
Now 2(x −p) · (p − z) is a normal random variable with mean 0 and variance at most 4|p − z|2σ 2, so

the probability that |2(x−p) · (p−z)| is greater than 2
√
t|z−p|σ is at most e−t . From lemma (3), we

have that R − tσ ≤ |x − p| ≤ R + tσ with probability at least 1− e−t . Combining these two facts, the

current lemma follows. �

Lemma 5 Suppose F,p,R,σ as in Lemma 3. Suppose x,y are indendent samples each picked according

to F . Then for any t ≥ 1, with probability at least 1− 3e−t , we have

2R2 − 8tσR ≤ |x −y|2 ≤ 2(R + 2tσ)2.

Lemma 6 Suppose Fi, Fj are two Gaussians in R
n with centerspi, pj , maximum variancesσi,max, σj,max

and median radii Ri, Rj respectively. Let t ≥ 1. Suppose Fi, Fj are t− separated. If x is a random sample

picked according to Fi and y is picked independently according to Fj , then with probability at least

1− 6e−t , we have

|x −y|2 ≥ 2 min(R2
i , R

2
j )+ 60t(σi,max + σj,max)(Ri + Rj)+ 30t2(σ 2

i,max + σ 2
j,max)

3.2 Warmup: case of Spherical Gaussians

As a consequence of our concentration results we present a trivial algorithm for the case when all

the Fi are spherical. (It appears that even this simple case was open.) In this case, σi,max ≈ Ri/
√
n,

where the error is small enough that our calculations below are valid. Choosing t = Ω(log(nk/δ)), it

is easy to see that there are positive constants c, c′ such that (with high probability),

|x −y|2 ≤ 2R2
i (1+

ct√
n
)∀x,y ∈ Si ∀i (4)

|x −y|2 ≥ 2 min(R2
i , R

2
j )+

c′t(Ri + Rj)2√
n

∀x ∈ Si,∀y ∈ Sj , ∀i 6= j. (5)

We will assume that c, c′ are high enough. Now we describe the algorithm for this case. Let

x1, x2, . . . , xM be the samples. A similarity graph for the sample is an undirected graph on |S| nodes

where
{
i, j
}

is an edge iff for each sample point xl (where l ≠ i, j) the distances |xi − xl| ,
∣∣∣xj − xl

∣∣∣ are

within a multiplicative factor (1+ 6t/
√
n) of each other. The following claim follows from (4) and (5).

Claim: With high probability over the choice of the sample, the following is true. Nodes corresponging to

the smallest gaussian form an isolated clique. Every isolated clique corresponds to samples from a single

gaussian.

Thus one can look for isolated cliques in the similarity graph, and try to fit a spherical gaussian to

each. The one corresponding to smallest sphere is identified, and removed from the sample. Then we

iterate to find the remaining k− 1 gaussians.

6



3.3 The general case

Let δ > 0 be the probability of failure allowed. In what follows, we choose

t = 100 log |S|
δ

.

The Algorithm

1. Initialization : T ← S.
2. Let α > 0 be the smallest value such that a ball B(x,α) of radius α centered at some point in T

has at least 3wmin|S|/4 points from T . [This will identify a Gaussian Fi with approximately the

least radius.]

3. Find the maximum variance of the set Q = B(x,α)∩ T in any direction. I.e., find

β = max
w:|w|=1

1

|Q|
∑

y∈Q
(w ·y −w · ( 1

|Q|
∑

z∈Q
z))2.

[This β is our first estimate of σmax .]

4. Let ν =
√
wminβ

8 . [We will later show that ν ≤ σmax ; so increasing the radius in steps of ν ensures

that we do not miss the “gap” between the Si that x belongs to and the others.] Find least positive

integer s such that [we will later prove that such a s exists].

B(x,α+ sν)∩ T = B(x,α+ (s − 1)ν)∩ T .

5. Let Q′ = B(x,α + sν) ∩ T . As in Step 3, find the maximum variance β′ of the set Q′ in any

direction. [We will prove that this β′ gives a better estimate of σmax than β.]

6. Remove B(x,α+sν+3
√
β′(log |S|−logδ+1))∩T from T . [We will show that the set so removed is

precisely one of the Si. Ball B(x,α+sν) will be shown to contain all butwmin/(10wi) of the mass

of the Gaussian Fi we are dealing with; the bigger radius of B(x,α+sν+3
√
β′(log |S|− logδ+1))

will be shown to include all but δ/(10|S|2) of the mass of Fi. This will follow using Isoperimetry.

Then we may argue that whp all of Si is now inside this ball. An easier argument shows that none

of the other Sj interesect this ball.]

7. Repeat until T is empty.

More general distributions We believe (but have not yet proved) that the algorithm above can be

extended to many other log-concave densities besides the general Gaussian. The basic ingredient that

we use throughout is that in every direction, the Gaussian declines at a certain rate (i.e. along any

direction, after a distance of λσmax (where λ is any positive real), it has fallen by an exponential factor

in λ). Under this condition, the Isoperimetric inequality and distance concentration results all should

all extend to give results similar to the Gaussian case. This will be explored in the final version.

4 Classification algorithm with near-optimum sample complexity

The algorithm of the previous section has high sample complexity, specifically, it grows asO(1/w4
min).

Now we give a different polynomial-time algorithm that has a sample complexityO(npoly(k) logn/wmin).

If k is at most 2log0.1 n or so —which we need also to ensure that the running time is poly(n)— then this

sample complexity is close to the information-theoretic lowerbound of Ω(n logn/wmin). (This lower-

bound follows from need to get Ω(n logn) samples from the gaussian with lowest mixing weight.)

The algorithm has another important advantage: it needs no lowerbound on wmin. It peels off

gaussians in roughly decreasing order by mixing weight. For any desired δ > 0, this process can be

stopped once some 1−δ fraction of the samples have been “described.” Then the sample complexity is

onlyO(npoly(k) logn/δ). The running time is roughly quadratic in the sample complexity. Section F.3

mentions some generalizations of the algorithm.
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4.1 The main ideas

Like Dasgupta’s algorithm, our algorithm first projects datapoints into a randomly-chosen subspace

of dimensionm = log2 k. Projections of gaussians are gaussians, so our learning problem is unchanged

except for a vast reduction in the number of dimensions. We describe how to learn in m dimensions,

and indicate later how to “lift” to <n.

How can one learn the gaussian mixture in <m? We make two observations. First, a gaussian in

<m can be learned from O(m logm) samples. Second, at least one gaussian has mixing weight ≥ 1/k,

so a sample from the mixture of size Ω(km logm) already contains Ω(m logm) samples from that

gaussian.

Thus we temporarily restrict attention to a subsample of size K = poly(km), and enumerate all

possible subsets of size M = O(m logm), and for each of them compute the maximum likelihood fit

gaussian. Since
(
K
M

)
= kO(m logm) = klog2 k log logk = no(1), all of this can be done in polynomial time.

Now we have no(1) candidate gaussians in <m, at least one of which is (whp) the projection of a

gaussian in the mixture. To identify this gaussian, we test these candidates: the one whose density

distribution closely matches the distribution found among the sampled points and which explains

the largest fraction of the data is retained at the end. This test takes around poly(k)mO(m) time per

candidate. Having identified one gaussian, we can recurse with k reduced to k−1 and find the remaining

gaussians.

In order for the algorithm to work correctly, we need a guarantee that gaussians remain distinct

under projection, which requires them to be somewhat separated to begin with.

As before, the radius R of the gaussian is
√∑

i σ
2
i . For γ < 1, the γ-radius of a gaussian is the radius

of the smallest sphere (concentric with the gaussian) such that at most γ of the probability mass

lies outside. Below, a gaussian is spherelike if R/σmax > (logk)3 log 1/γ. Under random projection

into a space of dimension O(log 1/γ), such a gaussian turns into a 2-circuloid 3 with probability at

least 1 − 1/k2. (See Section A.1 in the Appendix.) Note that for a spherelike gaussian, the γ-radius is

essentially the same as its radius (see Lemma 8).

Definition 2 Let c, γ > 0. A mixture of gaussians is said to be (c, γ)-separated if the following is true for

each pair. If their γ-radii are r1, r2 respectively then they satisfy: (a) If both are sphere-like then either

r1/r2 ≥ 1 + c or the intercenter distance is at least c ·max {r1, r2}. (b) If the first is spherelike and the

second is not, then the intercenter distance is at least c · r1 + r2. (c) If neither is spherelike then the the

intercenter distance is at least r1 + r2.

Thus the definition allows gaussians to overlap (or to lie inside one another provided the larger one

is spherelike) but in a way that their high probability regions remain distinct.

The algorithm will require the mixture to be (c, γ)-separated, where c > 0 is any contant independent

ofn, and 1/γ is the sample complexity of the algorithm, which as mentioned isO(poly(k)n logn/wmin).
We will use the following facts about random projections. Let the mixture be projected to a random

subspace of dimension m between O(logn/c2) and Ω(logk/c2). Under such projection, a spherelike

gaussian becomes whp a 2-circuloid. Furthermore, the well-known lemma of Johnson and Linden-

strauss [10] implies that for any set of 2Ω(m) points, the ratio of their distance changes by at most a

factor 1+ c/2 under projection. This has two implications. First, all intercenter distances scale down

in proportion, since there are only
(
k
2

)
of them. Second, if we consider the δ-radius of the gaussians,

where δ ≥ 2−Ω(m) then those radii also scale down in proportion. In other words the following is true.

Let F1, F2, . . . , Fk be the original gaussians and E1, E2, . . . , Ek be their projections. Let w1,w2, . . . ,wk
be their mixing weights.

Lemma 7 Letm be between O((log 1/γ)/c2) and Ω(logk/c2). If F1, F2, . . . , Fk are (c, γ)-separated then

E1, E2, . . . , Ek are (c/2,2−Ω(m))-separated with probability at least 1− 1/k2.

Below, we give only describe how to learn the projection in O(log2 k) dimensions. This algorithm

shows how to obtain a “pure” sample of size poly(logn) from a single component gaussian, whereupon

one can reconstruct in <n (See Section F.2 in the Appendix.)

3A t-circuloid, where t ≥ 1, is a gaussian with σmax/σmin ≤ t. It behaves very much like a spherical gaussian.

8



4.2 Some of the details

For ease of exposition we assume in this section thatwmin ≥ 1/k10, and show how to reconstruct the

mixture after it has been projected to a random subspace of dimension m = Ω(log2 k). As mentioned,

the algorithm uses a random subsample of size k20 and enumerates all subsets of size O(m logm) to

compute kO(m logm) candidate gaussians. Each candidate is tested using the filter procedure below.

Below, δ is an error parameter obtained by the Lemma on VC-dimension arguments Theorem 14. It

will be at most 1/k10

filter

Given: Candidate gaussian G, sample S1 of size k20, error parameter δ.

Let G have radius R and Ann(G) be the annulus of G in Mahalonobis norm that contains all but

1/k30 of the probability mass. Associate withG a set SG ⊆ S1 that initially is the set of samplepoints

lying in Ann(G).

1. If G is a 2-circuloid, discard every pair of points in SG which are separated by distance at most√
2R − 6

√
20 logkR/

√
m.

2. If G is not a 2-circuloid, replace G by the gaussian fitted to SG using the variance-covariance

matrix. Enumerate all spheres intersecting Ann(G) that have radius at most mR and whose

radius and center involve numbers that are integer multiples of R/k6. (At most (mk6)m+1

such spheres.) A light sphere is one that has probability mass (under G) at least 1/k5 but that

less than γ |S1| samples. If such a sphere exists, make SG empty.

At the end the algorithm picks the candidate that has the largest SG (i.e., explains the most sample-

points) and takes a random sample of k points from SG. The claim is that these k points form a pure

sample from some gaussian in the mixture.

The proof of this claim goes as follows (details appear in the appendix). First, one can show using

standard VC dimension arguments —see Theorem 14— that gaussians with mixing weight at least 1/2k
are “discovered” by the enumeration and they do not lose any of their samplepoints during the filter

procedure (see Fact 23). For gaussians that are not spherelike, this is totally trivial since Definition 2

says that every other gaussian has negligible probability mass inside its γ-ball. For a spherelike gaussian

the argument is slightly more nontrivial and relies on the observation that every other gaussian that

“pollutes” Ann(G) is somewhat smaller, so the distance concentration results imply that Step 1 of

filter would remove all these polluting points whp, without affecting the points that “belong” there.

Next, one has to show that “fake” candidates —those composed of points from two or more “true”

gaussians— end up with small SG’s at the end of filter and hence are not picked (Theorem 24). This

has two cases: either G is a 2-circuloid (Lemma 25) or not (Lemma 26). The first case is proved easily

using concentration results. The second case uses the Leindler-Prekopa inequality, which says that

the the probability mass functional for logconcave distributions is logconcave: if A,B are two convex

bodies, then the probability mass of an inbetween body λA + (1 − λ)B is the geometric mean of the

probability masses of A and B. In our application, the gaussian distribution is the “fake” candidate

G, and A,B are balls containing “true” gaussians that contribute points to Ann(G). We show that

the separation condition (Definition 2) implies that some inbetween ball λA + (1 − λ)B is devoid of

samplepoints. Using Leindler-Prekopa we can show a lowerbound on its probability mass that implies

that the inbetween ball is light (in the sense defined in the filter procedure). Thus the fake gaussian

G gets rejected.

Finally, note that the analysis of filter does not show that the winning candidate G (especially if

it happens to be a 2-circuloid) has a sample set SG composed only of points from a single gaussian.

Instead, it shows that SG is almost pure: it has size at least |S1| /k, and consists of almost all the points

of some Ei with perhaps δ fraction of the points of Ei getting replaced by points of other Ep’s. This is

why our final step is to take a random subsample of size k from SG. Whp this will be a pure sample

from Ei, as can be seen by realizing that a sample of k points from SG is different from a sample from

S′G (= all points of Ei) with probability at most δk ≤ 1/k9.
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5 Max-likelihood estimation

We consider max-likelihood fit of a mixture of k spherical gaussians of equal radius to (possibly)

unstructured data. Recall the density function of a spherical gaussin of variance σ (and radius σ
√
n)

is (2πσn)−1 exp(−
∣∣x − p

∣∣2
/σ 2).

Let x1, x2, . . . , xM ∈ <n be the points. Let p1, p2, . . . , pk denote the centers of the gaussians in the

max-likelihood solution. For each datapoint xj let pc(j) denote the closest center. Then the mixing

weights of the optimum mixture w1,w2, . . . ,wk are determined by considering, for each i, the fraction

of points whose closest center is pi.
The loglikelihood expression is obtained by adding terms for the individual points to obtain the

following.

Constant+Mn logσ
∑

i

wi +
∑

j

∣∣∣xj − pc(j)
∣∣∣

2

2σ 2
.

The optimum value σ̂ is obtained by differentiation (and noting
∑
iwi = 1)

σ̂ 2 = 1

Mn

∑

j

∣∣∣xj − pc(j)
∣∣∣

2
, (6)

which simplifies the likelihood expression to

Constant+Mn log σ̂ + Mn
2
.

Thus the goal is to minimize σ̂ , which from (6) involves minimizing the familiar objective function

from the sum-of-square version of the k-median problem. The results of Charikar et al. [3] provide

an O(1) approximation to σ̂ 2, and hence an approximation to log(σ̂ ) that is correct within an O(1)
addtive factor. More efficient algorithms are now known.

Interpreting our earlier algorithms in terms of likelihoods. We showed how to solve the sample clas-

sification problem when the component gaussians are well-separated. What if the component gaussians

are not separated? The algorithm may output inbetween gaussians. One can show for spherical gaus-

sians however that one still gets a (1 + ε)-approximation to the optimum loglikelihood. Details are

omitted.

6 Conclusions

We have presented several algorithms. Combining them into a single algorithm as well as extending

to more families of logconcave distributions seems feasible and will be attempted for the final version.

Several open problems remain. The first concerns gaussians with significant overlap. For example,

consider mixtures of spherical gaussians with pairwise intercenter distance only O(max {σ1, σ2}). In

this case, a constant fraction of their probability masses overlap, and the solution to the classification

problem is not unique (Lemma 21). Can the gaussians still be learnt? The second problem concerns

general gaussians whose probability masses do not overlap much but which appear to coalesce under

random projection. For example, consider a pair of concentric gaussians that have the same axis

orientation. (Of course, these axes are unknown and are not the same as the coordinate axes.) In n−2

axis directions their variance is σ 2, and in other remaining two directions their variances are 1, σ and

σ,1 respectively. If σ = Ω(logn) the difference in the last two coordinates is enough to differentiate

their samples with probability 1−1/poly(n). But after projection to a O(logn) dimensional subspace,

this difference disappears. Hence neither distance-based clustering nor projection-based clustering

seems able to distinguish their samples.

The third open problem concerns max-likelihood estimation, which seems to involve combinatorial

optimization with very bizarre objective criteria once we allow nonspherical gaussians.

We suspect all the above open problems may prove difficult.
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A Concentration results for sum of gaussian variables

We prove results regarding concentration (around the mean) of sums of gaussian variables. These

are stronger than the results in Section 3 and are useful in Section 4.

Lemma 8 Let y = (y1, y2, . . . yn) be a vector where each yi is distributed as N(0,1). Let σ1, σ2, . . .σn
be any positive reals, with σmax their maximum. Consider the random variable Y =∑n

i=1 σ
2
i y

2
i with R2

denoting E(Y) =∑n
i=1 σ

2
i . Then for any t > 0, we have

Prob
(
Y ≥ R2 + t

)
≤ exp

(
− t2

16
∑n
i=1 σ

4
i

)
+ exp

(
− t

8σ 2
max

)
(7)

Prob
(
Y ≤ R2 − t

)
≤ exp

(
− t2

4
∑n
i=1 σ

4
i

)
. (8)
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Let s =
√∑

i σ
4
i . In a sample of size M , the probability is at least 1− ε that for each Y satisfies

R2 − 2s

√
logM + log

1

ε
≤ Y ≤ R2 + 8(logM + log

1

2ε
)σ 2

max + 4s

√
logM + log

1

2ε
(9)

Proof: Note that (9) follows directly from (7) and (8).

The rest of the proof is Chernoff-like in that it uses exponential generating function of Y .

Proof of (7) Let λ be a positive real number to be specified later. It will be chosen such that λσ 2
max ≤

1/4, which impliess that all the integrals below are defined (i.e., are finite) as the reader may check. We

have (using the independence of the yi),

E(eλY ) =
n∏

i=1

E(eλσ
2
i y

2
i )

=
n∏

i=1

∫∞

y=−∞

e−y
2/2

√
2π

eλσ
2
i y

2

dy

=
∏

i

1√
1− 2λσ 2

i

using the substitution z =
√

1− 2λσ 2
i y.

So we have

Prob
(
Y ≥ R2 + t

)
= Prob

(
eλY−λ(R

2+t) ≥ 1
)

≤ E
(
eλY−λ(R

2+t)
)
≤ e−λ(R2+t)

n∏

i=1

1√
1− 2λσ 2

i

.

Taking logs of both sides, we have (using λσ 2
max ≤ 1/4),

log
(
Prob

(
Y ≥ R2 + t

))

≤ −λR2 − λt − 1

2

∑

i

log(1− 2λσ 2
i )

≤ −λt + 4λ2
∑

i

σ 4
i using − log(1− x) ≤ x + 2x2 for 0 ≤ x ≤ 1/2.

In the case that t ≤ 2
∑
σ 4
i /σ

2
max , we will choose

λ = t

8
∑
i σ

4
i

,

(which incidentally minimizes the last expression) to get the upper bound (in fact only the first term

of it) asserted.

In the case when t ≥ 2
∑
σ 4
i /σ

2
max , we put λ = 1/(4σ 2

max) and we get the upper bound (only the

second term). Thus Part 1 of the lemma is proved.

Proof of (8): Let

λ = t

2
∑
σ 4
i

.

We have (using the independence of the yi),

E(e−λY ) =
n∏

i=1

E(e−λσ
2
i y

2
i )

=
n∏

i=1

∫∞

y=−∞

e−y
2/2

√
2π

e−λσ
2
i y

2

dy

=
∏

i

1√
1+ 2λσ 2

i

using the substitution z =
√

1+ 2λσ 2
i y.
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So we have

Prob
(
Y ≤ R2 − t

)
= Prob

(
e−λY+λ(R

2−t) ≥ 1
)

≤ E
(
e−λY+λ(R

2−t)
)
≤ eλ(R2−t)

n∏

i=1

1√
1+ 2λσ 2

i

.

Taking logs of both sides, we have

log
(
Prob

(
Y ≥ R2 − t

))

≤ λR2 − λt − 1

2

∑

i

log(1+ 2λσ 2
i )

≤ −λt + λ2
∑

i

σ 4
i using − log(1+ x) ≤ −x + x

2

2
for x ≥ 0.

Now part 2 follows by plugging in λ which incidentally minimizes the last expression.

�

Corollary 9 Let G1, G2 be spherical gaussians of radii r1, r2 and centers p1, p2. Let
∣∣p1 − p2

∣∣
2 = c · r1

for c ≥ 0. Let VolG1(A2) ≥ γ, where A2 is the spherical shell consisting of points whose distance-squared

to the center of G2 is between r 2
2 (1−∆) and r 2

2 (1+∆). Then

r 2
2 ∈ (1+ c2)r 2

1 ±
(
∆r 2

2 +
r 2

1 log 1/γ√
n

(1+ 3c)

)
.

Remark: This corollary says that either G2 and G1 have essentially the same radius and center, or else

there is a close connection between the ratio of their radii and their intercenter distance.

Proof: Imagine picking a sample x from G1. Then its distance-squared to p2 is the random variable

∣∣x − p2

∣∣2 =
∣∣x − p1 + (p1 − p2)

∣∣2 =
∣∣x − p1

∣∣2 + d2 +
∣∣(x − p1) · (p1 − p2)

∣∣ .

Note that (x − p1) · (p1 − p2) is distributed as N(0, cr 2
1 /
√
n).

Now imagine picking a sample of size 1/γ from G1. With probability at least 1 − 1/e, one of these

points, say x, is in A2, hence ∣∣x − p2

∣∣2 ∈ r 2
2 (1±∆).

But by Lemma 8, with probability at least 7/8,

∣∣x − p2

∣∣2 ∈ r 2
1 ±

r 2
1 log 1/γ√

n
+
∣∣p1 − p2

∣∣2 ± 3cr 2
1 log1/γ√
n

.

Hence with nonzero probability, x satisfies both conditions, implying that the interval r 2
2 (1 ± ∆)

intersects the interval

r 2
1 (1+ c2)± r

2
1 log 1/γ√

n
(1+ 3c).

The claim now follows. �

A.1 Eccentricity changes of a projected gaussian

Dasgupta [4] shows that the parameter σmax/σmin of a gaussia tends to reduce under random projec-

tion. Here we have a stronger version of his lemma, whose notable feature (required in our algorithm

in Section 4) is that the statement makes no mention of n, the dimension we start with. Recall that a

t-circuloid is a gaussian with σmax/σmin ≤ t.
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Theorem 10 There is a m0 such that the following is true for all m >m0 and all δ > 0. If an ellipsoid

in <n with σ 2
max ≤ R2/128(m log2m + log(1/2δ)) is projected to a random subspace of dimension m,

then with probability at least 1− δ, the projected Gaussian is a 2-circuloid of radius R
√
m√
n .

Proof: It is easy to check (by picking a random set of directions for example) that ifm is a large enough

constant, then there exists a set of mm logm directions in <m —a so-called ε-net— such that if the

variance of a gaussian in all these directions are within a factor 2 of each other, then the gaussian is a

2-circuloid. We will argue that this condition is true of the projected gaussian.

Let the gaussian in <n be FA,0, centered at the origin. A random projection from <n to <m can be

viewed as a random rotation U of <n followed by a projection into the first m coordinates. Since U
is a random rotation, we may as well assume the gaussian is axis-aligned and A = diag(1/σ 2

i ). Let

π1, . . . , πm be the variances in the m coordinate directions after the projection. Since each coordinate

direction is a random direction in <n, we see that each πi is distributed as wTA−1w, where w is a

random unit vector in <n. But this is just
∑
iw

2
i σ

2
i . Note moreover that one way to pick a unit vector

w is by using (y1, y2, . . . , yn)/
∣∣y
∣∣

2 where the yi’s are chosen independently from N(0,1). Thus

∑

i

w2
i σ

2
i =

1
∣∣y
∣∣2 (

∑

i

y2
i σ

2
i ). (10)

Of course,
∣∣y
∣∣ is sharply concentrated about n, so expectation is very close to R2/n. We now apply

the concentration results of Lemma 8 to the numerator.

For each of the “special” directions in <m, the variance of the projected gaussian is distributed as

(10). Lemma 8 implies that with probability at least 1−δ, the variance in all mm logm special directions

is within a multiplicative factor 1.3 of the expectation, provided

16σ 2
max(m log2m+ log 1/2δ) ≤

∑

i

σ 2
i

∑
i σ

2
i√∑

i σ
4
i

≥ 4

√
m log2m+ log 1/2δ.

Both these conditions are satisfied when σ 2
max ≤ R2/128(m log2m + log(1/2δ)) as assumed in the

Lemma. �

We have the following lemma as corollary. It says that in a gaussian that is not “spherelike”, one

finds lots of space with low probability mass. (That is the gaussian is “smeared.”)

Lemma 11 There is a m0 > 0 such that the following is true for all m ≥ m0. Every gaussian in <n
satisfies at least one of the following two conditions. Either its projection to <m is with probability at

least 1/2m a 2-circuloid, or

r ′ >

√
6 logn

m3
√

20 logk
· r ′′ (11)

where r ′ is the radius of the ball containing 1− 1/n6 of the probability mass and r ′′ is the radius of the

ball containing 1− 1/k20 of the probability mass.

Proof: Let r be the radius of the gaussian. If σ ≤ r/m3, then by Theorem 10 a random projection to

<m will, with probability at least 1− 1/2m, be a 2-circuloid.

Now we note two things. First, by Lemma 8 r ′′ = O(
√

logkr) = O(m3
√

logk σmax). Second, with

probability ≥ 1/n5, a random sample in the gaussian lies at a distance >
√

logn σmax from the center

(in fact, its component along a single axis has this len

gth). Hence r ′ >
√

logn σmax. This proves the Lemma. �

14



B Overlap of oblong gaussians and spherical gaussians

Let F be an oblong gaussian and C1, C2 be two spherical gaussians and let Ann(·) denote the annulus

of thickness t
√
n in the Mahalonobis norm. (Remark: This annulus contains 1−e−t2/2 of the probability

mass.) Let Vol(·) denote the usual geometric volume and VolF() denote probability mass under F .

Lemma 12 For any body G,

VolF(G) ≤ et
2/2 Vol(G ∩Ann(F))

Vol(Ann(F))
+ e−t2/2.

Proof: Imagine breaking up Ann(F) into N equal-volume pieces, where N is very large and each piece

is very small (and hence has almost-uniform density). Let µi be the probability mass (wrt F ) of the ith
piece and µmin, µmax respectively be the minimum and maximum of these. Then

µmax

µmin
≤ et2/2.

It follows that for any body G,

VolF(G ∩Ann(F)) ≤ et2/2 Vol(G ∩Ann(F))

Vol(Ann(F))
.

Furthermore, VolF(G \Ann(F)) ≤ e−t2/2, so the lemma is now proved. �

The following Lemma is a corollary.

Lemma 13 If C1, C2 have radii r1, r2 respectively where r2 ≥ r1. Suppose each VolCi(Ann(F)) ≥ γ, then

VolF(Ann(C1))

VolF(Ann(C2))
≤ e

3t2/2

γ
(
r1

r2
)n−1 + e−t2/2.

Proof: By Lemma 12 we have

VolF(Ann(C1)) ≤ et
2/2 Vol(Ann(F)∩Ann(C1))

Vol(Ann(F))
+ e−t2/2

≤ et
2/2 Vol(Ann(C1))

Vol(Ann(F))
+ e−t2/2

= et
2/2(

r1

r2
)n−1 Vol(Ann(C2))

Vol(Ann(F))
+ e−t2/2

where the last line used the fact that the volumes of annuli of spherical gaussians vary as the (n−1)th
power of the radius.

To simplify the above expression, we recall the known condition on VolC2(Ann(F))

γ ≤ VolC2(Ann(F))

≤ et
2/2 Vol(Ann(C2)∩Ann(F))

Vol(Ann(C2))

This gives an upperbound on Vol(C2) which we substitute back to obtain

VolF(Ann(C1)) ≤ et
2/2(

r1

r2
)n−1 e

t2/2Vol(Ann(C2)∩Ann(F))

γVol(Ann(F))
+ e−t2/2

= et
2

γ
(
r1

r2
)n−1 Vol(Ann(C2)∩Ann(F))

Vol(Ann(F))
+ e−t2/2

≤ et
2

γ
(
r1

r2
)n−1et

2/2VolF(Ann(C2))+ e−t
2/2

Thus the lemma is proved.

�
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C VC Dimension and Sampling Errors

When we draw random samples from some distribution (in our case, this distribution is a mixture

of gaussians) then the fraction that lie in any ellipsoid is approximately the same as the ellipsoid’s

probability mass. The same is also true for any solid that is a boolean combination of O(1) ellipsoids.

This is a simple consequence of the fact that the VC-dimension of ellipsoids is O(n logn). For an

introduction to VC-dimension and its use in the proof of the next theorem, see Alon and Spencer [1].

We will use the following notation. For a distribution D, the probability mass of a region R is

denoted VolD(R). If the distribution is a uniform distribution on a finite set S, VolS(R) is short-hand

for |R ∩ S| / |S|.

Theorem 14 Let h be a positive integer and ε > 0. Then there is a constant c such that for all n the

following is true. Let D be any distribution in <n and let S be a sample of size at least

20n lognh

ε2
log2(nh/ε)

from D. Then with probability at least 1 − 1/n the following is true: for every set of h ellipsoids

E1, E2, . . . , Eh,

|VolD(∩iEi)− VolS(∩iEi)| ≤ ε. (12)

A simple corollary of this theorem is that an expression similar to (12) is also true for any other boolean

combination of two ellipsoids instead of ∩.

D Log-concave distributions: Brunn-Minkowski theorems

The Minkowski sum of two convex bodies A,B is defined as

A+ B = {a+ b : a ∈ A,b ∈ B} .

Fact 15 If A,B are two spheres of radii r1, r2 respectively and centers µ1, µ2 then A + B is a sphere of

radius r1 + r2 and centered at µ1 + µ2.

A gaussian density function µ is log-concave: for every pair of points x1, x2 ∈ <n and a λ ∈ [0,1],
it satisfies

logµ(λx1 + (1− λ)x2) ≥ λ logµ(x1)+ (1− λ) logµ(x2).

The following is a consequence of (the more general) Leindler-Prékopa inequality [12, 14, 15] for log-

concave measures.

Fact 16 If A,B are convex bodies, D is a gaussian distribution, and λ ∈ (0,1) then

VolD(λA+ (1− λ)B) ≥ (VolD(A))λ(VolD(B))1−łambda.

E Details of Section 3

Let δ > 0 be the probability of failure allowed. We choose

t = 100 log |S|
δ

.

We will now show using the distance concentration results that several desirable events - described

below in (13),(14),(15), (16), (17), (18) and (19) happen, each with probability at least 1 − δ
10 . We will

assume from now on that the conditions hold after allowing for the failure probability of at most

7δ/10.

First, since |Si| can be viewed as the sum of |S| Bernoulli independent 0-1 random variables, where

each is 1 with probability wi, we have (using standard results - eg. Hoeffding) that with probability at

least 1− δ/10,

|Si| ≥ (0.9)wi|S|∀i. (13)
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For each i,1 ≤ i ≤ k and each x ∈ Si, let η(x) be the least positive real number such that

Fi(B(x,η(x))) ≥ 1− δ

10|S|2 .

Then we have with probability at least 1− δ
10 ,

∀i,1 ≤ i ≤ k,∀x ∈ Si, Si \ B(x,η(x)) = ∅. (14)

We have from lemma (5) that with probability at least 1− δ/10,

∀i,1 ≤ i ≤ k,∀x,y ∈ Si, 2R2
i − 8tσi,maxRi ≤ |x −y|2 ≤ 2(Ri + 2tσi,max)

2. (15)

Further, from lemma (6), we have that with probability at least 1− δ
10 ,

∀i, j,1 ≤ i 6= j ≤ k,∀x ∈ Si,∀y ∈ Sj ,
|x −y|2 ≥ 2 min(R2

i , R
2
j )+ 60t(Ri + Rj)(σi,max + σj,max)+ 30t2(σ 2

i,max + σ 2
j,max). (16)

A (spherical) annulus A is a set of the form B(x,R1) \ B(x,R2). >From the fact that the Vapnik-

Chervonenkis dimension of balls in R
n is O(n) and standard results, it follows that with probability

at least 1 − δ/4, every annulus in space gets about the right number of points. More precisely, with

probability at least 1− δ/10, the following holds : (using (13))

||Si ∩A| − |Si|Fi(A)| ≤
w2

0 |Si|
80wi

∀i, ∀ annulii A anywhere in space . (17)

Also the VC dimension of half spaces is O(n) and it follows that with probability at least 1− δ/10,

we have

||Si ∩H| − |Si|Fi(H)| ≤ |Si|/80 ∀i ∀ half spaces H. (18)

>From lemma (20), it follows that with probability at least 1− δ/10, we have

∀ unit length vectors w, ∀i, 1

|Si|
∑

x∈Si
(w · (x − pi))2 ≤ 2σ 2

i,max. (19)

Lemma 17 Each execution of steps 1-5 removes precisely one of the Si

The lemma will be proved by induction on the number of executions of the loop. Suppose we have

finished l− 1 executions and are starting on the l th .

Let P be the set of j such that Sj has not yet been removed. (By the inductive assumption at the

start of the loop, T is the union of Sj , j ∈ P .)

Lemma 18 Suppose x ∈ S is the center of the ball B(x,α) found in the l th exectution of step (1) of the

algorithm and suppose x belongs to Si (i unknown to us). Then,

B(x,α)∩ S ⊆ Si (20)

|x −y|2 ≥ 2R2
i + 50t(σi,max + σj,max)(Ri + Rj)+ 20t2(σ 2

i,max + σ 2
j,max)∀y ∈ Sj∀j 6= i, j ∈ P. (21)

Proof:

For any j ∈ P , all y,z ∈ Sj , we have from (15) that |z − y|2 ≤ 2(Rj + 2tσj,max)
2. Thus, a ball of

radius
√

2(Rj + 2σi,max) with y as center would qualify in step (1) of the algorithm by (13) . So, by

definition of α in that step, we must have

α ≤
√

2(Rj + 2tσj,max)∀j ∈ P. (22)

If now B(x,α) contains a point z from some Sj , j 6= i, by the inductive assumption in lemma (17), we

must have j ∈ P . Then by (16), we have

α2 ≥ 2 min(R2
i , R

2
j )+ 60t(Ri + Rj)(σi,max + σj,max)+ 30t2(σ 2

i,max + σ 2
j,max),
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which contradicts (22) (noting that (22) must hold for both i, j). This proves (20).

Now, from the lower bound of (15), it follows that

α2 ≥ 2R2
i − 8Riσi,maxt.

So, from (22), it follows that

2R2
j ≥ 2R2

i − 8t(Ri + Rj)(σi,max + σj,max)− 8t2σ 2
j,max∀j ∈ P.

Thus from (16), we get (21). �

Claim 1 The β,Q computed in step 2 of the algorithm satisfy

2|Si|
|Q| σ

2
i,max ≥ β ≥

|Q|2
4|Si|2

σ 2
i,max.

Proof: For any unit length vector w, we have by (19) :

∑

x∈Q
(w · (x − pi))2 ≤

∑

x∈Si
(w · (x − pi))2 ≤ 2|Si|σ 2

i,max

Since this holds for everyw, and the second moment about the mean is less than or equal to the second

moment about pi, we have that β ≤ 2
|Si|
|Q|σ

2
i,max. This proves the upper bound on β.

Let u be the direction of the maximum variance of Fi. We wish to assert that the variance ofQ along

u is at least |Q|σi,max/|Si|. To this end, first note that for any reals γ1, γ2, with γ1 > 0, we have :

ProbFi(γ2 − γ1 ≤ x ·u ≤ γ2 + γ1) =
1

2
√
πσi,max

∫ γ2+γ1

γ2−γ1

e−r
2/2σ2

i,maxdr

≤ γ1/(
√
πσi,max).

Let γ2 = 1
|Q|

∑
x∈Q(u · x) and let γ1 = |Q|

|Si|σi,max . Then the strip H = {x : γ2 − γ1 ≤ u · x ≤ γ2 + γ1}
satisfies Fi(H) ≤ γ1/(

√
πσi,max). So by (18)

|Si ∩H| ≤ 3|Q|/4.

So, we have that

1

|Q|
∑

x∈Q

∑

x∈Q
(u · x − γ2)

2 ≥ 1

|Q|
|Q|
4

|Q|2
|Si|2

σ 2
i,max

= 1

4
σ 2
i,max

|Q|2
|Si|2

,

from which the lower bound on β obviously follows. �

Corollary 19 The β computed in step 2) of the algorithm satisfies :

4

w0
σ 2
i,max ≥ β ≥

1

8
w2

0σ
2
i,max.

Proof: Since |Q| ≥ 3w0|S|/4, the Claim above implies the corollary. �

Now since we are increasing the radius in steps of ν which is at most σi,max (Corollary 19), we have

using Lemma (18), that

B(x,α+ sν)∩ S ⊆ Si
and also that the s in step 3) exits.
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For real γ, let

g(γ) = Fi(B(x, γ)).
>From B(x,α+ sν)∩ T = B(x,α+ (s − 1)ν)∩ T , (see step 3 of the algortihm), we get using (17) that

g(α+ sν)− g(α+ (s − 1)ν) ≤ w2
0

80wi
.

So there exists a γ′ ∈ [(s − 1)ν +α sν +α] with

(
dg(γ)

dγ

)

γ=γ′
≤ w2

0

80wiν
≤ w0

20wiσi,max
.

Now, we also have g(α+ sν) ≥ w0/(2wi). Thus Isoperimetry (Theorem (1)) implies that

g(α+ sν) ≥ 1− w0

10wi
.

This implies from (17) that |Q′| ≥ 0.8|Si| (note thatQ′ is found in step 4)). Thus from Claim (1), (noting

that the proof of that claim works for any subset of Si), we get that

1.6σ 2
i,max ≥ β′ ≥ 0.16σ 2

i,max. (23)

>From the definition of s in step (3) of the algorithm, it follows that there is some y ∈ Si with

|x −y| ≥ α+ (s − 1)ν . So, from (15), we have α+ (s − 1)ν ≤
√

2(Ri + 2tσi,max). So, we have

α+ sν + 3
√
β′(log

|S|
δ
+ 1) ≤

√
2(Ri + 2tσi,max)+ σi,max + 4σi,max(log

|S|
δ
+ 1).

Thus from (21), no point of Sj , j ∈ P \ {i} is contained in B(x,α + sν + 3
√
β′(log

|S|
δ + 1)). So the set

removed from T in step (5) is a subset of Si.
Finally, using g(α+ sν) ≥ 9/10, and Isoperimetry (Theorem (1)), we see that

g(α+ sν + 3
√
β′(log

|S|
δ
+ 1)) ≥ 1− δ

10|S|2 ,

whence by (14), all of Si is in B(x,α + sν + 3
√
β′(log

|S|
δ + 1)). This completes the inductive proof of

correctness.

Lemma 20 Suppose F is a (general) Gaussian in <n If L is a set of independent identically distriubuted

samples, each distributed according to F , then with probability at least 1 − δ
10k , we have (with ε =

10n(
√

logn+
√

log(1/δ))/
√
|L|)

∀ vectors w,

EF((w.(x − EF(x))2)(1− ε) ≤ ES((w.(x − EF(x))2) ≤ EF((w.(x − EF(x))2)(1+ ε).

Proof: Also wlg assume that EF(x) is the origin. Suppose Q is the square root of the inverse of the

variance-covariance matrix of F . We wish to prove :

forall vectors w,EF((w.x)
2)(1− ε) ≤ ES((w.x)2) ≤ EF((w.x)2)(1+ ε).

Putting Q−1w = u (noting that Q is nonsingular and symmetric), this is equivalent to

forall vectors u,EF((u.(Qx))
2)(1− ε) ≤ ES((u.(Qx))2) ≤ EF((u.(Qx))2)(1+ ε).

But Qx is a random sample drawn according to the standard normal, so it suffices to prove the state-

ment for the standard normal.

To prove it for the standard normal, we proceed as follows :
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First for each i, we have (noting that EF(x
4
i ) = O(1)),

Prob
(
|ES(|xi|2)− 1| ≤ s

)
≥ 1− e−|L|s2/4.

Now consider a pair i, j ∈ {1,2, . . . n}, where i 6= j. The random variable xixj has mean 0 and

variance O(1). ES(xixj) being the average of N i.i.d. samples (each not bounded, but we may use the

normal property to argue concentration - to be elaborated in final version) concentrated about its mean

:

Prob
(
ES|xixj| ≤ s

)
≥ 1− e−|L|s2/100.

Putting s = 10

√
logn√
|L| , we see that all these O(n2) upper bounds hold simultaneously with probability

at least 1− δ/n8.

Thus we have that the “moment” of inertia matrix M of S whose i, j entry is ES(xixj) has entries

between 1− 1
2ε and 1+ 1

2ε on its diagonal and the sum of the absolute values of the entries in each row

is at most ε/2. Thus by standard Linear Algebra (basically arguments based on the largest absolute

value entry of any eigenvector), we have that the eigenvalues of M are between 1− ε and 1+ ε proving

what we want.

�

E.1 Necessity for separation

We show that t-separation as used in the paper is essentially (upto
√

logn factor) the minimum

separation for which the sample classification problem has a unique solution for mixtures of spherical

gaussians.

Lemma 21 Suppose all the Gaussians are spherical. Then,

Prob
(
∀i,∀x ∈ Si,∀j 6= i, Fi(x) < Fj(x)

)
≤ 1/10

=⇒ |pi − pj|2 ≥ (R2
i − R2

j )
− + c′

√
log(nk/δ)

(Ri + Rj)2√
n

,

for some constant c′.

Proof: We will only sketch a proof here. Wlg assume that Ri ≤ Rj . Suppose the conclusion fails; then

clearly we must have

R2
j = R2

i

(
1+O

(√
log(nk/δ)√

n

))
.

Suppose x is a random sample picked according to Fi. Then (x−pi)·(pj−pi)/|pj−pi| is normal with

variance σ 2
i ≈ R2

i /n; from this, it follows that with probability at least 1/poly, we have |(x−pj) · (pi−
pj)|/|pj − pi| is at most Ri/

√
n. Also, the component of x − pj orthogonal to pi − pj is the same as

the component of x−pi orthogonal to pi−pj which is normally distributed with mean 0 and variance

at most
n−1
n R2

i ; so with probability 1/poly, we have that x is at distance at most Ri from pj . From this,

it follows by a direct calculation that with this probability Fj(x) ≥ Fi(x). Since we have polynomially

many samples, the lemma can be proved. �

F Details of Algorithm in Section 4

F.1 The algorithm: learning in <m

As already mentioned, the algorithm will enumerate all subsets of size O(m logm) and compute a

variance-covariance matrix for each. Each candidate thus obtained is subjected to the filter procedure.

Below, δ is an error parameter obtained by the Lemma on VC-dimension arguments Theorem 14. It

will be at most 1/k10
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filter

Given: Candidate gaussian G, sample S1 of size k20, error parameter δ.

Let G have radius R and Ann(G) be the annulus of G in Mahalonobis norm that contains all but

1/k30 of the probability mass. Associate withG a set SG ⊆ S1 that initially is the set of samplepoints

lying in Ann(G).

1. If G is a 2-circuloid, discard every pair of points in SG which are separated by distance at most√
2R − 6

√
20 logkR/

√
m.

2. If G is not a 2-circuloid, replace G by the gaussian fitted to SG using the variance-covariance

matrix. Enumerate all spheres intersecting Ann(G) that have radius at most mR and whose

radius and center involve numbers that are integer multiples of R/k6. (At most (mk6)m+1

such spheres.) A light sphere is one that has probability mass (under G) at least 1/k5 but that

less than γ |S1| samples. If such a sphere exists, make SG empty.

At the end, the algorithm picks the candidate G with the largest SG, and it produces a random

subsample of k points from SG. The rest of the section will prove the following theorem.

Theorem 22 (Main) This sample is whp a pure sample from a single gaussian in the mixture whose

mixing weight is ≥ 1/2k.

Let V1, V2, . . . , Vk be the samplepoints from E1, E2, . . . , Ek in S1. Note that the Vi’s form a partition

of S1. By the law of large numbers, each |Vi| has between wi(|S1| ±
√
|S1| logk) points out of which

wi(|S| ±
√
|S| logk) points are in S. The main idea will be that the “winning” G will look as follows:

there is an i such that SG contains 1 − δk5 fraction of some Vi and at most δk5 fraction of SG will

consists of points from ∪p≠iVp. Thus SG is “almost pure.” Then a moment’s thought shows that a

random sample of size k from SG is, with probability at least 1− k · δk5, a pure sample from G. This

will prove Theorem 22.

Now we prove the claim about the “winning G.”

First we show that every good candidate, namely, an Ei whose mixing weight is ≥ 1/2k, stays in the

running. Note it has ≥ wi |S| /4k samples in S, which exceeds O(m2 log2m). Hence the exhaustive

enumeration will produce a 0.1-approximation (in the sense of [2, 17]) to every such ellipsoid. Fur-

thermore if the projected gaussian is not a 2-circuloid, the original ellipsoid in <n was not spherelike.

Hence (c/2,2−Ω(m))-separation implies that Ann(G) is not “polluted” by points from other gaussians.

Hence part 2 of filter is justified in using all the samples in AnnG to improve the estimate for this

gaussian.

Thus we have proved the following. Without loss of generality, assume F1 is a gaussian with mixing

weight ≥ 1/k.

Fact 23 If G is a good approximation to E1, then SG at the end of filter contains all of V1 and possibly

at most δk |S| samplepoints from ∪p≠1Vp.

Proof: This is obvious if F1 is not spherelike, because (c/2,2−Ω(m))-separation implies that no other

gaussian will have even 2−Ω(m) probability mass inside the 2−Ω(m)-radius of F1. Hence Ann(E1) is

uncorrupted by other gaussians whp.

If F1 is spherelike, then the concentration results in Lemma 8 implies that its points never have

distance much less than
√

2R to each other. Nor do they have small distance to points in Ann(E1) from

other gaussians, as seen in Section 3.

In both cases, a standard VC dimension argument (Theorem 14) then shows that F1 populates various

spheres with samples proportional (upto an additive error γ) to their probability mass, so G does not

lose any points due to filter. �

Now we prove that filter decimates fake candidates.

Theorem 24 If a candidate gaussian has ≥ |S1| /2k of the points left in its annulus after filter then all

but 2δk fraction of these points come from a single gaussian in the mixture.

The proof follows from Lemmas 25 and 26 which show that viable candidates at the end correspond

to those obtained from a “pure” sample from a gaussian.
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Lemma 25 Let G be 2-circuloid with |SG| ≥ |S1| /k5. Suppose Ej is a projected gaussian that contributes

between 1/k5 and 1/2 of the samplepoints of SG at the start of filter. Then all pairwise distances among

points in Vj ∩ SG are less than
√

2R− 6
√

20 logkR/
√
m (and hence these points are removed in Part 1 of

filter).

Proof: There are two cases. If Ej is itself a 2-circuloid, then this follows from Corollary 9.

If Ej is not a 2-circuloid, then the original gaussian Fj is not spherelike. Let r be the radius of Fj and

r ′, r ′′ respectively be its γ-radius and 1/k20-radius. Lemma 11 implies r ′′ = o(r ′). Let s = √m/√n,

s′ = r ′√m/√n and s′′ = r ′′√m/√n be the radii of the projections of these spheres.

Then the distance between the centers of G and Ej is at least s′′ − R and at most s′′ + R. We claim

s′′ < R/2. Suppose not. Then s′� R, and all of Ann(G) is contained in the sphere of radius s′ about Ej .
Then the separation condition implies that no other gaussian can contribute any significant probability

mass to Ann(G), which contradicts the assumption that Ej contributes less than 1/2 the samplepoints

in Ann(G). �

The proof of the next lemma will use properties of logconcave measures, specifically, the Leindler-

Prekopa inequality, Fact 16 in the Appendix.

Lemma 26 Suppose candidate G is not a 2-circuloid and at least two different Ei’s contribute ≥ 1/k5

samplepoints to SG at the start of filter. Then filter will find a light sphere.

Proof: Let µ be the center of G. We prove the existence of the “light sphere” in several steps. Assuming

the light sphere does not exist, we prove Claims 1, 2, 3, and show that they imply the existence of a

light sphere.

Notation: For a solid A, VolS(A) denotes the fraction of samplepoints from S1 in A. If H is a gaussian,

VolH(A) denotes the probability mass of A under H.

Claim 1: Suppose Ei is one of the gaussians contributing to Ann(G) and it is not a 2-circuloid. Let ρ be

its center and s′′ be its 1/k20-radius. Then |µ − ρ| ≤ 2s′′.
Proof:Let s, s′, s′′ be the various radii for Ei similar to the ones defined in the proof of Lemma 25. We

know that s′′ = o(s′). Let B be the ball of radius s′′ around Ei. If |µ − ρ| ≥ 2s′′ then consider a ball

isomorphic to B but shifted towards the center µ of G by a distance 2s′′. Then that ball is inside the ball

of radius s′ around Ei so well-separatedness implies it has no samplepoints. But log-concavity implies

that this ball has even higher probability mass under G, namely, probability mass ≥ 1/k5. Thus it is a

light sphere. Thus Claim 1 is proved. �

Thus well-separatedness together with Claim 1 implies that at most one Ei that is not a 2-circuloid

can contribute significantly to Ann(G). Now we turn to 2-circuloids.

Claim 2: All t-circuloids that have significant contribution to G have radii that are the same upto a

multiplicative factor kO(1/m) (≈ 1+O(logk/m)).
Proof: If C1, C2 are such circuloids then VolCi(Ann(G) ∩ Ann(Ci)) ≥ 1/k2. If no light spheres exist,

VolG(Ann(G)∩Ann(Ci)) must be significant as well and hence VolG(Ann(C1)) and VolG(Ann(G2)) are

related within a multiplicative factor kO(1). Hence Lemma 13 implies that their radii are within the

claimed factor. This proves Claim 2. �

Claim 3:Suppose no non t-circuloid makes a significant contribution to G. Then at most one t-circuloid

does.

Proof: Suppose Ei is such a circuloid. Let its radius be r and center be ρ. We show that the distance

|ρ − µ| is less than r
√

100 logk/
√
m, whereupon the claim follows by the separation condition and

Claim 2.

Assume for contradiction’s sake that the distance |ρ − µ| ≥ r
√

100 logk/
√
m. Let A be the ball of

radius r centered at µ. Then logconcavity implies VolG(A) ≥ VolG(Ei). Let C be the ball of radius r
whose center lies on the line joining ρ and µ at a distance r

√
20 logk/

√
m) to ρ. It can be viewed as a

Minkowski sum of A and Ei, hence Fact 16 implies that VolG(C) ≥ VolG(Ei). We claim it has essentially

no samplepoints, and thus is a light sphere. After all, where could any such samplepoints come from?

But C has negligible overlap with Ei, they cannot come from Ei. They cannot come from a t-circuloid

because such a t-circuloid cannot have its center closer than distance cr to Ei, and hence less than
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r(c −
√

20 logk/
√
m) to the center of C . Then Corollary 9 (applied to C and this t-circuloid) implies

that its radius would be approximately r/
√

1+ c2, which is not allowed by Claim 2. Hence we have a

contradiction and Claim 3 is proved. �

Now we are ready to prove that Claims 1–3 imply that G has a light sphere, which proves the Lemma.

By Claims 1 to 3, such aG can have significant mass contribution from at most one non 2-circuloid Ei of

the type described in Claim 1 and one or more 2-circuloids with to G. Let F be such a 2-circuloid, with

radius l and center f . By (c/2,2−Ω(m))-separation and Claim 1,
∣∣µ − f

∣∣ ≥ s′−2s′′. But consider the line

joining f , µ. All but 1−1/k20 of the probability mass of F lies in a thin slice of thickness r
√
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that is normal to this line. Call this sliceD. Then VolG(D) ≥ 1/k5−1/k12. By considering the Minkowski

sum of this slice with an identical slice at µ, we conclude that all parallel shifts of this slice (which are

themselves contained in spheres) towards µ have probability mass at least as large, namely, 1/k5−1/k12.

Can there be any samplepoints in these shifted slices? By the separation condition they come from

another 2-circuloid. They also cannot arise from Ei because all the samples of Ei are within distances

3s′′ of µ, and s′′ = o(s′). Thus we have proved the existence of a light sphere. �

F.2 Algorithm: Step 2

Now we address the classification problem in <n.

We have already indicated how to produce a pure sample of size k from a single gaussian, thus

getting a very good approximation to this gaussian in <m. Now, we notice that in fact if k > log3n
(if not, just use O(log3n) instead of k in the description above) this many samples are enough to

reconstruct the gaussian even in a random subspace of dimension O(logn/c2). We proceed to do this

reconstruction. Let H denote this gaussian. Note that unlike in the previous section, H is guranteed to

be not a “fake.” (This is what all our work in <m has bought us, and also the reason why we describe

our approach as bootstrapping.) Suppose H is the projection of Fi. If H is not a 2-circuloid then Fi is

not spherelike.

Now we work with the entire set of S = O(poly(k)n logn/wmin) samples. Let Ann0(H) denote the

annulus of H in Mahalonobis norm that contains all but 1/ |S|k of the probability mass. Consider the

subset of S that lies in Ann0(H). There are two cases. If H is not a 2-circuloid, then (c, γ)-separation

implies that all these points come from Fi. Thus we can reconstruct Fi.
If H is a 2-circuloid on the other hand, then it is possible that Ann0(H) is “polluted” by points

from other gaussians, but one can argue as in Fact 23 that the pairwise distance among such points is

substantially less than
√

2R (where R is the radius of H). Then we can filter out those points and get

with high probability an essentially pure sample from Fi.

F.3 Generalizations

We mention some generalizations of this algorithm.

A) Dasgupta has proposed a “weak” model for gaussian distributions, whereby we are allowed to

assume that the density of samplepoints in each sphere or ellipsoid is “about” right (the same as what

one would obtain by a VC-dimension argument), but not facts about distance concentration such as

Lemma 8, which are too sensitive to noise.

The algorithm can be made to work in this weak model, though its running time rises to nlogn. The

idea is to do an exhaustive density-check in O(logn/c2) dimensions instead of the simple reconstruc-

tion in Section F.2.

B) We can learn mixtures of distributions that are products of intervals (i.e., is a box). The reason is

that projections of boxes act like gaussians. We require their containing balls to be separate.

C) We can generalize in fact to any other log-concave family of distributions whose each member

has a “succinct” description of size poly(dimension) and this succinctness property is preserved under

projection. (These conditions allow us to use the technique of projecting data into a lower-dimensional

space and using enumeration to generate a list of candidates.) The notion of well-separatedness is as

follows. For a component distribution D1 let r ′ be all but 1/n6 of the probability mass lies within a

ball of radius r ′. Then we define the containing ball to be one whose radius is 2r ′. We require these

containing balls to be disjoint.

Then the same ideas as in Section 4 work.

23


