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Abstract

We study the problem of learning mixtures of
distributions, a natural formalization of clus-
tering. A mixture of distributions is a col-
lection of distributionsD = {D;,...Dr},
and mixing weights {w1, ..., wr} such that
>, w; = 1. A sample from a mixture is gen-
erated by choosingwith probability w; and
then choosing a sample from distributidn.
The problem of learning the mixture is that
of finding the parameters of the distributions
comprisingD, given only the ability to sam-
ple from the mixture. In this paper, we restrict
ourselves to learning mixtures of product dis-
tributions.

The key to learning the mixtures is to find a
few vectors, such that points from different
distributions are sharply separated upon pro-
jection onto these vectors. Previous techniques
use the vectors corresponding to the top few
directions of highest variance of the mixture.
Unfortunately, these directions may be direc-
tions of high noise and not directions along
which the distributions are separated. Further,
skewed mixing weights amplify the effects of
noise, and as a result, previous techniques only
work when the separation between the input
distributions is large relative to the imbalance
in the mixing weights.

In this paper, we show an algorithm which
successfully learns mixtures of distributions
with a separation condition that depends only
logarithmically on the skewed mixing weights.
In particular, it succeeds for a separation be-
tween the centers that@®(c+/T log A), where

o is the maximum directional standard devia-
tion of any distribution in the mixturéd; is the
number of distributions, and is polynomial

in T, o, logn and the imbalance in the mixing
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weights. For our algorithm to succeed, we re-
quire aspreading conditionthat the distance
between the centers bpreadacros® (T log A)
coordinates. Additionally, with arbitrarily small
separationj.e., even when the separation is
not enough for clustering, with enough sam-
ples, we can approximate the subspace con-
taining the centers. Previous techniques failed
to do so in polynomial time for non-spherical
distributions regardless of the number of sam-
ples, unless the separation was large with re-
spect to the maximum directional variange
and polynomially large with respect to the im-
balance of mixing weights.Our algorithm works
for Binary Product DistributiongndAxis-Aligned
Gaussians The spreading condition above is
implied by the separation condition for binary
product distributions, and is necessary for al-
gorithms that rely on linear correlations.

Finally, when a stronger version of our spread-
ing condition holds, our algorithm performs
successful clustering when the separation be-
tween the centersis on§(o. /T log A), where
o, is the maximum directional standard devi-
ation in the subspace containing the centers of
the distributions.
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Clustering, the problem of grouping together data points
in high dimensional space using a similarity measure, is
a fundamental problem of statistics with numerous ap-
plications in a wide variety of fields. A natural model for
clustering is that ofearning mixtures of distributions

A mixture of distributions is a collection of distributions
D = {Ds,... Dr}, andmixing weights{w1, ..., wr}
such thafy, w; = 1. A sample from a mixture is gen-
erated by choosingwith probability w; and choosing

a sample from distributio®;. The problem of learning
the mixture is that of finding the parameters of the distri-
butions comprisingD, given only the ability to sample
from the mixture.

If the distributionsD;, . .., D are very close to each
other, then even if we knew the parameters of the dis-
tributions, it would be impossible to classify the points
correctly with high confidence. Therefore, Dasgupta
[Das99] introduced the notion of separation condi-
tion, which is a promise that each pair of distributions is
sufficiently different according to some measure. Given
points from a mixture of distributions and a separation
condition, the goal is to find the parameters of the mix- independently of any others. In practice, mixtures of
ture D, and cluster all but a small fraction of the points product distributions have been used as mathematical
correctly. A commonly used separation measure is the models for data and learning mixtures of product dis-
distance between the centers of the distributions param-tributions specifically has been studied [FM99, FOS05,
eterized by the maximum directional varianegpf any FOS06, DHKSO05] — see the Related Work section for
distribution in the mixture. examples and details. However, even under this seem-

A common approach to learning the mixtures and ingly restrictive assumption, providing an efficient algo-
therefore, clustering the high-dimensional cloud of peint rithm that does better than the bounds of [AM05, KSV05]
is to find afewinteresting vectors, such that points from turns out to be quite challenging. The main challenge is
different distributions are sharply separated upon pro- to find a low-dimensional subspace that contains most
jection onto these vectors. Various distance-based meth-of the separation between the centers; although the inde-
ods [AKO1, Llo82, DLR77] are then applied to cluster pendence assumption can (sometimes) help us identify
in the resulting low-dimensional subspace. The state- which coordinates contribute to the distance between
of-the-art, in practice, is to use the vectors correspond- some pair of centers, the problem of actually finding

the centers.

This bound is suboptimal for two reasons. Although
mixtures with skewed mixing weights arise naturally in
practice(see [PSDO0Q] for an example), given enough sam-
ples, mixing weights have no bearing on the separability
of distributions. Consider two mixture®’ andD” of
distributionsD; andDs: in D/, w; = wy = 1/2, and
in D”, w; = 1/4 andwy = 3/4. Given enough com-
putational resources, if we can leaf from 50 sam-
ples, we should be able to leaf’ from 100 samples.
This does not necessarily hold for SVD-based methods.
Secondly, regardless of an algorithm, which has prior
knowledge of the subspace containing the centers of the
distributions, should be able to learn the mixture when
the separation is proportional to., the maximum di-
rectional standard deviation of any distribution in the
subspace containing the centers. An example in which
o and o, are significantly different is shown in Fig-
ure 1(b).

In this paper, we study the problem of learning mix-
tures of product distributions A product distribution
overR" is one in which each coordinate is distributed

I ntroduction

ing to the top few directions diighest variancef the
mixture and to hope that it contains most of the sepa-
ration between the centers. This is computed ISira
gular Value Decompositiq®VD) of the matrix of sam-

the low-dimensional space still requires more involved
techniques.

In this paper, we present an algorithm for learning
mixtures of product distributions, which is stable in the

ples. This approach has been theoretically analyzed bypresence of skewed mixing weights, and, under certain

[VWO02] for spherical distributions, and for more gen-

conditions, in the presence of high variance outside the

eral distributions in [KSV05, AMO5]. The latter show  sypspace containing the centers. In particular, the de-

that the maximum variance directions are |.ndeed the in- pendence of the separation required by our algorithm on
teresting directions when the separatiordis—z—), skewed mixing weights is only logarithmic. Addition-
wherewny, is the smallest mixing weight of any distri-  ally, with arbitrarily small separationj.€., even when
bution. the separation is not enough for classification), with efoug
This is the best possible result for SVD-based ap- samples, we can approximate the subspace containing
proaches; the directions of maximum variance may well the centers. Previous techniques failed to do so for non-
not be the directions in which the centers are separated,spherical distributions regardless of the number of sam-
but instead may be the directions of very high noise, as ples, unless the separation was sufficiently large. Our al-
illustrated in Figure 1(b). This problem is exacerbated gorithm works for binary product distributions and axis-

when the mixing weights); are skewed — because a dis-
tribution with low mixing weight diminishes the contri-

aligned Gaussians. We require that the distance between
the centers bepreadacross©(T log A) coordinates,

bution to the variance along a direction that separa&eswhereA depends polynomially on the maximum dis-



tance between centers ang,;,. For our algorithm to with a separation condition closer to the information the-
classify the samples correctly, we further need the sepa-oretic bound.
ration between centers to B o /T log A).

In addition, if a stronger version of the spreading Related Work
condition is satisfied, then our algorithm requires a sepa- The first provable results for learning mixtures of Gaus-
ration of only©(c.+/Tlog A) to ensure correct classifi-  sians are due to Dasgupta [Das99] who shows how to
cation of the samples. The stronger spreading condition, learn mixtures of spherical Gaussians with a separation
discussed in more detail later, ensures that when we splitof ©(o/n) in ann-dimensional space. An EM based
the coordinates randomly into two sets, the maximum algorithm by Dasgupta and Schulman [DS00] was shown
directional variance of any distribution in the mixture to apply to more situations, and with a separation of
along the projection of the subspace containing the cen-Q(on'/*). Arora and Kannan [AKO1] show how to
ters into the subspaces spanned by the coordinate vectearn mixtures of distributions of arbitrary Gaussians aéo
tors in each set, is comparabledp. centers are separated Byn'/%c). Their results apply

In summary, compared to [AMO5, KSV05], our al- to many other situations, for examptmncentricGaus-
gorithm is much (exponentially) less susceptible to the sians with sufficiently different variance.
imbalance in mixture weights and, when the stronger The first result that removed the dependence.on
spreading condition holds, to high variance noise out- in the separation requirement was that of Vempala and
side the subspace containing the centers. However, ounyang [VWO02] who use SVD to learn mixtures of spher-
algorithm requires a spreading condition and coordinate- jcal Gaussians witl)(c7'1/4) separation. They project
independence, while [AMO5, KSVO05] are more general. tg a subspace of dimensidnusing an SVD and use a
We note that for perfectly spherical distributions, the distance based method in the low dimensional space. If
results of [VWO2] are better than our results — how- the separation is not enough for classification, [VW02]
e\(er, these results dO_ not apply even _for distributions can also find, given enough Samp|esy asubspace approx-
with bounded eccentricity. Finally unlike the results jmating the subgspace containing the centers. While the
of [Das99, AK01, DS00], which require the separation results of [VWO02] are independent of the imbalance on
to grow polynomially with dimension, our separation mixing weights, they apply only to perfectly spherical
only grows logarithmically with the dimension. Gaussians, and cannot be extended to Gaussians with

Our algorithm is based upon two key insights. The bounded eccentricity. In further work Kannan, Salmasian,
first insight is that if the centers are separated along sev-and Vempala[KSV05] and Achlioptas and McSherry [AMO5]
eral coordinates, then many of these coordinates@re show how to cluster general Gaussians using SVD. While
relatedwith each other. To exploit this observation, we these results are weaker than ours, they apply to a mix-
choose half the coordinates randomly, and search theture of general Gaussians, axis-aligned or not. We note
space of this half for directions of high variance. We that their analysis also applies to binary product distri-
use the remaining half of coordinatesfilter the found butions again with polynomial dependence on the im-
directions. If a found direction separates the centers, it balance in mixing weights In contrast, our separation
is likely to have some correlation with coordinates in requirement iS2(o.+/7T log A), i.e., is logarithmically
the remaining half, and therefore is preserved by the fil- dependent on the mixing weights and dimension and the
ter. If, on the other hand, the direction found is due to maximum variance in noise directions.
noise, coordinate independence ensures that there will  There is also ample literature on specifically learn-
be no correlation with the second half of coordinates, ing mixtures of product distributions. Freund and Man-
and therefore such directions get filtered away. sour [FM99] show an algorithm which generates dis-

The second insight is that the tasks of searching for tributions that are:-close to a mixture of two product
and filtering the directions can be simultaneously ac- distributions ovef0,1}" in time polynomial inn and
complished via a singular value decomposition of the 1/¢. Feldman, O’Donnell, and Servedio show how to
matrix of covariances between the two halves of coor- generate distributions that areclose to a mixture of”
dinates.In particular, we show that the top few direc- Product distributions [FOS05] and axis-aligned Gaus-
tions of maximum variance of the covariance matrix ap- sians [FOS06]. Like [FM99], they have no separation
proximately capture the subspace containing the centers.requirements, but their algorithm while polynomial in
Moreover, we show that the covariance matrix has low 1/¢ takesn®(T*) time. Dasgupt&t. al[DHKSO05] pro-
singular value along any noise direction. By combining vide an algorithm for learning mixtures of heavy-tailed
these ideas, we obtain an algorithm that is almost in- product distributions which works with a separation of
sensitive to mixing weights, a property essential for ap- ©(R+/T), whereR is the maximum half-radius of any
plications like population stratification [CHRZ07], and
which can be implemented using the heavily optimized  They do not directly address binary product distributions
and thus, efficient, SVD procedure, and which WOl’l%S in their paper, but their techniques apply.



distribution in the mixture. While their separation re- word for ak—bit string appended by a string of length
qguirement does not depend polynomiallygh,—, their n — k in which each coordinate has valug2. Notice
algorithm runs in time exponential i@(wL_m)’_” They that the last: — k bits are noise. Thus, the centers are

also require a slope, which is comparable to our spread-Separated by’/2 coordinates.D; is the uniform dis-
ing condition. Chaudhust al. [CHRZ07] show aniter-  tribution over then—dimensional hypercube. As there
ative algorithm for learning mixtures of two product dis- are no linear correlations between any two bits in the
tributions that implicitly uses the notion of co-ordinate Hadamard code, the covariance Bf along any two
independence to filter out noise directions. However, the diréctions is0, and each direction has the same vari-
algorithm heavily uses the two distribution restrictionto ance. As this is also the case g, any SVD-bsed
find the appropriate directions, and does not work when OF correlation-based algorithm will fail to distinguish
T 9. between the two mixtures. We also note that learning
More broadly, the problem of analyzing mixture mod- binary product dlstr|buf[|0ns 1Wlth minimum separation
els data has received a great deal of attention in statis-2 and average separatidny- ; log T .WOU|q aIIovv_ one
tics, see for example, [MB88, TSM85], and has numer- to learn parities ofog T' variables with noise. Finally,

ous applications. We present three applications where W€ Note that when the spreading condition fails, one has
data is modelled as a mixture of product distirbutions. Ny @ féw coordinates that contain most of the distance

First, the problem of population stratification in popula- between centers. One could enumerate the set of possi-

; ; : ; ._ble coordinates to deal with this case, and is exponen-
tion genetics has been posed as learning mixtures of bi- . '

nary product distributions in [SRHO7]. In their work, the tionalinT'log n log Ag; [FOSO05] on the other hand takes
authors develop an MCMC method for addressing the ime exponentialiri™ log , and works with no separa-
problem and their software embodiment is widely used. ton requirement.

A second application is in speech recognition [Rey95,

PFK02], which models acoustic features at a specific 2 A Summary of Our Results

time point as a mixture of axis-aligned Gaussians. A \we pegin with some preliminary definitions about dis-
third application is the widely used Latent Dirichlet Al-  triputions drawn ovemn dimensional spaces. We use
location model [BNJO3]. Here, documents are modelled .g, ... to range over coordinates, and, . . . to range
as distributions over topics which, in turn, are distri- gyer distributions. For any € R", we writez/ for the
butions over words. Subsequent choices of topics and ¢t coordinate of:. For any subspac (resp. vector
words are assumed to bEiependent(Forwqrds, thisis v), we useH (resp. 7) to denote the orthogonal com-
referred to as the “bag of words” assumption.) [BNJO3] plement ofH (resp.v). For a subspact and a vector
develops variational techniques that provide interesting ,, e write P4 (v) for the projection of onto the sub-
results for various corpora. Interestingly, the same modelspacé%_ For any vector, we usé|z|| for the Euclidean
was used by Kleinberg and_SandIer [KSO04] to model norm ofz. For any two vectors andy, we use(z, y)
user preferences for purchasing goods (users corresponggy the dot-product of: andy.

to documents, topics to categories, and words to gOOdS)'M ixtures of Distributions. A mixture of distributions

Their algorithm, which provides provably good perfor- . : o
mance in this model, also uses SVD-like clustering al- D, Is a_collgctlon of distributions, Dy, . .., Dr}, over
points inR™, and a set of mixing weights, ..., wr

gorithms as & subroutine. such that) ", w; = 1. In the sequelp is assumed to
be much larger thafi’. In a product distribution over
R™, each coordinate is distributed independently of the
The Spreading Condition. The spreading condition  others. When working with a mixture of binary prod-
loosely states that the distance between each pair of cenuct distributions, we assume that tfieh coordinate of
ters is spread along abo@t7T log A) coordinates. We  a point drawn from distributiod; is 1 with probability
demonstrate by an example, that a sprea@(@f), isa 4/, ando with probability1 — 1./ . When working with
natural limit for all methods that use linear correlations a mixture of axis-aligned Gaussian distributions, we as-
between coordinates, such as our methods and SVD basg@me that thef-th coordinate of a point drawn from dis-
methods [VWO02, KSV05, AMOS]. We present, as an yipytion D, is distributed as a Gaussian with meah
example, two distributions : a mixtuf@; of T binary d standard devi t.(mf

product distributions, and a single binary product dis- and standar ey|a| : o

tribution D, which have exactly the same covariance Centers. We define thecenterof a distribution: as the
matrix. Our example is based on the Hadamard code, in Vector;, and thecenter of mass of the mixtuees the

Discussion

which a codeword for &-bit message i€ bits long, vector i where i/ is the mean of the mixture for the
and includes a parity bit for each subset of the bits of coordinatef. We write C for the subspace containing
the message. The distributions comprisifg are de- M1, s BT

fined as follows. Each of th& = 2% centers is a code-4 Directional Variance. We defines? as the maximum



variance of any distribution in the mixture along any
direction. We definer? as the maximum variance of
any distribution in the mixture along any direction in

based algorithm for learning mixtures of binary prod-
uct distributions and axis-aligned Gaussians. The input
to the algorithm is a set of samples from a mixture of

the subspace containing the centers of the distributions.distributions, and the output is a clustering of the sam-

We write o2 . as the maximum variance of the entire
mixture in any direction. This may be more thahdue

to contribution from the separation between the centers.

Spread. We say that a unit vectarin R™ has spread
if z:f(vf)2 > 8 - maxy(v))2,

Distance. Given a subspack of R™ and two points
z,y in R™, we writedi (z,y) for the square of the Eu-
clidean distance betweenandy projected along the
subspacéC.

The Spreading Condition and EffectiveDistance. The

ples.

The main component of Algorithm@RR-CLUSTER
is Algorithm CoRR-SUBSPACE which, given samples
from a mixture of distributions, computes an approxi-
mation to the subspace containing the centers of the dis-
tributions. The motivation for approximating the latter
space is as follows. In tHB-dimensional subspace con-
taining the centers of the distributions, the distance be-
tween each pair of centers andy; is the same as their
distance inR"™; however, because of the low dimen-
sionality, the magnitude of the noise is small. There-

spreading condition tells us that the distance between fore, provided the centers of the distributions are suf-

eachy,; andy; should not be concentrated along a few

ficiently separated, projection onto this subspace will

coordinates. One way to ensure this is to demand thatSharply separate samples from different distributionsDSV

for all 4, j, the vectoru; — u; has high spread. This is
comparable to the slope condition used in [DHKS05].
However, we do not need such a strong condition for

dealing with mixtures with imbalanced mixing weights.
Ourspreading conditiotherefore demands that for each
pair of centerg;, u;, the norm of the vecton; — y;
high, even if we ignore the contribution of the top few
(aboutT'log T') coordinates. Due to technicalities in our

proofs, the number of coordinates we can ignore needs

to depend (logarithmically) on this distance.
We therefore define the spreading condition as fol-
lows. We define parametets; and a parametek as :

2 . .
A > —gmaTlog’n _gnde, . is the maximum value such

Wmin-(Ming ; cfj)
that there ard97 log A coordinates’ with |M{ - M§| >

¢ij. We note thatA is bounded by a polynomial in
T,04,1/Wmin, 1/c;; and logarithmic im.

We definec,,;,, to be the minimum over all pairs j
of ¢;;. Given a pair of centersandj, let A;; be the set
of coordinatesf such thatu! — pf| > ¢;;, and letw;
be defined asyzfj = uf_— M{ if f& A, andy{j = cij
otherwise. We defin€(y;, it;), the effective distance
betweeny,; andyu; to be the square of th; norm of
v;;. In contrast, the square of the norm of the vector
wi — p; is the actual distance between centersand
w;, and is always greater than or equal to the effective
distance betweep; andy;. Moreover, given; and j
and the subspad€, we definedi (11, 11;) as the square
of the norm of the vectar;; projected onto the subspace
K.

Under these definitions, our spreading condition now
requires thatl(p;, p1;) > 49c§jTlogA and our stronger
spreading condition requires that every vecto€ihas
spread327'log -

A Formal Statement of our Results. Our main con-
tribution is Algorithm GRR-CLUSTER, a correlation 5

based algorithms [VW02, AMO05, KSVO05] attempt to
approximate this subspace by the Bgingular vectors
of the matrix of samples. However, for product distri-
butions, our Algorithm ©RR-SUBSPACE can approxi-
mate this subspace correctly under more restrictive sep-
aration conditions.

The properties of Algorithms GRR-SuBSPACEand
CoRR-CLUsTERare formally summarized in Theorem 1
and Theorem 2 respectively.

Theorem 1 (Spanning centers) Suppose we are given
a mixture of distributionsD = {D;,..., Dr}, with
mixing weightsuy, . . ., wp. Then with at least constant
probability, the subspacé& of dimension at mos2T’
output by AlgorithmCoRR-SUBSPACE has the follow-
ing properties.

1. If, for all i and j, d(pi, p1;) > 49¢3, T log A, then,
for all pairs i, 7,

99 - 9

> m(d(ui, i) — 49T c;; log A)

. If, in addition, every vector i has spread21'log =,
then, with at least constant probability, the maxi-
mum directional variance iC of any distribution
D; in the mixture is at mostlo?2.

dic (s, 1)

The number of samples required by AlgoritiGoRrRR-

SuBSPACEIs polynomial in.Z, T, n,oc and -—, and
the algorithm runs in time polynomial in, T', and the
number of samples.

The subspack computed by Algorithm ©ORR-SUBSPACE
approximates the subspace containing the centers of the
distributions in the sense that the distance between each
pair of centergu; and; is high alongkC. Theorem 1
states that Algorithm GRR-SUBSPACECcOmMputes an ap-
proximation to the subspace containing the centers of



the distributions, provided the spreading conditionis sat A Note on the Stronger Spreading Condition. The

isfied. If the strong spreading condition is satisfied as
well, then the maximum variance of eath along/C is
also close t@r2.

motivation for requiring the stronger spreading condi-

tion is as follows. Our algorithm splits the coordinates

randomly into two setss andg. If Cx andCg denote

Note that in Theorem 1, there is no absolute lower the restriction of’ to the coordinates itf andg respec-
bound required on the distance between any pair of cen-tively, then our algorithm requires that the maximum

ters. This means that, so long as the spreading condi-

tion is satisfied, and there are sufficiently many sam-

directional variance of any distribution in the mixture
is close too, in Cx andCg respectively. Notice that

ples, even if the distance between the centers is not largethis does not follow from the fact that the maximum di-

enough for correct classification, we can compute an ap-
proximation to the subspace containing the centers of
the distributions. We also note that although we show
that Algorithm GORR-SUBSPACE succeeds with con-
stant probability, we can make this probability higher
at the expense of a more restrictive spreading condition,
or by running the algorithm multiple times.

Theorem 2 (Clustering) Suppose we are given a mix-
ture of distributionsD = {D,..., Dz}, with mixing
weightswy, . .., wp. Then, AlgorithnCORR-CLUSTER
has the following properties.

1. Ifforalliandj, d(ps, ;) > 49T}, log A, and for
all 7, j we have:
1 > 590°T (log A + logn)
(for axis-aligned Gaussians)
> 59T (log A + logn)
(for binary product distributions)

d(pi, pj)

d( s, pj)

then with probabilityl — % over the samples and
with constant probability over the random choices
made by the algorithm, Algorith@OoRR-CLUSTER
computes a correct clustering of the sample points.

. For axis-aligned Gaussians, if every vecto€ihas
spread at leas2T log >, and for alli, j:

d( i, i) 150027 (log A + logn)
then, with constant probability over the random-
ness in the algorithm, and with probability —
% over the samples, Algorithf@ORR-CLUSTER
computes a correct clustering of the sample points.

>

Algorithm CORR-CLUSTER runs in time polynomial in
n and the number of samples required by AlgoritGoRR-
CLUSTERIs polynomial in-=, T', n, o and ——.

Wmin

We note that because we are required to do classifi-
cation here, we do require an absolute lower bound on
the distance between each pair of centers in Theorem 2

The second theorem follows from the first and the
distance concentration Lemmas of [AMO5] as described
in Section 5.3 of the Appendix. The Lemmas show that

once the points are projected onto the subspace com-

rectional variance along is o2: suppose’ is spanned
by (0.1,0.1,1,1) and(0.1,0.1, —1, 1), variances ofD,
along the axes ard0, 10,1, 1), andF is {1, 2}. Then,

o2 is abouR.8, while the variance ob; alongCr is 10.
However, as Lemma 7 shows, the required condition is
ensured by the strong spreading condition.

However, in general, the maximum directional vari-
ance of anyD; in the mixture alongCr andCg may
still be close tar2, even though strong spreading condi-
tion is far from being met. For example:dfis the space
spanned by the firgt coordinate vectors,, . . . , ep,then
with probability 1 — QLT the maximum variance along

Cr andCg is alsoo?.

3 Algorithm CORR-CLUSTER

Our clustering algorithm follows the same basic frame-
work as the SVD-based algorithms of [VW02, KSVO05,
AMO5]. The input to the algorithm is a sStof samples,
and the output is a pair of clusterings of the samples ac-
cording to source distribution.

CORR-CLUSTER(S)

1. PartitionS into S4 and S uniformly at ran-
dom.

2. Compute: K4 = Corr — Subspace(Sa),
Kp = Corr — Subspace(Sg)

3. Project each pointifp (resp.S4) on the sub-
spacelC4 (resp.Kg).

4. Use a distance-based clustering algo-
rithm [AKO1] to partition the points in
S4 andSp after projection.

The first step in the algorithm is to use Algorithm
CoRR-SuBsPAcEto find aO(T')-dimensional subspace
K which is an approximation to the subspace containing
the centers of the distributions. Next, the samples are
projected ontdC and a distance-based clustering algo-
rithm is used to find the clusters.

We note that in order to preserve independence the
samples we project ontg should be distinct from the

.ones we use to computé A clustering of the complete

set of points can then be computed by partitioning the
samples into two setd and B. We useA to compute
K 4, which is used to clusteB and vice-versa.

We now present our algorithm which computes a ba-

puted in Theorem 1, a distance-based clustering methodsis for the subspad€. With slight abuse of notation we

suffices to correctly cluster the points. 6

usek to denote the set of vectors that form the basis for



the subspack.The inputto @RR-SUBSPACEIs a setS Covariance Matrix. Let N be a large number. We de-

of samples, and the output is a subspkiasf dimension  fine F' (resp.G), theperfect sample matriwith respect

at mos27". to F (resp.G) as theN x n/2 matrix whose rows from

Algorithm CORR-SUBSPACE (wi4...+wi—1)N+1 throyg_h(wl +...+ wi)l\\/fgre

o . o . . equal to the vectoP ~(u; N (resp. Pg(u; N).

Step %1 Initialize and fSpI|t Initialize Lhe k;aswc with h F?)racoordinatgf, Iet)gf gé a rar(ldorg va?ig\léllz/whic)h is
the empty set of vectors. Randomly partition the iy i ted as thef-th coordinate of the mixtur®. As
coordinates into two setst and G, each of size

n/2. Order the coordinates as thosefrfirst, fol- the entry in rowf and columry n the matrix "G is
lowed by those irg. equal toCov(Xy, X,), the covariance of ; and X,
we call the matrix"T G the covariance matriof 7 and
Step 2: Sample Translate each sample point so thatthe ¢,
center of mass of the set of sample points is at the
origin. Let F' (respectively) be the matrix which
contains a row for each sample point, and a column
for each coordinate iff (respectivel\i). For each

Proof Structure. The overall structure of our proof is

as follows. First, we show that the centers of the dis-

tributions in the mixture have a high projection on the

matrix, the entry at row, column  is the value of subspac_e of hig_hest correlat_ion between the coordi_nates.

the f-th coordinate of the sample pointdivided To do this, we first assume,in Section 4.1 that the input

by \/m tq the Aalgont[lm in Step 2 are the perfe_ct sample ma-
trices " andG. Of course, we cannot directly feed in

Step 3: Compute Singular Space Forthe matrix?TG,  the matrices”, G, as the values of the centers are not

compute{vy, ..., vr}, the topT left singular vec- known in advance. Next, we show in Section 4.2 that
tors,{y1,...,yr}, the topT right singular vectors,  this holds even when the matricésandG in Step 2 of
and{\y, ..., A\r}, the topT singular values. Algorithm CoRR-SuBSPACEare obtained by sampling.

) ) ] In Section 4.3, we combine these two results and prove

Step 4: Expand Basis For eachi, we abuse notation  Theorem 1. Finally, in Section 5.3 of the Appendix,
and usev; (y; respectively) to denote the vector e show that distance concentration algorithms work in
obtained by concatenating with the 0 vector in - he |ow-dimensional subspace produced by Algorithm

n/2 dimensions { vector inn/2 dimensions con-  Corpr-CLUSTER, and complete the analysis by proving

catenated withy; respectively). For each if the Theorem 2.
singular value); is more than a threshold =
62 .
0 (;1;2;271 iy A_), we addv; andy; to K. 4.1 ThePerfect Sample Matrix
_ The goal of this section is to prove Lemmas 3 and 5,
Step 5: Output Output the set of vectorss. which establish a relationship between directions of high

The main idea behind our algorithm is to use halfthe correlation of the covariance matrix constructed from
coordinates to compute a subspace which approximateshe perfect sample matrix, and directions which contain
the subspace containing the centers, and the remaining? [0t Of separation between centers. Lemma 3 shows that
half to validate that the subspace computed is indeed a direction which contains a lot of effective distance be-
good approximation. We critically use the coordinate Ween some pair of centers, is also a direction of high
independence property of product distributions to make correlation.

this validation possible. Lemma 5 shows that a directionc P =(Cx), which
is perpendicular to the space containing the centers, is a
4 Analysisof Algorithm CorRR-CLUSTER direction with 0 correlation. In addition, we show in

_ o ) Lemma 6, another property of the perfect sample ma-
This section is devoted to proving Theorems 1, and 2. trix — the covariance matrix constructed from the perfect

We use the following notation. sample matrix has rank at ma&t We conclude this sec-
Notation.We write F-space (respg-space) for they/2 tion by showing in Lemma 7 that when every vector in
dimensional subspace B" spanned by the coordinate C has high spread, the directional variance of any distri-
vectors{es | f € F} (resp.{eq | g € G}). We writeC bution in the mixture along--space oG-space is of the
for the subspace spanned by the set of vegtgrsWe order ofo?2.

write Cr for the space spanned by the set of vectors We begin by showing that if a directioncontains

P (). We writeP = (Cx) for the orthogonal comple-  a lot of the distance between the centers, then, for most
ment ofC~ in the F-space. Moreover, we Writ€r g ways of splitting the coordinates, the magnitude of the
for the subspace of dimensi@ffi’ spanned by the union  covariance of the mixture along the projectionwobn

of a basis o€+ and a basis afg. Next, we defineakey  F-space and the projectionofG-space is high. In other
ingredient of the analysis. 7 words, the projections af alongF-space andj-space



are directions of high correlation.

Lemma3 Let v be any vector irCrug such that for
somei andj, d,(p;, p1;) > 497¢;log A. If vz andug
are the normalized projections ofto F-space andj-
space respectively, then, with probability at least %

over the splitting step, for all such, vEETGug > 7

wherer = O (wm“‘c?j : \/W).

Tlog?n
The main ingredient of the proof, which is in the
Appendix, is Lemma 4.

Lemma4 Letv be afixed vector ig such that for some
iandj, dy(pi, ) > 49T¢;; log A. If vz andug are the
projections ofv to F-space andj-space respectively,
then, with probability at least— A —27 over the splitting

L WeninCZ,
stepp L FTGvg > 27 wherer = O (TT&Q?Z -v/log A).

Let £, (G, respectively) be the x n/2 matrix ob-

tained by projecting each row df (respectively) on
vr (respectivelyg). Then,

T £#T A
veF,; Gyug

Z wi{vF, Py, (i — 1)) (vg, Pog (i — 1))

U;FTGUQ

Moreover, for any pair of vectors in F-space and
y in G-space such thdtz, vr) = 0 and(y, vg) = 0,

xTﬁ‘v;révy = Z’LUZ<I, P'U]-‘ (/Li_ﬂ)><ya Pvg (/Ll_ﬂ» =0

Therefore TG, has rank at most.
The proof strategy for Lemma 4 is to show that if

dy (i, p;) is large then the matrik’T G, has high norm.
We require the following notation. For each coordinate
f we define a'-dimensional vectot; as

zp = VorPy(u] — pf), ..., yurP,(uh — o))
Notice that for any two coordinatesg:

(2f,24) = Cov(P,(Xf), Py(Xy))

, computed over the entire mixture. We also observe that

Do lzsllP =D wi - dy iy 1)
! i

Proof:(Of Lemma 4) From the definition of effective
distance, if the conditiond, (u;, p1;) > 49¢;;T log A
holds then there are at leaiT log A vectorszy with
total squared norm at lea88wyinc;; 27 log A. In the
sequel we will scale down each vectoy with norm
greater tham; ; /wmin SO that its norm is exacthy; /wmin.
We divide the vectors inttvg n groups as follows: group
By, contains vectors which have norm betwééﬁ@
and “ogspe
We will call a vectorsmallif its norm is less than
WminCij : :

W, and othermse, we call the vectlpng. We ob-
serve that there exists a set of vect®rwith the fol-
lowing properties: (1) the cardinality d? is more than

49T log A, (2) the total sum of squares of the norm of the

49T log Awminc?

vectors inB is greater thanT”’, and, (3) the

ratio of the norms of any two vectors iR is at most
2+/logn.

Case 1: Suppose there exists a groip of small vec-

tors the squares of whose norms sum to a value greater

49T Wiminc?; log A .
than ——32°4 25~ " By definition, such a group has
ogn

more thant9T log A vectors, and the ratio is at maxt

Case 2: Otherwise, there are at leai$tT" log A big vec-

tors. By definition, the sum of the squares of their norms
49T'wminc?j log A

exceed Tog . Due to the scaling, the ratio is
at most2/log n.

We scale down the2 vectors iB so that each vector

has squared norm™z— in case 1, and, squared norm

WminC

Tiog . IN case 2. Due to (2) and (3), the total squared

H 49 min ?1 A
norm of the scaled vectors is at least-mincii 18 4

4logn
Due to (1), we can now apply Lemmas 17 and 18
on the vectors to conclude that for some constant
with probabilityl — A=>", 37 _5(2f,24)° > a1 -
UminCii 980N e ap is th f th
(Wn_)' e above sum is the square of the
Frobenius normF TG, |g of the matrix ©TG,. Since

FUTGU has rank at most, an application of Lemma 15
incZ,
Wmin ij \/m). D

Tlog?n
Next we show that a vectar € P(Cr) is a di-
rection of0 correlation. A similar statement holds for a
vectory € Pg(Cg).

completes the proof, for = O (

Lemma5 If at Step 2 of AlgorithmMCORR-SUBSPACE

The RHS of this equality is the weighted sum of the the values of” and G are respectively’ and G, and
squares of the Euclidean distances between the centeréor somek,the topk-th left singular vector i), and the

of the distributions and the center of mass. By the trian-

gle inequality, this quantity is at Iea@wmincij log A.

We also require two technical lemmas — Lemmas 17

and 18, which are stated and proved in the Appendix.8

corresponding singular valug, is more thanr, then
for any vectorz in Pz (Cx), (vi,z) = 0.

Proof: We first show that for any in P =(Cx), and any



Y, xTFTGy =0.
o T
#TFT Gy =Y wi(Pr(p),x) - (Pg(p),y)
i=1
Sincex is in Px(Cr), (P#(u:),z) = 0, for all 4, and
hencezTEFTGy = 0 for all z in P£(Cr). We now
prove the Lemma by induction dn
Basecase (k = 1). Letv; = w1 + 1, whereu; € Cr
andz; € Px(Cr). Lety; be the top right singular
vector of FT@, and letjz;| > 0. Then,vT FTGy, =
FTG‘yl, andu /|u, | is a vector of norm such that
|u1\ TET Gy, > o ET Gy, which contradicts the fact

thatvl is the top left singular vector df TG.
Inductive case. Let vy, = uy + xi, whereu, € Cr and
z, € Pz(Cr). Lety; be the topk-th right singular vec-
tor of FT(, and let|xx| > 0. We first show thatu, is
orthogonal to each of the vectors, ..., v,_1. Other-
wise, suppose there is somel < j < k — 1, such that
(ug,vj) # 0. Then,(vg,v;) = (zk,v;) + (Uk, v ) =
(ug,vj) # 0. This contradlcts the fact that, is a
left singular vector ofTG. Thereforepf FT Gy, =
uF FTGyy., anduy /|uy| is a vector of norm, orthogo-
naltovs, ..., v,_1 such thali—‘ TET Gy, > vT FTGyy.
This contradicts the fact tha, is the topk-th left sin-
gular vector ofFTG. The Lemma follows[]

Lemma6 The covariance matrix' TG has rank at most
T.

Proof: For each distribution, definey;? as arm/2 di-
mensional vector, whosgth element |s\/w_1P,C(;LZ
i), i.e.,thei-th element of:;. Similarly, for each dis-
tribution i, we definey? as ann/2 dimensional vector,
whosey-th elementis/w; P (1! —19), i.e.,thei-th el-
ement ofz,. We observe that the value 61T equals

STyl - (¥9)T. As each outer product of the sum is
a rankl matrix, the sumi.e.,the covariance matrix, has
rank at mosf". (J

Finally, we show that if the spread of every vector in
C is high, then with high probability over the splitting of
coordinates in Step 1 of Algorithm@RkR-SUBSPACE
the maximum directional variances of any distribution
D; in Cr andCg are high. This means that there is
enough information in bott#-space andj-space for
correctly clustering the distributions through distanoe-c
centration.

Lemma7 If every vectorv € C has spread at least
32T log =, then, with constant probability over the split-
ting of coordlnates in Step 1 of Algorith@ORR-SUBSPACE,
the maximum variance along any directiondp or Cg
is at mosto?.

Proof:(Of Lemma 7) Letv andv’ be two unit vectors
in C, and letvr (resp.v’z) andvg (resp.vg denote the
normalized projections of (resp. v’) on F-space and
G-space respectively. Ifvr — v’|| < Z=, then, the
directional variance of any; in the mixture along/’-
can be written as:
E[(vF,z — E[z])?]
= E[(vr,2 — El2])’| + E[(vF — vr, 2 — E[z])’]
+2E[(vr, = — E[z])|E[(v} — vp,z — Elz])
< Elvs,x — Eft])? + [[vr — o] *0?
Thus, the directional variance of any distribution in the
mixture alongy’ is at most the directional variance along
v, plus an additiona#?. Therefore, to show this lemma,
we need to show that if is any vector on &=-cover
of C, then with high probability over the splitting of co-
ordinates in Step 1 of Algorithm @RR-SUBSPACE, the
directional variances of ang; in the mixture along ~
andvg are at mostio2.

We show this in two steps. First we show that for
anyv in a Z=-cover ofC, + < >, (v/)? < 3. Then,
we show that this condition means that for this veetor
the maximum directional variances along andvg are
at mostdo?.

Let v be any fixed unit vector i€. We first show
that with probabilityl — (%)QT over the splitting of
coordinates in Step 1 of Algorithm @RR-SUBSPACE
1 < X jer(w)? < . To show this bound, we ap-
ply the Method of Bounded Difference (Theorem 13 in
the Appendix). Since we split the coordinates ifffo
andG uniformly at randomE[Y" ;. z(v/)?] = 3. Let
~s be the change iEfEf(vf)2 when the inclusion or
exclusion of coordinatg in the setF changes. Then,
vr = (vf)? andy = > ;73 Since the spread of vector
vis at leasB2T'log =, v = Y (v/)* < goppiz=,
and from the Method of Bounded Differences,

P Y B > ] < e
fer fer
o\ 2T
< (%)

By taking an union bound over allon aZ*-cover ofC,

we deduce that forany sueh 7 < 3 -(v/)? < 3.
Since the maximum directional variance of any dis-

tribution D; in the mixture inC is at most2,

> (el)? < o2
f

Therefore the maximum variance along as well agg
can be computed as:
Z < 4o

||v 2 20!

feF
The lemma follows[

- ||v Is



4.2 Working with Real Samples

In this section, we show that given sufficient samples,

the properties of the matrik TG, whereF andG are
generated by sampling in Step 2 of AlgorithnroRRr-
CLUSTER are very close to the properties of the matrix

4.3 TheCombined Analysis

In this section, we combine the lemmas proved in Sec-
tions 4.1 and 4.2 to prove Theorem 1.

We begin with a lemma which shows that if every
vector inC has spread2T'log -, then the maximum

FTG. The lemmas are stated below, and most of the directional variance i, the space output by Algorithm
proofs are in the Appendix. The proofs use the Method CORR-SUBSPACE, is at mostl 152.

of Bounded Differences (when the input is a mixture

of binary product distributions) and the Gaussian Con- Lemma 1l Let K be the subspace output by the algo-
centration of Measure Inequality (for axis-aligned Gaus- fithm, and letv be any vector iriC. If every vector irC

sians).
The central lemma of this section is Lemma 8, which

shows that, if there are sufficiently many samples, for  (;ax (22720 log logA 5.0 T nlognlog A

any set o2m vectors{v1, ..., v} and{y1,...,ym},
YL vk FT Gy, and)”, v FT Gy, are very close. This

has spread2T log >, and the number of sampléS|
is greater than

2

‘r20'4 T20_4 then

for anyi the maximum variance @; alongv is at most
2

lemmais then used to prove Lemmas 9 and 10. Lemma9 T

shows that the top few singular vectorsiof G output
by Algorithm CoRR-SUBSPACE have very low projec-
tion onP £(Cx) or Pg(Cg). Lemma 10 shows that the
rank of the matrixF*'G is almostT’, in the sense that
theT + 1-th singular value of this matrix is very low.

Lemma8 LetU = {u1,...,untandY ={y1,...,ym}
be any two sets of orthonormal vectors, andHeand G
be the matrices generated by sampling in Stey the
algorithm. If the number of sampléS| is greater than
Q(m3"2 log";Sg(""“*/‘s)) (for Binary Product Distribu-

( o*m*n?log? nlog? (omax/0)
52 ’

tions), and [ max

aza'rznamenlognlog(amax/é)
52
sians), then, with probability at least— 1/n,

| > ui (FTG ~E[FTGl)ye| <6
k

(for axis-aligned Gaus-

Lemma9 Let F' and G be the matrices generated by
sampling in Steg of the algorithm, and lety, ..., v,
be the vectors output by the algorithm in Steplf the
number of samples| is greater than

Q(m3"2 log n(log A+log %)) (for Binary Product Distribu-

24

o*m*n?log? nlog?(A/e)
724 ’

tions), andmax

o202 m3nlognlog(A/e)

max
T2¢4

(for axis-aligned Gaussians),
then, for eachk, and anyz in P=(Cx), (vi, x) < e.

Lemma 10 Let F' and G be the matrices generated by
sampling in Step 2 of AlgorithrBORR-SUBSPACE If
the number of samples/| is greater than

Q (M) (for binary product distributions) and

44 21 2 2 52731 log A i
o T4n Tlc;g logA’ Timax® ; ognog for axis-

aligned Gaussians, the\r1, theT + 1-th singular
value of the matri¥" TG is at mostr /8.

Q (max (

10

Proof:(Of Lemma 11) We first show that for any,(or
yi) in the setlC output by Algorithm ®RR-SUBSPACE
and for any distributiorD; in the mixture, the maximum
variance ofD; alongu;, (or yy) is at mostl 152,

Let vy, uy + xr Wherewu is in Cx andz is in
P (Cr). From Lemma 9, we deduce that,|| < 7=.
Let M; be the matrix in which each row is a sample from
the distributionD;. Then the variance of distributia;
along the directiorv is the square of the norm of the
vector(M; — E[M;])v. This norm can be written as:

[1(M; — BIM;]yor||?
1(M; — BIM))ug|* + [|(M; — B[M;])a|]®
52| Jukl[* + o®[wx][* + doo o]l u]]
2(502 + ||zk||?0?) < 1102
The third line follows from Lemma 7, and the last step
follows from the bound otz || from Lemma 9.
Now, letv = >, oyv; + ayy; be any unit vector in

the spac&C. Then,>", af + ai = 1, and for anyi, the
variance ofD; alonguv is

> afll(M—EM)u|*+af||(Mi~E[M)y < 1107
l

IN N

The lemma followsd

The above Lemmas are now combined to prove The-
orem 1.
Proof:(Of Theorem 1)

Suppos& = K, UKg, whereKp, = {vq, ...
the topm left singular vectors o TG and
Kr = {y1,...,ym} are the corresponding right singu-
lar vectors. We abuse notation and wseo denote the
vectorvy, concatenated with a vector consistingrof2
zeros, and usg; to denote the vector consisting of2
zeros concatenated with,. Moreover, we uséC, K,
and Kg interchangeably to denote sets of vectors and
the subspace spanned by those sets of vectors.

”Um}y



We show that with probability at least- % over the
splitting step, there exists no vector Cx_g such that
(1) v is orthogonal to the space spanned by the vedfors
and (2) there exists some pair of centeasnd; such that
dy (i p1j) > 49Tc2 log A. For contradiction, suppose
there exists such a vector

Then, if vz andvg denote the normalized projec-
tions ofv onto F-space an@-space respectively, from
Lemma 3,vEETGug > 7 with probability at least
1—% over the splitting step. From Lemma 8, if the num-

ber of sample§S| is greater thaf (w for

binary product distributions, and |5| is greater than
Q (Inax (a’ n? log log A 020' nlognlogA)) for

T2 ’ T

axis-aligned Gaussiansy FTGuvg > 7 with at least
constant probability. Since is orthogonal to the space
spanned byC, v is orthogonal toK; andwvg is or-
thogonal toKgr. As A,,41 is the maximum value of
2T FTGy over all vectorse orthogonal taCz, andy or-
thogonal tokCr, A\11 > Z, which is a contradiction.
Moreover, from Lemma 1071 < g, and hence
m<T.

Let us construct an orthonormal series of vectors
V1, ..., Um, .. Which arealmostin C~ as follows.
v1, ..., Uy are the vectors output by Algorithma®Rr-
SuBSPACE We inductively definey; as follows. Sup-
pose for eaclk, vy, = ur + zx, whereu,, € Cr and
x € Px(Cr). Letu; be a unit vector irCx which is
perpendicular tauy, ..., u;—1. Then,u; = u;. By defi-

nition, this vector is orthogonal to,, ..., u;_;. In ad-
dition, for anyk # [, <’Ul, Uk> = (uy, uk) + (ul, .’L‘k> =0,
anduy; |s also orthogonal tey, ..., v;_1. Moreover, if

€< u1, - . ., Uy, are linearly independent, and we
can aﬁways findlim(C#) such vectors. Similarly, we
construct a set of vectors, v», . . .. Let us call the com-
bined set of vector§*.

We now show that if there are sufficient samples,
de-(pi, ) < ¢;. Note that for any unit vector*
in C*, and any unitt € Crug, (v,z) < me. Also,
note that for anyu;, anduy, k # I, |{(ug, w;)| < €, and
llug||*> > 1 — €% Letv = >, ajuy, be any unit vector
in Crug. Then,1 = ||U||2 = Zk,k’ akak/<uk7uk/> >
2o g llue]|? = Q(T%€).
The projection oy on C* can be written as:

Z(v,vk>2 Z(v,uk>2

k k

ZZ af (ug, ur)® + 22041011/ (g, uy) (ug, uyr)

k1 1Ll

3 affuil|t - T3 > 1 - Q(T%)
k

Y

The last step follows because for eagH|u|[*? > 1 —

2. If the number of samples| is greater than 11

Q( m3n? log n(log A+log 100T")
T2T1%
butions), and

2
max (d4m n? logTzn lfg (1OOTA) O ax

(for axis-aligned Gaussmns) theng 1/1OOT There-
fore,

) (for Binary Product Distri-

a?m nlog log(l()OTA))

dC (Mzaﬂ]) d(MZaMJ)

For anyi andj,

d(pi, pj) = dic(pis prg) + dewie (i prg) + de (pa, 1)
Since vectors,,,+1,... and y;,+1,. .., all belong to
Crug (as well aL*\ K, there exists no € C*\ K with
the Conditions (1) and (2) in the previous paragraph,
andde,. ,\ic(pi, ;) < 49T¢c;;log A. That is, the ac-
tual distance betweem; anduj in Crug \ K (as well
asC* \ K) is at most the contribution td(u;, 1+,) from
the top49Tc log A coordinates, and the contribution
to d(wi, 1) from K andC* is at least the contribution
from the rest of the coordinates. Sinég. (1, ;) <
d(pi, pt5), the distance betwegn andy; in K is at

— 49T log AcZ;). The first part of the

— 100

100

least-¥5d (11, 1)
theorem follows.
The second part of the theorem follows directly from

Lemmall[
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5 Appendix

The Appendix is organised as follows. First, in Sec-

tion 5.1, we state some inequalities from probability and
linear algebra that we use in our proofs. In Section 5.2,
we state some of the proofs that did not fit into the main
body of the paper due to space constraints. Finally, in
Section 5.3, we show how distance concentration lem-
mas from [AMO5] can be combined with Theorem 1 to

prove Theorem 2.

5.1 Somelnequalities

We use the following Lemma, which follows easily from
Markov’s Inequality.

Lemma 12 Let X be a random variable such that<

2I' —2E[X]
T—E[X] '

Proof: (Of Lemma 12) LetZ =T — X. Then,Z > 0,
E[Z] =T - E[X], and whenX < E[X]/2,Z >T —
E[X]/2. We can apply Markov’s Inequality o to
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Figure 1: (a) Spherical Gaussians: Direction of maximuneware is the direction separating the centers (b) Arbitrary
Gaussians: Direction of maximum variance is a noise diacti

conclude that for any, 5.2 Proofs
1 Proof: (Of Lemma 3) From Lemma 4, for a fixed vector
Pr[Z > aE[Z]] < =~ v € Crug,

v}FTévg > 27
, with probability1 — A=27, Letu be a vector, and

ur andug be its normalized projection af-space and
-space respectively, such thatr — vr|| < 3 and

I'—-E[X]/2
SRR,
In Section 4.2, we use the Method of Bounded Dif-
ferences [PD05], and the Gaussian Concentration of MeaZ p
sure Theorem, stated below. llug —vgl| < 5. Then,

’LLTFTA’LL = UTFTA’U UT—UT FTA’LL
Theorem 13 (Method of Bounded Differences) Let I Gug iTG g+ (ur = vp)F" Gug
X1,..., X, be arbitrary independent random variables + vpF" G(ug —vg)
and letf be any function o1, ..., X,,. For eachi, if > 0EFTGug — 60max
for anya anda/,

The lemma follows by plugging in =

, 8SOmax IS the maximum value of T E TGy, over all
(X1, Xi=a,..., Xn) unit vectorse andy. SincevEFTGug > 27, if § <
—f(Xy,... . Xi=d,.... X)) < = wFFTGug > 7. To show that the lemma holds
forall v € Crug, it is therefore sufficient to show that
the statement holds for all unit vectors i g—)-cover
Pr(|f(X1,...,Xn) — E[f(X1,...,X)]| > ] of Crug. SinceCryg has dimension at most’, there
are at mos{———)?* vectors in such a cover. A§ >

andy =, ~2, then,

< 270/ T -
= Zmexthe lemma follows from Lemma 4 and a union
bound over the vectors in(@@"— )-cover ofCrg. O
Theorem 14 [Led00]LetF'(X;,..., X,) beanyfunc- N f I “I‘_*"‘ 4 Th f re-
tion of independent Gaussian variabl&s, . . . , X,,, such ow we lormafly prove Lemma 4. € proot re

that V F* < ~, for any value ofY, X Then quires Lemmas 17, 18 and 16, which we prove first.

22+ Lemma 16 If Ais a set of coordinates whose cardinal-
Pr[|F(t) — E[F(t)]| > t] < 2e ity | A| is greater tharT", such that for eaclf € A, the
norms||z;|| are equal and_ . , [|2¢|]* = D, then

, D T
Finally, we use the following theorem, which relates Z (2f,29)" 2 ﬁ( - W)
the Frobenius norm and the top singular value of any f.9€A, f#g
matrix.

Proof:(Of Lemma 16) The proof uses the following strat-

_ egy. First, we group the coordinates into sB{s Bo, . . .

Theorem 15 ([GL96]) For a matrix M of rankr, the  sych that for eacty, the set{z; | f € B} approxi-
top singular value is greater than or equalltt! |r / /7. 13 Mately form a basis of thi& dimensional space spanned



by the set of vector§z; | f € A}. Next, for each basis
By, we estimate the value oF ;.5 > op, (27, 29)°

and finally, we prove the Lemma, by using the estimates,

and the fact that) ", . f;,ég<zf,zg>2 can be written
aSY_p, 2 ren, Dogen, (211 79)°- Consider the follow-

~ Foreach groupdy, 3= c 7na, Zgegna, (215 %)

is a random variable whose value depends on the out-
come of the splitting in Step 1 of the algorithm. The
maximum value of this random variableNs, . 4. ;.. (27, 24)°,

and the expected vaIue%stygeAk_’f#g(zf, z4)2. There-

ing procedure which returns a series of sets of vectors, fore, by Lemma 12, with probabilit%,

Bi,Bs,. ...

S— A k0
while S # ()
k<« k+1; B, «— 0;
foreachz € S
if ||z]|/2 > projection ofz onto By, then
removez from S, addz to B,

We observe that by construction, for edgh

2. D 2|2
Z Z (2f,29)° 2 W Z %

fEBy gE€By/, k' >k gEB,, k' >k

This inequality follows since the basis is formed of vec-
tors of length D|/| A| and the fact that the projection of
eachz, on By, preserves at least half of its norm.

Since the vectors are il dimensions there are at
least|A|/T setsBy. Notice that for allf € A, we have
l|2¢]|> = D/|A|, as all the||z¢|| are equal. Hence, the
average contribution to the sum from edghis at least

AT ‘2‘22, from which the Lemma follows]

Lemmal7 Let A be a set of coordinates with cardi-
nality more than144T2log A such that for eaclf <
A, ||z¢]] is equal andy_ ;4 ||2¢]|* = D. Then, (1)

2 .
2 fgeA, f9\Ff 29)% 2 sgare oz and (2) with proba-
bility 1 — A—2T over the splitting of coordinates in Step
25 D?

1, Z.fefﬂA7gegmA<Zf'vzg> 115272 log A

Proof: (Of Lemma 17) We can partitioA into 727 log A
groupsAi, Ao, ... each with at leas2T' coordinates,
such that for each groupy, 3 ;¢ 4, 112711 > w7
From Lemma 16, for each such grodp,

D 1
2 —_— - —_——
2. ) 2 (72T10gA) AT
£ €Ak, fA S
D2
2073673 log? A
Summing over all the groups,
Yoo a2 L Y ez’
L freA f£f k f.feAn, f#S
D2
—  288T2log A

from which the first part of the lemma follows. 14

1
SO Gt 2 LY
fEFNAL geGNA f,9€AL, f#g
D2
—82944T3log A

Moreover, as each grougdy is disjoint, the splitting
process in each group is independent. Since there are
72T log A groups, using the Chernoff bounds, we can
conclude that with probability — A—27, for at Ieast%
fraction of the groupsly,,

Z Z (zf,24)% > Dig
7790 82944T3 1og A

fEFNAL geGNAy
, from which the second part of the lemma follows.

Lemma 18 Let A be a set of coordinates such that for
eachf € A, [|z|| is equal andy_ , , [|z¢][> = D. If
48T 1og A + T < |A| < 144T%log A, then (1)

D2
Z 2 1152T%log A
f,.9€A.f#g
and (2) with probabilityl — A=27 over the splitting in

Step 1,
>

feEFNA,gegnA

<vazg>2

(2,2 >2 > _____£23_____
P29l = 4608T*log A

Proof:(Of Lemma 18) The proof strategy here is to group
the coordinates ial into tuplesA;, = { fi, f;.} such that
for all but T such tuples,(sz,zfQ2 is high. For each
Ay, we estimate the quantitysz,zfé)? The proof of
the first part of the lemma follows by using the estimates
and the fact that

>

FIeA f#]!

Consider the following procedure, which returns a series
of sets of vectorsl;, Ao, .. ..

S— A k<0
while S #
k—k+1; Ay — 0;
if there existsy, , 2y, € S with (zp,, 25/) >

D
5777 then

A = {fr, i}

removezs, , z¢ fromsS
Jreo> 2 fy

(2, 2)2 2> (20 257)°
k




We observe that in some iteratiénif Step 4 of the
procedure succeeds, thefy, , 2 )* > %. We
now show that the step will succeed if there are more
thanT vectors inS.

Suppose for contradiction that Step 4 of the proce-
dure fails when S| > T'. Then, we can build a set of
vectorsB, which approximately forms a basis Sfas
follows.

B~ 10
foreachz € S
if projection ofz onto B is less tha”z|DT| then
removez from S, addz to B

Since the vectors ii$' have dimension at mo§t, if
|S| > T, there is at least one vecter¢ B. By con-
struction, the projection of any suelon B preserves at

least half its norm. Therefore there exists some vector

zy € Bsuchthatz, zy) > 2T|A| , which is a contradic-
tion to the failure of Step 4 of our procedure. Thus,

2 D? Al =T
;<ka’zf,;> = 4T2|A|2 : 2
D? D?

>
8T2|A| — 1152T41og A

from which the first part of the lemma follows.
With probability% over the splitting in Step 1 of the
algorithm, for any tupledy, fx and fk will belong to

different sets, and thus contrib oA to

> rernagecnalzss zg)°- Since the groups are disjoint,
the splitting process in each group is independent. As

there are‘L groups, andA| > 48Tc2 log A, we can
use the Chernoff Bounds to conclude that with probabil-
ity at leastl — A—27', at leastl /4 fraction of the tuples
contribute to the sum, from which the second part of the
lemma follows.[]

5.2.1 Working with Real Samples

Proof: (Of Lemma 8) Letu, y andu/, i be two pairs of
unit vectors such thatu — u'[| < 5z>—, and

||y_y/|| < ﬁ Then’ |f5 < Urréax’
|uTFTGy—u/TFTGy/|

I)TFTGy + U/TFTG(y _ y,)

||U - u/”a'max + ||y — y/||0'max < 5/2

< (u—wu
<

The second line follows ay,.x = max, , uT FTGy.
It is therefore sufficient to show that the event
| > L uF (FTG — E[FTG))yx| < § holds for all sets of

m unit vectorsU andY on
show this by showing that |fS| is large enough the

event| >, ul (FTG —E[FTG])yx| < 6/2 occurs with
high probability for alll andY whereU andY contain
vectors from g g;>—)-cover ofR".

Let us consider a fixed set of vectdisandY . We
can write

ZugFTGyk 5] ZZ ug, Pr(z
k zeS
We now apply concentration inequalities to bound
the deviation ofy", uf FTGy,, from its mean. For Bi-
nary Product Distributions, we apply the Method of Bounded
Differences (Theorem 13 in the Appendix) to evaluate
this expression. Let, ; be the maximum change in

> w uf FTGys, when we change coordinafeof sam-

ple pointx Then,
’Yz,j |S|2 Zuk ykvpg S S— Zuk
) S,V

The second step follows becaugg,, Pg(x
for all z, asy;, is a unit vector. Andy = > f% 5 <
ot 2o (X ul)? 18] < ”{;l This follows because
eachuy, is a unit vector, and hencEk:1 u, has norm
at mostm. Now we can apply the Method of Bounded
Differences to conclude that

ykv Pg( ))

m2n

IG5

|Zuk (FTG — E[FTG))y| > t —t*/2

Plugglng int = /8mnlog(Z2=)log n, we get

Pr(| Y uil (FTG — E[FTG))yl
k

\/8m3n2 log( =) log n]
5]

()

The expression on the left hand side is at ndosthen
m3n?1og(omax/0) logn

515 0 (2

For axis-aligned Gaussians, we use a similar proof
involving the Gaussian Concentration of Measure The-
orem (Theorem 14 in the Appendix).

If a samplex is generated by distributiob;,

(Y, Pg(x)) = (yr, Pg(pi)) + (yr, Pg(z — i)
Sinceyy is a unit vector, and the maximum directional
variance of anyD; is at mosto2, (yx, Pg(z — ;) is
distributed as a Gaussian with megaand standard de-
viation at most. Therefore for each € S,

Prf|(yr, Po(z — )| > o\/Imn1og(oman/5) log ]

( 5 ) 2mn logn

80-1118.)(

)

8Umax

<



and the probability that this happens for ale S is at

2mn
most < - ngm , provideds < ouax and|S| is
polynomial inn. Thus, for anyx € S generated from
distributionD;, and anyk, (yx, Pg(z))? < 2{yk, pi)?+
802mmn 1og(omax/J) log n.

Therefore, for a specific € S, asP z(x) andPg ()
are independently distributed, except with very low prob-
ability, the distribution of(uy, Px(z)){yx, Pg(z)) is
dominated by the distribution of
V2(Yk, 115)? + 802mn1og(0max/8) log n-(ug, P ().
Note that(uy, P+ (z)) is distributed as a Gaussian with
mean(uy, u;) and variance at most’.

Let~, be the derivative of

ﬁ >ves on V2(Uk, 11i)? + 802mnlog(omax/0) logn
(u, Px(z)) with respect to the value of sampten S.
Then, the gradient of this expression is at most:

Yo=Y v
T

1 2, 2 2

< WZ2U m= ((Yk, pi)
€S
40 mnlog(omax/5) logn)

1
< KR - (80*m3n1og(80max/0) logn
+ mPoop, IS

2 2
< nTST - (80*mn log(80max/d) logn + 202..)

Applying the Gaussian Concentration of Measure The-
orem,

Pr (| uf (FTG — E[FTGl)yl
k

m2o2
> 1T (20Pmn 0801 /0) logn + 73]
< €7t2/2

Plugging int = /2mnlog(omax/d) logn, we see that
the quantity on the left-hand side is at mésthen

4. 4.2 2 2
S| > Q(max(” mn”log” n 108" (max/9)

52 ’
m3nlognlog(omax/d)
52

In both cases, the lemma now follows by applying a
Union Bound ovef 8Zmax )2mn choices of andY. O

Proof:(OfLemma9) Le{©1,...,0m}and{g1, ..., ¥m}

be the topn left and right singular vectors, and let

{\1, ..., Am} be the topm singular values oE[FTG].

Let {y1,...,ym} be the top right singular vectors 016

2.2
0 Omax

FTG. If, for any k and anyx in P£(Cx), (v, x) < ¢,

then, for any set of orthonormal vectdrgi, . .., ym },
R E[FTGlye = Y ofE[FTGly
k=1 k#l
+ (v~ (v, 2)2) "E[FT Gy
<

A= (1= V1=,
k=1

If eis smallerthan /4, the left-hand side can be bounded
as

m m 2

€

S oFBETC <3 N -

k=1 k=1

Next we apply Lemma 8, which states that if the number
of samplegS| is large enough,

Am

1> i (FTG — E[FTG))yi| <6
k=1
Therefore, if§ < €2),,/16,

- " R
S vE FTGys <> A — e
k=1 k=1

On the other hand, using Lemma 8,

m m 2
T T /v €
E F > E Ao — = Am
Vg Gyk = /\k 16)\
k=1 k=1
This contradicts the fact thdvy, . . ., v,, } and

{y1,...,ym} are the top singular vectors ' G, and
hence the lemma follows]

Proof: (Of Lemma 10) For an¥;, let \;, denote thé:-th
top singular value of the matrik TG and let\;, denote
thek-th top singular value of the matriR[F'T G]. From
Lemma 6, E[FTG] = FTG has rank at most. Thus

Ar41 = 0. R X
Let{vy,..., v} (resp{01,...,0m)and{y1, ..., ym}
(resp.{91, .., Um}) denote the topn left and right sin-

gular vectors of TG (resp.E[FTG]). From Lemma 8,
if | S| is greater thafi (W) (for binary prod-
uct distributions) andlS| is greater than

0 (max (a4T4nlegg2 logA O‘ﬁlaxng?’:zlognlogA)) (for axis-
aligned Gaussians), then,
T
MA A d > S 0TFTG > M+ A — =
1+ +T_;Uk Yk = A1+ T 16
Moreover, from Lemma 8,
T
;\1 + ...+ S\T-ﬁ—l > ZUEE[FTG]yk
k=1
S VNI T
= 1T ... T+~ 756



Combining the above two equations, and the fact that
Ar41 =0, Ar41 <275 < 5.0

5.3 Distance Concentration

In this section, we show how to prove Theorem 2 by
combining Theorem 1 and distance-concentration meth-
ods. We begin with the following distance-concentration
lemmas of [AMO5] and [McSO01], which we prove for
the sake of completeness.

Lemma 19 Let K be ad-dimensional subspace 8",
andz be a point drawn from axis-aligned Gaussian. Let
o% be the maximum variance efalong any direction

in the subspac&. Then,

Pr[[[Px(z — E[z])|| > oxcv/2d]log(d/6)] < 6

Proof: Let vq,...,v4 be an orthonormal basis ¢f.

From the separation conditions in Theorem 2, this means

that for alli andj, we have thadiic (y4;, 11;) > 97 (log A+

log n) for binary product distributions, antk (1, 1) >

902T (log A + log n) for axis-aligned Gaussians.
Applying Lemma 20, for binary product distribu-

tions, any two samples from a fixed distributidn in

the mixture are at a distance of at magt7'(log T + log n)

in IC, with probability1 — % On the other hand, two

points from different distributions are at distance

5v/T (log T + log n). Therefore, with probability — L,

the distance concentration algorithm succeeds.
Similarly, for axis-aligned Gaussians, from Lemma 19,

any two samples from a fixed distributi@p in the mix-

ture are at a distance of at mast>/7'(log T+ log n)

in IC, with probability1 — % On the other hand, two

points from different distributions are at distance

502,/T(logT + logn). Distance concentration there-

fore works, and the first part of the theorem follows.
If every vector inC has spread at leaddT log A,

Since the projection of a Gaussian is a Gaussian, the pro-from Theorem 1, the maximum variance of aByin K

jection of the distribution of: along anyv;, is a Gaus-
sian with variance at most?.. By the properties of the
normal distribution,

0

Pr[|{x — E[z], vg)| > oxv/2log(d/d)] < p
Since||Pic(x — Elz))||> = Y u(z — Elz,v)?, the
lemma follows by a Union Bound ovenr,...,vg. O

Lemma 20 Let K be ad-dimensional subspace &"
andzx be a point drawn from a binary product distribu-

tion. ThenPr[||Px(x — Elx])|| > v/2dlog(d/d)] < 6.

Proof: Letwvy, ..., vy be an orthonormal basis &f. For

a fixed v, we bound(vy, x — E[z]), wherex is gen-
erated by a binary product distribution by applying the
Method of Bounded Differences. L&} be the change
in (vi,x — E[z]), when the value of coordinatgin x
changes. Theny; = vf, andy = 3,72 = [Jux|[?
1. From the Method of Bounded Differences,

1)

Pr{[(z — Efz], ve)| > v/2log(d/d)] < -
Since ||Px(x — E[z])||? = >oplve, @ — E[z])2, the
lemma follows by a union bound ovet,...,vs. O

Now we are ready to prove Theorem 2.

Proof: (Of Theorem 2) From Theorem 1, if for alland
J» d(pi, py) > 49T¢Z; log A, then, for alli and j, with
constant probability,

9 _
> = (d(pi, 1) — 49T¢;; log A)

dic (i, pj) > 100

17

is at mostl 102, The Theorem now follows by the same
arguments as abovel



