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Abstract

In this paper we describe a new method for learning hybrid Bayesian network models from
data. The method utilizes a kernel density estimator, which is in turn “translated” into a
mixture of truncated basis functions-representation using a convex optimization technique.
We argue that these estimators approximate the maximum likelihood estimators, and
compare our approach to previous attempts at learning hybrid Bayesian networks from
data. We conclude that while the present method produces estimators that are slightly
poorer than the state of the art (in terms of log likelihood), it is significantly faster.

1 Introduction

In domains involving both discrete and continu-
ous variables, Bayesian networks with mixtures
of truncated exponentials (MTEs) (Moral et al.,
2001) and mixtures of truncated polynomials
(MOPs) (Shenoy and West, 2011) have received
increasing interest over the last few years. A
recent addition to the fold is the mixtures of

truncated basis functions (MoTBFs) framework
(Langseth et al., 2012), which offers a unified
theory for MTEs and MoPs. The MoTBFs
framework allows discrete and continuous vari-
ables to co-exist in a Bayesian network without
any structural constraints, and since the family
of MoTBFs is closed under addition, multipli-
cation, and integration, inference in an MoTBF
network can be performed efficiently using the
Shafer-Shenoy architecture (Shafer and Shenoy,
1990).

The problem of learning MoTBF models from
data has been only scarcely considered, with the
main body of work relating to MTEs (Romero
et al., 2006; Langseth et al., 2009, 2010); we are
not aware of published contributions focusing

on the MoP framework. Romero et al. (2006)
used a kernel estimator to represent the data
distribution, and thereafter fitted an MTE to
the kernel using regression. Langseth et al.
(2009, 2010) attempted to find maximum like-
lihood parameters directly but since the maxi-
mum likelihood equations have no analytic so-
lution in general, they instead proposed an it-
erative scheme utilizing Newton’s method and
Lagrange multipliers. This resulted in better es-
timators (in terms of likelihood on the training-
set as well as on a hold-out test-set), but at the
cost of a steep increase in the computational
complexity.

We present a new parameter estimation
method, which aims at approximating the max-
imum likelihood parameters of an MoTBF net-
work with known structure. We compare our
results to those of Langseth et al. (2009, 2010),
and find that although the new method finds
parameters that are slightly poorer (in terms of
likelihood), it is more than an order of magni-
tude faster than previous techniques.

The rest of the paper is organized as follows:



We start with an introduction to the MoTBF
framework in Section 2. The simplified prob-
lem of learning univariate MoTBFs from data
is considered in Section 3, and we discuss learn-
ing conditional distributions in Section 4. We
report on some experiments in Section 5, and
finally we conclude in Section 6.

2 The MoTBF model

The MoTBF framework is based on the abstract
notion of real-valued basis functions ψ(·), which
includes both polynomial and exponential func-
tions as special cases. The first building-block
of the framework is the marginal distribution:
Let X be a continuous variable1 with domain
ΩX ⊆ R and let ψi : R → R, for i = 0, . . . , k,
define a collection of real basis functions. We
say that a function gk : ΩX 7→ R

+
0 is a mixture

of truncated basis functions (MoTBF) potential
of level k wrt. Ψ = {ψ0, ψ1, . . . , ψk} if gk can be
written as

gk(x) =

k
∑

i=0

ai ψi (x) , (1)

where ai are real numbers. The potential is
a density if

∫

ΩX
gk(x) dx = 1. Note that as

opposed to the MTE and MoP definitions, a
marginal MoTBF potential does not employ
interval refinement to improve its expressive
power.

Next, we turn to the MoTBF definition of
conditional distributions, which mirrors the cor-
responding definition for MTEs. Thus, the in-
fluence a set of continuous parent variables Z

has on their child variable X is encoded only
through the partitioning of the domain of Z,
ΩZ, into hyper-cubes, and not directly in the

functional form of g
(ℓ)
k (x|z) inside each hyper-

cube Ωℓ
Z
. More precisely, for a partitioning P =

{Ω1
Z
, . . . ,Ωm

Z
} of ΩZ, the conditional MoTBF is

1In this paper we will often refer to MoTBF potentials
defined only over continuous variables. In such cases,
we understand, unless the contrary is specified, that all
the claims about such potentials are extensible to those
potentials also containing discrete variables in their do-
mains, simply by having the claims hold for each config-
uration of the discrete variables.

defined for z ∈ Ωj
Z
, 1 ≤ j ≤ m, as

g
(j)
k (x|z ∈ Ωj

Z
) =

k
∑

i=0

ai,j ψi(x). (2)

Finally, the joint MoTBF distribution over x =
(x1, . . . , xn) is found using the usual factoriza-
tion, gk(x) =

∏n
i=1 gki(xi|pa (xi)), where the

marginals and conditional distributions are de-
fined using Equations (1) and (2), respectively.

Langseth et al. (2012) describe a “trans-
lation” procedure for efficiently finding an
MoTBF approximation of any density function.
The approximation procedure assumes that the
basis functions Ψ are both legal and orthonor-

mal : If Q is the set of all linear combina-
tions of the members of a set of basis functions
Ψ = {ψi(·)}

∞
i=0, then Ψ is said to be a legal set of

basis functions if the following conditions hold:

• ψ0 is constant in its argument.

• If φi ∈ Q and φj ∈ Q, then (φi · φj) ∈ Q.

• For any pair of real numbers s and t, there
exists a function φ ∈ Q such that φ(s) 6=
φ(t).

When considering orthonormal basis func-
tions, we focus on the space L2[a, b] of quadrat-
ically integrable real functions over the finite
interval Ω = [a, b]. For two functions φi and φj
defined on Ω we define the inner product as

〈φi, φj〉 =

∫

Ω
φi(x)φj(x)dx,

and say that two functions are orthonormal if
〈φi, φj〉 = δij , where δij is the Kronecker delta.
A set of non-orthonormal basis functions can
easily be orthonormalized using, for instance,
the Gram-Schmidt procedure.

To set the scene, we let f(x) be the (target)
density, and let gk(x|θ) be an MoTBF of order
k. The key idea of Langseth et al. (2012) is to
use generalized Fourier series to find “optimal”
values for θ = (θ0, . . . , θk), that is, choosing
θ̂i = 〈f, ψi〉. It can easily be shown that while
the generalized Fourier approximation up to de-
gree k is guaranteed to minimize the L2 distance



∫

x

(

f(x)− gk(x|θ̂)
)2
dx, gk is not always pos-

itive, and is thus not a density approximation.
A convex optimization scheme (initialized with
the generalized Fourier series coefficients) was
therefore employed to obtain parameters that
guarantee that gk(x) is a density, and at the
same time minimize an upper bound of the KL
divergence D ( f ‖ gk ) (Langseth et al., 2012). It
was also shown that the approximation can be
made arbitrarily tight, simply by increasing k.

3 Learning univariate distributions

While Langseth et al. (2012) defined their trans-
lation procedure as a means to create MoTBF
approximations of known distributions, this pa-
per will utilize the translation for learning hy-
brid BNs from data. The top-level algorithm
is to (1) approximate the data using a kernel-
density, and (2) approximate the kernel density
with an MoTBF parameterization. We discuss
each step below, and start by looking at uni-
variate (marginal) distributions. We will move
on to conditional distributions in Section 4.

Assume that f(x) is the (unknown) density,
which generated the univariate sample D =
{x1, . . . , xN}. Next, let hD (·|tw) be a kernel
density estimator based on the samples D using
kernel function tw with bandwidth w. We define
the kernel density estimator s.t. w approaches
zero as N → ∞. Now, the soundness of the
approach rests upon the following proposition:

Proposition 1. Let θ̃N be chosen to minimize

D
(

hD (x|tw) ‖ gk(x|θ̃N )
)

. Then θ̃N converges

to the maximum likelihood estimator of θ as

N →∞.

Sketch of proof:

First we note that since

D ( hD (x|tw) ‖ gk(x|θ) ) =
∫

x
hD(x|tw) log

(

hD(x|tw)

gk(x|θ)

)

dx,

minimizing D ( hD (x|tw) ‖ gk(x|θ) ) wrt. θ is
equivalent to maximizing EhD

[log gk(X|θ)] wrt.
θ; the expectation is taken wrt. X, which is as-
sumed to have density function hD (·|tw). Next,

since the bandwidth of hD (·|tw) decreases to 0
as N →∞, we have that

hD (x|tw)→
1

N

N
∑

ℓ=1

δ(x− xℓ)

as N → ∞, where δ(·) is Dirac’s delta. There-
fore, EhD

[log gk(X|θ)] →
∫

x

∑

ℓ
1
N δ(x − xℓ) ·

log gk(x|θ)dx = 1
N

∑

ℓ log gk(xℓ|θ). It follows
that the parameters that minimize the KL
divergence are asymptotically also those that
maximize the likelihood.

The MoTBF density gk(x|θ) uses k + 2 pa-
rameters: The interval of support (2 values) and
the k “free” θ-values (θ0 is fixed to make sure
the function integrates to one; recall that an
MoTBF density is defined without interval re-
finement). Thus, we can choose between models
gℓ and gm using an (approximate) BIC-score:
The (approximate) ML parameters are found,
and each model is penalized according to com-
plexity. In the experiments reported in Sec-
tion 5 we have used a greedy approach starting
from g0 and stopping as soon as an approxima-
tion gk is better (in terms of BIC) than both
gk+1 and gk+2.

2 Our greedy procedure is exem-
plified in Figure 1, where an MoTBF is learned
from 50 samples from a standard Gaussian dis-
tribution (shown as crosses on the x-axis). The
kernel density approximation is drawn with a
dashed line, and the MoTBF approximations
from g0 up to g10 are shown; g5 is the best in
terms of BIC-score, and is drawn with double
line-width.

To fully specify the learning of univariate
MoTBF distributions from data, we need to fur-
ther analyze the use of kernel density approxi-
mations as an intermediate representation be-
tween the data and the learned MoTBF. The
use of kernel estimators for learning MTEs was
first proposed by Romero et al. (2006), and fur-
ther analyzed by Langseth et al. (2010). The
Epanechnikov kernel was found to offer the most
consistent results in the case of MTE learning
(Langseth et al., 2010), but we nevertheless use

2Computationally more demanding procedures can
also be devised, e.g., to compare all subsets of basis func-
tions from a fixed set {ψ0, ψ1, . . . , ψk}.
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Figure 1: BIC-based learning: 50 samples from a standard Gaussian (crosses on the x-axis) are
evaluated. The density estimator (thin dashed line) is the target of the MoTBF translations. g0
up to g10 are shown; g5 is the best in terms of BIC-score, and is drawn with double line-width.

the Gaussian kernel in our work to speed up the
implementation. Previous attempts used Silver-
man’s rule of thumb when selecting the band-
width, tSw ≈ 1.06·σ̂·N−1/5, where σ̂ is the empir-
ical standard deviation of the dataset. By fol-
lowing that procedure, we get the results shown
in Figure 2 (left-hand part of figure): a kernel
density estimator is fitted to 50 samples from a
standard Gaussian distribution, and the kernel
density (drawn with the thin line) is then used
as a starting point for the BIC-based MoTBF
learning. The learned MoTBF representation
is defined using 3 basis functions. Visually, the
MoTBF approximation is quite poor (it does
not resemble the standard Gaussian drawn with
a dashed line), and we argue that the reason for
the poor result is that using tSw is an unfortunate
bandwidth choice, as it in principle leads us to
smoothing the data twice: once when employing
the kernel density, and once when the MoTBF
is fitted to the kernel density. Rather, we want
the kernel density to be a faithful representation
of the data. To illustrate the effect, the right-
hand part of Figure 2 shows the result of us-
ing the scaled bandwidth tSw/25. For this band-
width, the BIC-score is optimized using 5 basis
functions. The results are visually more appeal-
ing, and this is underlined when calculating the

log likelihood of a hold-out set, giving −1541.02
and −1464.86 for the two bandwidths, respec-
tively. We have investigated this further by ex-
amining a range of different datasets, both small
and large, as defined by Langseth et al. (2010).
For each dataset, we have learned an MoTBF
representation using the BIC score for model
selection and with a set of bandwidths defined
by tw ← tSw/α, where α ∈ {1, 2, 5, 10, 25, 50} is
the bandwidth scale. Table 1 lists the results of
the experiment in terms of the number of ba-
sis functions that are selected as well as the ob-
tained log likelihood on a hold-out dataset. The
results appear to be robust across the data sets
as long as the bandwidth is “sufficiently small”.
We have therefore used a fixed value of tSw/10
in the following, unless stated otherwise.

4 Learning conditional distributions

Recall that for a conditional MoTBF f(x|z), the
variables Z influence X only through the par-
titioning of ΩZ, see Equation (2). Learning a
conditional MoTBF therefore amounts to find-
ing

• a partitioning of ΩZ, and

• a (univariate) MoTBF for each hyper-cube
in the partitioning.
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Figure 2: 50 samples from a Gaussian distribution are learned using a kernel density. The kernel
density is shown in a thin line, where the bandwidth is the Silverman’s rule of thumb (left figure)
and one twenty-fifth of Silverman’s rule of thumb (right). The learned MoTBF representations are
defined using 3 and 5 basis functions in the left and right hand plots, respectively, and drawn in
a thick line. Visually, the right-hand figure gives a better fit (compare to the standard Gaussian
density drawn with the dashed line), and this is also the case when evaluated using log likelihood
of a hold-out set (−1541.020 and −1465.585, respectively).

The algorithm for learning conditionals
MoTBFs proceeds by iterating over the two
steps above.

4.1 Finding an MoTBF for a fixed

partitioning

For a given hyper-cube Ωl
Z
∈ P we start by

approximating the conditional empirical distri-
bution with a conditional kernel density esti-
mate. For ease of exposition, consider a vari-
able Y with parent X for which we have a data
sample D = {d1, . . . ,dN}, where di = (xi, yi).
We now define the conditional kernel density es-
timate for Y given X as

hD(y|x, twy , twx) =

∑N
i=1 hyi(y|twy)hxi

(x|twx)
∑N

i=1 hxi
(x|twx)

,

where hxi
(x|twx) is a kernel density estima-

tor based on xi only and with bandwidth twx ;
hyi(y|twy) is defined similarly. Given a condi-
tional kernel density estimator hD(y|x, twy , twx)
and a partitioning P of ΩX , we approxi-
mate hD(y|x, twy , twx) with an MoTBF poten-
tial f(y|x) (see Equation (2)) by following the
procedure of Langseth et al. (2012). Thus, for
all Ωl

X ∈ P , we seek

f(y|x ∈ Ωl
X) ∼ hD(y|x ∈ Ωl

X , twy , twx) =
∫

x
hD(y|x, twy , twx)hD(x|x ∈ Ωl

X , twx)dx,

where the integral can be approximated by
∑n

i=1 hD(y|xi, twy , twx)hD(xi|xi ∈ Ωl
X , twx) us-

ing data samples x1, . . . , xn from D belonging
to Ωl

X . That is, for a fixed partitioning of
ΩX learning a conditional MoTBF potential re-
duces to estimating a univariate MoTBF poten-
tial (as described in Section 3) for each partition
Ωl
X ∈ P .

4.2 Finding a partitioning of the

conditioning variables

In order to find a partitioning of ΩZ we employ a
myopic strategy, where we in each step consider
a bisection of an existing partition along each
Z ∈ Z. That is, for each partition Ωl

Z
∈ P the

algorithm evaluates the potential gain of split-
ting the partition along Z ∈ Z. After scoring
the candidate partitions the algorithm selects
the highest scoring partition ΩBS

Z
and splitting

variable ZBS, and learns MoTBF representa-
tions of the two induced sub-partitions ΩBS,1

Z

and ΩBS,2
Z

. To guide the selection of a candidate
partition Ω′

Z
we consider the potential improve-

ment in BIC score resulting from splitting that
partition:

BIC-Gain(Ω′
Z, Z) = BIC(f ′,D)−BIC(f,D),

where f ′ is the conditional MoTBF poten-
tial defined over the partitioning {P \ Ω′

Z
} ∪



Distribution Scaler α N = 50 N = 1000
#BF Logllik #BF Loglik

MTE 1 4 -2430.82 5 -2349.78
2 6 -2349.76 9 -2315.24
5 6 -2349.76 12 -2308.68
10 6 -2349.76 12 -2308.68
25 6 -2349.76 9 -2315.24
50 6 -2349.76 9 -2315.24

Beta(.5,.5) 1 5 180.06 7 228.97
2 5 180.06 7 228.97
5 3 80.92 7 228.97
10 3 80.92 7 228.97
25 5 180.06 5 206.18
50 1 0.00 3 151.94

χ2
8 1 2 -2887.23 4 -2803.42

2 4 -2801.10 7 -2736.99
5 5 -2747.73 10 -2711.65
10 5 -2747.73 10 -2711.65
25 5 -2747.73 10 -2711.65
50 5 -2747.73 10 -2711.65

Gauss(0,1) 1 3 -1541.02 6 -1428.35
2 5 -1464.86 7 -1420.33
5 5 -1464.86 7 -1420.33
10 5 -1464.86 7 -1420.33
25 5 -1464.86 7 -1420.33
50 3 -1541.02 5 -1434.28

Log-Norm(0,1) 1 8 -1434.51 7 -1393.15
2 8 -1434.51 8 -1390.39
5 8 -1434.51 8 -1378.77
10 5 -1523.29 9 -1378.77
25 5 -1523.29 8 -1390.39
50 5 -1523.29 8 -1390.39

Table 1: The effect of the chosen bandwidth
wrt. log likelihood of a test-set. In general, we
see that results for “large” bandwidths (α = 1)
are poor due to “double smoothing”. Addition-
ally, results using large scalers (α = 50) are also
sometimes unsatisfactory; typically due to nu-
merical instabilities in the solution method due
to the peakedness of the kernel approximation,
which in turn leads to numerically unstable cal-
culations.

{ΩZ,1
Z
,ΩZ,2

Z
}. In principle, when scoring the

model f ′ one would need to find the basis func-
tions (and the corresponding parameters) maxi-
mizing this score. This will, however, be compu-
tationally difficult, and instead we lower-bound
the improvement in BIC score by using the
same set of basis functions as was used for the
parent partition Ω′

Z
. It should be noted that

for the calculation of the improvement in BIC
score, we only need to consider the parts of
the score relating to the partition Ω′

Z
, since the

contributions from the partitions for which f
and f ′ agree cancel out; this property also sup-

Algorithm 1 Learning conditional MoTBFs.

1: P ← {ΩZ}
2: repeat

3: (ΩBS
Z
, ZBS)←

argmaxΩ′

Z
∈P,Z∈ZBIC-Gain(Ω′

Z
, Z)

4: if BIC-Gain(ΩBS
Z
, ZBS) > 0 then

5: Learn MoTBF potentials for
ΩBS,1
Z

and ΩBS,2
Z

.

6: P ←
{

P \ ΩBS
Z

}

∪
{

ΩBS,1
Z

,ΩBS,2
Z

}

.

7: else

8: terminate.
9: end if

10: until false

ports an efficient caching scheme for BIC-Gain.
The overall procedure for learning conditional
MoTBFs is summarized in Algorithm 1.

5 Experiments

In this section we will report on two small exper-
imental studies undertaken to compare the mer-
its of the proposed method to its most immedi-
ate competitors. Firstly, we will compare the
new method of learning marginal MoTBF den-
sities to the results obtained by Romero et al.
(2006) and Langseth et al. (2010), as reported
by Langseth et al. (2010). Datasets, each con-
taining 1000 training examples, generated from
five different distributions were used. Table 2
reports the log likelihood of each dataset using
the obtained estimator of each of the techniques.
We have used the polynomials as basis func-
tions, meaning that ψℓ in Equations (1) and (2)
is the (scaled and stretched) Legendre polyno-
mial of order ℓ. The number of basis functions
was chosen so that the number of free param-
eters corresponds to the number of parameters
used by Langseth et al. (2010); recall that the
MoTBF distribution gk on ΩZ is specified using
k + 2 parameters. Note that where the meth-
ods by Romero et al. (2006) and Langseth et al.
(2010) divide the support of the distribution
into sub-intervals and fit one model per interval,
the current approach does not use interval re-
finement. This may harm the fit of the MoTBF
distributions, when the gold-standard distribu-



Dataset #par Romero et al. (2006) Langseth et al. (2010) Current approach

MTE 12 -2556.68 -2263.13 -2272.71
Beta 12 39.42 160.69 159.74
χ2
8 24 -2766.86 -2685.76 -2710.35

Gaussian 12 -1565.28 -1420.34 -1387.73
Log-Normal 24 -1636.99 -1398.30 -1373.73

Table 2: The obtained log likelihood of the training data when learning from 1000 samples from
different distributions.

tion is not continuous. In general, though, the
results of the new method seem to be better
than those by Romero et al. (2006), and com-
parable to those by Langseth et al. (2010).

The speedup from the direct maximum like-
lihood approach (Langseth et al., 2010) to our
approach is above a factor 10. The main con-
tribution to the speed increase is that while
the previous technique was based on an itera-
tive scheme, where each potential solution (liv-
ing in a very complicated likelihood-landscape)
needed to be evaluated using a computationally
expensive procedure, the current approach casts
the learning problem as a convex optimization
problem, with much cheaper evaluations.

Next, we compare the predictive performance
of the method in Langseth et al. (2010) to ours.
We used the same training data as reported in
Table 2, but this time used the (approximate)
BIC score for model selection. The chosen mod-
els were examined by calculating the log likeli-
hood of a separate dataset of 1000 cases.

Dataset Langseth et al. (2010) Current approach

MTE -2285.25 -2308.68
Beta 249.45 228.97
χ2
8 -2702.67 -2711.65

Gaussian -1430.88 -1420.33
Log-Normal -1358.38 -1378.77

Table 3: Test-set log likelihood of estimators
after learning models using the BIC score.

The results in Table 3 indicate that the method
by Langseth et al. (2010) is slightly better than
our procedure, but the speedup of the current
approach is more than a factor 15. The main
source of the extra speed-increase is that the rel-
atively costly initialization of the MoTBF tech-
nique (finding and representing the orthonormal

basis functions) needs not be performed each
time a new candidate model is evaluated.

Finally, we exemplify the learning of con-
ditional distributions by generating data from
a model where X is standard Gaussian, and
Y |{X = x} ∼ N (x/2, 1). Datasets containing
50, 500, 2500 and 5000 cases were generated,
and given to Algorithm 1. The resulting condi-
tional distributions are shown in Figure 3, with
the parent on the x-axis and the child on the
y-axis. For the smallest dataset of 50 cases, the
BIC-score only gave support for a single split-
point, inserted at the midpoint of the support
for X. As the size of the training-sets increases,
the BIC score selects more and more refined
models, allowing itself to use more parameters
to represent the correlation between X and Y
as it is more and more clearly manifested in the
training data. Notice that the algorithm uses
more effort on refining the model where the bulk
of the data is found (i.e., around x ≈ 0).

6 Conclusions

In this paper we have examined a new technique
for (approximately) learning maximum likeli-
hood parameters of a hybrid Bayesian network
from data. The main idea is to find a kernel den-
sity estimate of the data and utilize an effective
“translation” procedure designed for approxi-
mating any marginal or conditional distribution
function (in this case a kernel density) by an
MoTBF distribution. Although the method was
found to be slightly worse than state-of-the-art
techniques in terms of the log-likelihood score,
the speed-up over previous methods is substan-
tial, and we are currently investigating how the
method scales to larger domains.



Sample size: N = 50 N = 500

N = 2500 N = 5000

Figure 3: Learning a conditional linear Gaussian distribution using BIC score. Note how finer
model granularity is selected as the size of training-set grows, and how the discretization effort is
is kept to the area with the bulk of the data.
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