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Abstract The problem of real-time extraction of meaningful patterns from time-

changing data streams is of increasing importance for the machine learning and data

mining communities. Regression in time-changing data streams is a relatively unex-

plored topic, despite the apparent applications. This paper proposes an efficient and

incremental stream mining algorithm which is able to learn regression and model trees

This paper has its origins in two conference papers that propose and partly evaluate a new algorithm for

learning model trees from stationary data streams (Ikonomovska and Gama 2008) and an improvement of

this algorithm for learning from non-stationary data streams (Ikonomovska et al. 2009). However, this paper

significantly extends and upgrades the work presented there, both on the algorithmic design and experi-

mental evaluation fronts. Concerning the algorithm: We consider a new approach for the split selection

criteria; We include a memory saving method for disabling bad split points; We improve the adaptation

mechanism by using the Q statistic with a fading factor (Gama et al. 2009); We discuss and propose several

memory management methods that enable most effective learning with constrained resources (deactivating

and reactivating non-problematic leaves, removing non-promising alternate trees). We also perform a much

more extensive and in-depth experimental evaluation: We consider a larger collection of real-world data-

sets; we use a more carefully designed experimental methodology (sliding window prequential and holdout

evaluation among others); we provide a much more comprehensive discussion of the experimental results.
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Learning model trees from evolving data streams 129

from possibly unbounded, high-speed and time-changing data streams. The algorithm

is evaluated extensively in a variety of settings involving artificial and real data. To

the best of our knowledge there is no other general purpose algorithm for incremental

learning regression/model trees able to perform explicit change detection and informed

adaptation. The algorithm performs online and in real-time, observes each example

only once at the speed of arrival, and maintains at any-time a ready-to-use model tree.

The tree leaves contain linear models induced online from the examples assigned to

them, a process with low complexity. The algorithm has mechanisms for drift detection

and model adaptation, which enable it to maintain accurate and updated regression

models at any time. The drift detection mechanism exploits the structure of the tree

in the process of local change detection. As a response to local drift, the algorithm

is able to update the tree structure only locally. This approach improves the any-time

performance and greatly reduces the costs of adaptation.

Keywords Non-stationary data streams · Stream data mining · Regression trees ·

Model trees · Incremental algorithms · On-line learning · Concept drift ·

On-line change detection

1 Introduction

In the last decade, data streams (Aggarwal 2006) have been receiving growing attention

in many research communities, due to the wide recognition of applications emerg-

ing in many areas of everyday activities. Examples include financial applications

(stock exchange transactions), telecommunication data management (call records),

web applications (customers click stream data), surveillance (audio/video data), bank-

system management (credit card/ATM transactions, etc.), monitoring patient health,

and many others. Such data are typically represented as evolving time series of data

items, arriving continuously at high speeds, and having dynamically changing distri-

butions. Modeling and predicting the temporal behavior of streaming data can provide

valuable information towards the success of a time-critical operation.

The task of regression analysis is one of the most commonly addressed topics in

the areas of machine learning and statistics. Regression and model trees are often used

for this task due to their interpretability and good predictive performance. However,

regression on time-changing data streams is a relatively unexplored and typically non-

trivial problem. Fast and continuous data feeds as well as the time-changing distribu-

tions make traditional regression tree learning algorithms unsuitable for data streams.

This paper proposes an efficient and incremental algorithm for learning regression and

model trees from possibly unbounded, high-speed, and time-changing data streams.

Our contributions are fourfold: an efficient splitting-attribute selection in the incre-

mental growing process; an effective approach for computing the linear models in the

leaves; an efficient method for handling numerical attributes; and change detection

and adaptation mechanisms embedded in the learning algorithm.

The remainder of this paper is organized as follows. Section 2 reviews related work,

starting with batch and incremental algorithms for inducing model trees, continuing

with algorithms for learning classification trees from data streams and concluding with
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techniques for change detection. In Sect. 3, we present our algorithm for incremental

learning of regression and model trees from time-changing data streams and discuss

the design choices. The evaluation methodology is described in Sect. 4, while the

results of the evaluation are presented in Sect. 5. The evaluation includes experiments

on both artificial and real-world datasets. Conclusions are given in Sect. 6, where we

also discuss possible directions for immediate further work.

2 Related work

As related work, we first consider batch and incremental learning of model trees. We

then turn our attention to related methods for learning from stationary data streams:

learning decision/classification trees and linear regression/neural networks. Finally, we

take a look at methods for on-line change detection and management of concept drift.

2.1 Batch learning of model trees

Regression and model trees are known to provide efficient solutions to complex non-

linear regression problems due to the divide-and-conquer approach applied on the

instance-space. Their main strength in solving a complex problem is by recursively

fitting different models in each subspace of the instance-space. Regression trees use the

mean for the target variable as the prediction for each sub-space. Model trees improve

upon the accuracy of regression trees by using more complex models in the leaf nodes.

The splitting of the instance-space is performed recursively by choosing a split

that maximizes some error reduction measure, with respect to the examples that are

assigned to the current region (node). In one category are falling algorithms like M5

(Quinlan 1992), CART (Breiman et al. 1998), HTL (Torgo 1997). These use variants

of the variance reduction measure used in CART, like standard deviation reduction or

the fifth root of the variance in M5′ the WEKA (WEKA 3 2005) implementation of

the algorithm M5. Another category of algorithms are those aiming to find better glob-

ally optimal partitions by using more complex error reduction methods, on the cost

of increased computational complexity. Here fall RETIS (Karalic 1992), SUPPORT

(Chaudhuri et al. 1994), SECRET (Dobra and Gherke 2002), GUIDE (Loh 2002),

SMOTI (Malerba et al. 2002) and LLRT (Vogel et al. 2007).

All existing batch approaches to building regression/model trees assume that the

training set is finite and stationary. For this reason, they require all the data for train-

ing to be available on the disk or in main memory before the learning process begin.

When given very large training sets, batch algorithms have shown to be prohibitively

expensive both in memory and time. In this spirit, several efforts have been made in

speeding up learning on large datasets. Notable examples are SECRET (Dobra and

Gherke 2002) and the LLRT algorithm (Vogel et al. 2007). Their main weakness is

that as rest of the batch algorithms, they require storing of all the examples in main

memory. This becomes a major problem when our datasets are larger than the main

memory of the system. In such situations, users are forced to do sub-sampling or other

data reduction methods. This is a nontrivial task, because of the danger of underfitting.

Another characteristic of large data is that, it is typically collected over a long time
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period or generated rapidly by a continuous, possibly distributed sources of data. In

both of these scenarios, there is a high probability of non-stationary relations, which

in learning problems takes the form of concept drift. We have noted that none of the

existing batch algorithms for learning regression trees is able to deal with concept

drift.

As a conclusion, traditional batch methods are not suitable for dealing with contin-

uous feeds of data, because the required memory and processing power might easily

outgrow the available system resources and the given response period for which the

answers are still relevant. This motivates the need of incremental algorithms with

fast execution and response time that need a sub-linear amount of memory for the

learning task, and are able to detect changes in the concept and adapt their models

correspondingly.

2.2 Incremental learning of model trees

Mining data streams raises many new problems previously not encountered in data

mining. One crucial issue is the real-time response requirement, which severely con-

strains the use of complex data mining algorithms that perform multiple passes over

the data. Although regression and model trees are an interesting and efficient class of

learners, little research has been done in the area of incremental regression or model

tree induction.

To the best of our knowledge, there is only one paper (Potts and Sammut 2005)

addressing the problem of incremental learning of model trees. The authors follow the

method proposed by Siciliano and Mola (1994), applying it in an incremental way.

They have proposed two different splitting rules (RD and RA), both of which con-

sidered in a batch (BatchRD and BatchRA) and in an incremental version (OnlineRD

and OnlineRA).

The splitting decision is formulated as hypothesis testing. For the RD splitting rule,

the null hypothesis is that the examples associated with a node are generated by a

single linear model. If the null hypothesis can be rejected with the desired degree of

confidence, a split should be performed. The statistical test computes the F statistic

which is distributed according to Fisher’s distribution. The split least likely to occur

under the null hypothesis is the best one.

The F statistic is based on the residual sum of squares (RSS), which can be com-

puted incrementally by using the recursive least squares algorithm. However, the RSS

values must be computed from the linear models for every possible splitting point

and for all the attributes. Each iteration of this process has a complexity of O(d2).

In the case of continuous numeric attributes, the task becomes highly computation-

ally expensive. In order to make this approach scalable, only a constant number k of

candidate splits is considered for each attribute. Thus, the training phase complexity

becomes O(Nkd3). This is not the most appropriate complexity for learning from fast

data streams, especially when much better solutions have been proposed in the area

of incremental decision tree learning (Domingos and Hulten 2000).

As an alternative, a more efficient version of the same algorithm is proposed by

using the RA splitting rule. The RA splitting rule comes from SUPPORT (Chaudhuri

123



132 E. Ikonomovska et al.

et al. 1994). It requires the computation of the residuals from a linear model and the

distributions of the regressor values from the two sub-samples associated with the

positive and negative residuals. The null hypothesis is thus the following: if the func-

tion being approximated is almost linear in the region of the node, then the positive

and the negative residuals should be distributed evenly. The statistics used are differ-

ences in means and in variances, which are assumed to be distributed according to

the Student’s t distribution. These statistics cannot be applied to splits on categorical

attributes, which are therefore ignored.

Both algorithms use incremental pruning, which can be considered as a strategy for

adapting to possible concept drift. The pruning takes place if the prediction accuracy

of an internal node is estimated to be not worse than its corresponding sub-tree. The

accuracy is estimated using the observed error on the training set. A requirement is

that a linear model has to be maintained at each internal node.

2.3 Learning decision trees from stationary data streams

The problem of incremental decision tree induction has fortunately received appropri-

ate attention within the data mining community. There is a large literature on incremen-

tal decision tree learning, but our focus of interest is on the line of research initiated by

Musick et al. (1993), which motivates sampling strategies for speeding up the learning

process. They note that only a small sample from the distribution might be enough to

confidently determine the best splitting attribute. Example algorithms from this line of

research are the Sequential ID3 (Gratch 1996), VFDT (Domingos and Hulten 2000),

UFFT (Gama et al. 2003), and the NIP-H and NIP-N algorithms (Jin and Agrawal

2003).

The Sequential ID3 algorithm is a sequential decision tree induction method, which

guarantees similarity of the incrementally learned tree to the batch tree based on a sta-

tistical procedure called the sequential probability ratio test. Its guarantee however,

is much looser than the one of the Hoeffding tree algorithm, the basis of VFDT. The

VFDT system is considered as state-of-the-art and represents one of the best known

algorithms for classifying streams of examples.

VFDT gives a strong guarantee that the produced tree will be asymptotically arbi-

trarily close to the batch tree, given that enough examples are seen (Domingos and

Hulten 2000). This is achieved by using the Hoeffding probability bound (Hoeffding

1963), which bounds the probability of a mistake when choosing the best attribute to

split. This method has proven very successful in deciding when and how (on which

attribute) to expand the tree and has been followed by all the above mentioned algo-

rithms, except the NIP-H and NIP-N algorithms (Jin and Agrawal 2003). In the NIP

algorithms, the authors use the properties of the normal distribution in the estimation

of the evaluation measures (entropy, Gini index) and claim that this enables them to

achieve the same accuracy and guarantees using fewer examples.

The VFDT system has a memory management feature which will deactivate the

least promising leaves when system RAM is nearly all consumed. Reactivation is

possible when the resources are available again. Some memory can be freed also by

deactivating poor attributes early in the process of split evaluation. Our algorithm was
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implemented using an adapted version of the VFML library of Domingos (VFML

2003), and therefore adopts and re-implements many of the proposed memory man-

agement features of VFDT.

2.4 Other regression methods in stream mining

One of the most notable and successful examples of regression on data streams is the

multi-dimensional linear regression analysis of time-series data streams (Chen et al.

2002). It is based on the OLAP technology for streaming data. This system enables an

online computation of linear regression over multiple dimensions and tracking unusual

changes of trends according to users’ interest.

Some attempts have been also made in applying artificial neural networks over

streaming data. In Rajaraman and Tan (2001), the authors address the problems of

topic detection, tracking and trend analysis over streaming data. The incoming stream

of documents is analyzed by using Adaptive Resonance Theory (ART) networks.

2.5 On-line change detection and management of concept drift

The nature of change is diverse. Changes may occur in the context of learning due

to changes in hidden variables or changes in the intrinsic properties of the observed

variables. Often these changes make the model built on old data inconsistent with new

data, and regular updating of the model is necessary.

As Gao et al. (2007) have noted, the joint probability, which represents the data

distribution P(x, y) = P(y|x) · P(x), can evolve over time in three different ways:

(1) changes in P(x) known as virtual concept drift (sampling shift); (2) changes in the

conditional probability P(y|x); and (3) changes in both P(x) and P(y|x). We are in

particular interested in detecting changes in the conditional probability, which in the

literature is usually referred to as concept drift. Further, a change can occur abruptly

or gradually, leading to abrupt or gradual concept drift.

With respect to the region of the instance space affected by a change, concept drift

can be categorized as local or global. In the case of local concept drift, the distribu-

tion changes only over a constrained region of the instance space (set of ranges for

the measured attributes). In the case of global concept drift, the distribution changes

over the whole region of the instance space, that is, for all the possible values of the

target/class and the attributes.

The book of Nikiforov (Basseville and Nikiforov 1993) introduces a number of

off-line and on-line methods for detection of abrupt changes. In the context of regres-

sion, change detection methods are discussed for additive changes in a linear regres-

sion model, as well as additive and non-additive changes in a linear ARMA model

(Basseville and Nikiforov 1993). Relevant work in modeling time-changing continu-

ous signals is presented by Pang and Ting (2005), who address the problem of structural

break detection in forecasting non-stationary time series. However, the authors use an

off-line change detection algorithm, while we are only interested in on-line change

detection methods.

An interesting and relevant review of the types of concept drift and existing

approaches to the problem is also given by Gama and Castillo (2004). Most existing
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work falls in the area of classification. We distinguish two main approaches for man-

aging concept drift: methods for blind adaptation, based on blind data management

(instance weighting and selection) or blind model management (ensembles of mod-

els), and methods based on explicit detection of change and informed adaptation. The

first category of methods is not very relevant to our work and will not be further

discussed. In the second category fall methods that detect the point of change, or

determine a time-window in which change has occurred. The adaptation is initiated

by the event of change detection and is therefore referred to as informed. The change

detection methods may follow two different approaches: monitoring the evolution of

some performance indicators, or monitoring the data distribution over two different

time-windows.

Examples of the first approach are the algorithms in the FLORA family (Widmer

and Kubat 1996), and the work of Klinkenberg and Renz (1998). In the context of

information filtering, the authors in Klinkenberg and Renz (1998) propose to monitor

the values of three performance indicators: accuracy, recall and precision over time.

Klinkenberg and Joachims (2000) present a theoretically well-founded method to rec-

ognize and handle concept changes using the properties of Support Vector Machines.

A representative example of the second approach is the work of Kifer et al. (2004).

The idea here is to examine samples drawn from two probability distributions (from

different time-windows) and decide whether these distributions are statistically differ-

ent. They exploit order statistics of the data, and define generalizations of the Wilcoxon

and Kolmogorov–Smirnoff test in order to define distance between two distributions.

Another representative algorithm is VFDTc (Gama et al. 2003), which also performs

continuous monitoring of the differences in the class-distributions of the examples

from two time-windows. The change detection method in VFDTc evaluates past split-

ting decisions in an incrementally built classification tree and detects splits that have

become invalid due to concept drift. Subramaniam et al. (2006) propose a distributed

streaming algorithm for outlier and change detection that uses kernel methods in the

context of sensor networks. Given a baseline data set and a set of newly observed data,

Song et al. (2007) define a test statistic called the density test based on kernel estima-

tion to decide if the observed data is sampled from the baseline distribution. A more

recent method for detection of changes and correlations in data is given in Sebastiao

et al. (2009): It is based on the Kullback–Leibler Divergence measure, which is a pop-

ular way to measure the distance between two probability distributions. A somewhat

similar approach is used by Dasu et al. (2009) where instead of a summary of the

data, they maintain a sample from the stream inside the windows used to estimate the

distributions.

In this category also falls the CVFDT (Hulten et al. 2001) algorithm, which is very

relevant to our work. The CVFDT algorithm performs regular periodic validation of its

splitting decisions by maintaining the necessary statistics at each node over a window

of examples. For each split found to be invalid, it starts growing a new decision tree

rooted at the corresponding node. The new sub-trees grown in parallel are intended

to replace the old ones, since they are generated using data which corresponds to

the new concepts. To smooth the process of adaptation, CVFDT keeps the old sub-

trees rooted at the influenced node, until one of the newly grown trees becomes more

accurate.
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Input: δ user-defined probability and Nmin

Output: Model tree  

Begin with empty Leaf (Root) 

For each example in the stream 

 Read next example 

 Traverse the example through the tree to a Leaf 

Update change detection tests on the path 

If (Change_is_detected)  

    Adapt the model tree 

Else  

     Update statistics in the Leaf 

    Every Nmin examples seen in the Leaf 

 Find best split per attribute 

 Rank attributes using the same evaluation measure 

 If (Splitting_criterion_is_satisfied) 

    Make a split on the best attribute 

   Make two new branches leading to (empty) Leaves

Fig. 1 The incremental FIMT-DD algorithm

3 The FIMT-DD algorithm

The problem of learning model trees from data streams raises several important issues

typical for the streaming scenario. First, the dataset is no longer finite and available

prior to learning. As a result, it is impossible to store all data in memory and learn

from them as a whole. Second, multiple sequential scans over the training data are

not allowed. An algorithm must therefore collect the relevant information at the speed

it arrives and incrementally decide about splitting decisions. Third, the training data-

set may consist of data from several different distributions. Thus the model needs

continuous monitoring and updating whenever a change is detected. We have devel-

oped an incremental algorithm for learning model trees to address these issues, named

fast incremental model trees with drift detection (FIMT-DD). The pseudo code of the

algorithm is given in Fig. 1.

The algorithm starts with an empty leaf and reads examples in the order of arrival.

Each example is traversed to a leaf where the necessary statistics are updated. Given

the first portion of instances,1 the algorithm finds the best split for each attribute, and

then ranks the attributes according to some evaluation measure. If the splitting crite-

rion is satisfied it makes a spit on the best attribute, creating two new leafs, one for

each branch of the split. Upon arrival of new instances to a recently created split, they

are passed down along the branches corresponding to the outcome of the test in the

split for their values. Change detection tests are updated with every example from the

1 Since a major difference is not expected to be observed after each consecutive example, attributes are

evaluated and compared after consecutive chunks of Nmin data points (e. g., chunks of 200 examples).
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stream. If a change is detected, an adaptation of the tree structure will be performed.

Details of the algorithm are given in the next sections.

3.1 Splitting criterion

In the literature, several authors have studied the problem of efficient feature, attri-

bute or model selection over large databases. The idea was first introduced by Musick

et al. (1993) under the name of decision theoretic sub-sampling, with an immediate

application to speed up the basic decision tree induction algorithm. One of the solu-

tions they propose, which is relevant for this work, is the utilization of the Hoeffding

bound (Hoeffding 1963) in the attribute selection process in order to decide whether

the best attribute can be confidently chosen on a given subsample. Before introducing

the details on how the bound is used in FIMT-DD, we will first discuss the evaluation

measure used in the attribute selection process.

To calculate the merit of all possible splitting tests, the algorithm must maintain

the required statistics in the leaves. Due to the specific memory and time constraints

when processing data streams, we propose the Standard Deviation Reduction (SDR)

measure which can be efficiently computed in an incremental manner. Given a leaf

where a sample of the dataset S of size N has been observed, a hypothetical binary

split h A over attribute A would divide the examples in S in two disjoint subsets SL

and SR , with sizes NL and NR correspondingly (S = SLU SR; N = NL + NR). The

formula for the SDR measure of the split h A is given below:

SDR(h A) = sd(S) −
N L

N
sd(SL) −

N R

N
sd(SR) (1)

sd(S) =

√

√

√

√

1

N

(

N
∑

i=1

(yi − ȳ)2

)

=

√

√

√

√

√

1

N

⎛

⎝

N
∑

i=1

yi2 −
1

N

(

N
∑

i=1

yi

)2
⎞

⎠ (2)

From formula (2), it becomes clear that it suffices to maintain the sums of y val-

ues (values of the predicted attribute) and squared y values, as well as the number of

examples that have passed through that leaf node.

Let h A be the best split (over attribute A) and hB the second best split (attribute B).

Let us further consider the ratio of the SDR values for the best two splits (h A and hB)

as a real-valued random variable r . That is:

r = SDR(hB)/SDR(h A) (3)

The values of the variable r therefore vary between 0 and 1. Let us further observe

the ratios between the best two splits after each consecutive example from the stream.

Each observed value can be considered as real-valued random variable r1, r2, . . . , rN .

Having a predefined range for the values of the random variables, the Hoeffding

probability bound (Hoeffding 1963) can be used to obtain high confidence intervals for

the true average of the sequence of random variables. The probability bound enables

us to state with confidence 1 – δ that the sample average for N random i.i.d. variables
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with values in the range R is within distance ε of the true mean. The value of ε is

computed using the formula:

ε =

√

R2 ln(1/δ)

2N
(4)

The value of ε monotonically decreases with the number of observations N, giving

the flavor of the central limit theorem to the approach. By observing more and more

values, the sampled mean approaches the true mean.

The main benefit of using the Hoeffding bound is that, it gives an exponential decay

of the probability for the sum of random variables to deviate from its expected value,

as moving away from the mean. This is because the bound is based on the theory of

large deviations. Let us denote the upper and lower bounds on the estimated sample

average as:

r̄+ = r̄ + ε and r̄− = r̄ − ε and r̄− ≤ rtrue ≤ r̄+ (5)

If the upper bound of the sample average is below 1 then the true mean rtrue is also

below 1, so at the moment of observation, the best observed attribute over a portion of

the data is really the best over the whole distribution. Therefore with confidence 1 − δ

the split h A is deemed as the best one. In this case, the splitting criterion is satisfied

and the split h A can be applied.

However, very often we have a situation when two or more splits are very similar

or even identical with respect to their SDR values. In such situations, if the confidence

intervals determined by ε have shrunk substantially and still one cannot make a differ-

ence between the best splits, choosing any of them would be equally satisfying. The

stopping rule can be then defined as a threshold τ for ε with which the user is satisfied.

If the error becomes smaller than τ (e.g. τ = 0.05) and the splitting criterion is still not

satisfied, it is a tie situation. Since both of the competing attributes are equally good,

the split is made on the one with a higher SDR value.

3.2 Numerical attributes

The efficiency of the split selection procedure is highly dependent on the number of

possible split points. For numerical attributes with a large number of distinct values,

both memory and computational costs can be very high. The common approach in the

batch setting is to perform a preprocessing phase, typically partitioning the range of

numerical attributes (discretization). This requires an initial pass of the data prior to

learning, as well as sorting operations.

Preprocessing is not an option with streaming data and sorting can be very expen-

sive. The range of possible values for numerical attributes is also unknown and can

vary in case of sampling shift. For classification tasks on data streams, a number

of interesting solutions have been proposed: on-line discretization (with a pre-spec-

ified number of bins) (Domingos and Hulten 2000), Gaussian-based methods for

two-class problems (Gama et al. 2004) and an equi-width adaptation to multi-class
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problems (Pfahringer et al. 2008) and an exhaustive method based on binary search

trees (Gama et al. 2003). They are either sensitive to skewed distributions or are appro-

priate only for classification problems. We have developed a time-efficient method for

handling numerical attributes based on a E-BST structure, which is an adaptation

of the exhaustive method proposed in Gama et al. (2003), tailored for regression

trees.

The basis of our approach is to maintain an extended binary search tree structure

(E-BST) for every numerical attribute in the leaves of the regression tree. The E-BST

holds the necessary statistics and enables us to sort values on the fly. Each node in the

E-BST has a test on a value from the attribute range (in the form: ≤ key). The keys are

the unique values from the domain of the corresponding numerical attribute. Further,

each node of the E-BST structure stores two arrays of three elements. The first array

maintains statistics for the instances reaching the node with attribute values less than

or equal to the key: (1) a counter of the number of instances that have reached the node,

(2) the sum of their target attribute values
∑

y and (3) the sum of the squared target

attribute values
∑

y2. The second array maintains these statistics for the instances

reaching the node with attribute values greater than the key.

The E-BST structures are incrementally updated with every new example that is

reaching the leaf of the regression tree where they are stored. The process starts with

an empty E-BST. Unseen values from the domain of the attribute are inserted in the

structure as in a binary search tree. The main difference is that while traversing the

E-BST, the counts in all the nodes on the way are additionally updated.

As an example, consider the E-BST structure in Fig. 2. It is constructed from the

following sequence of (numerical attribute, target attribute) pairs of values: {(0.95,

0.71), (0.43, 0.56), (7.44, 2.3), (1.03, 0.18), (8.25, 3.45)}. The root holds the key 0.95

since it is the first from the sequence. The first column which corresponds to the case

value ≤ key is initialized with the values (0.71, 0.712, 1). The next value 0.43 is a

new key inserted to the left of the root. The first column of the new node is initialized

with (0.56, 0.562, 1) and the first column of the root is also updated with the values

(0.71 + 0.56, 0.712 + 0.562, 2). This procedure continues for the remaining pairs of

values. The last value inserted in the tree will update the second column of the root

node (0.95) and the node (7.44).

To evaluate the possible splits, the whole tree must be traversed in an in-order fash-

ion (in order to obtain a sorted list of distinct values). The computation of the SDR

measure for each possible splitting point is performed incrementally. This is possible

because all the nodes in the structure have the information about how many examples

have passed that node with attribute values less or equal and greater than the key, as

well as the sums of their target attribute values.

The algorithm for finding the best splitting point is given in Fig. 3. FindBestSplit is

a recursive algorithm which takes as input a pointer to the E-BST. As it moves through

the tree in in-order it maintains the sum of all target attribute values for instances fall-

ing to the left or on the split point (sumLeft), the sum of all target attribute values for

instances falling to the right of the split point (sumRight), the corresponding sums of

squared target attribute values (sumSqLeft and sumSqRight), the number of instances

falling to the right of the split point (rightTotal), and the total number of instances

observed in the E-BST structure (total). From these, the SDR statistics for each split
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0.71+0.56 2.3+0.18+3.45
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8.25 3.45
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54.381.0
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0.95

1.03

0.43 7.44

8.25

Fig. 2 Illustrative example of a E-BST constructed from the given table of pair of values (right)

point is calculated. When returning from the left or the right child node, these counts

must be returned as they were at the parent node.

Insertion of a new value in the E-BST structure has time complexity O(log(n)) on

average and O(n) in the worst case, where n is the number of unique values seen thus

far in the leaf. In the case of a balanced E-BST (AVLTree) the worst insertion time is

O(log(n)). Determining the best split point has a time complexity of O(n).

While the tree provides time efficiency, its memory consumption in some situations

can be a concern. For reducing the memory requirements, several strategies can be

employed. For example, if we do not maintain a balanced tree, the second array for

the instances falling to the right of the split point can be removed, and this information

can be kept only at the root node. Another option is reducing the precision of the

real values stored as unique keys. Rounding to three decimal places can substantially

reduce the amount of memory allocated.

To further reduce the memory requirements, we propose a method for disabling bad

split points that will result in dropping parts of the E-BST structure. The procedure is

initiated whenever the splitting criterion is not satisfied. Let SDR(h1) be the greatest

reduction in the standard deviation measured at the last evaluation and SDR(h2) the

second highest reduction over a different attribute. Let r = SDR(h2)/SDR(h1) be the

corresponding ratio. Every split point with SDR(hi )/SDR(h1) < r −2ε is considered

bad.

The rationale of this method is as follows: If the upper bound of the ratio (for any

split point) is smaller than the lower bound of r , then the true reduction of that split

relative to the best one is definitely smaller. Therefore, every other split point with a

ratio below this value is not a competing point and can be safely removed. The algo-

rithm starts from the leftmost node of the tree structure that has been updated with at

least 5% of the examples observed in the whole structure.

The SDR values of the split points are computed the same way as previously, using

the algorithm FindBestSplit. If the children of a node that has to be removed are good

split points, or only the right child remained, its key will be replaced with the key of the

in-order successor. With this action the arrays of the successor and all the predecessor
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Fig. 3 Pseudo code for the FindBestSplit algorithm for finding the best split point

nodes have to be updated correspondingly. If the node that has to be removed does not

have an in-order successor, then we use the key from the in-order predecessor: In this

case, the updating strategy is more complicated, because all the predecessor nodes on

the path to the node (being removed) have to be updated.

When a node is removed from the tree no information is lost because its sums and

counts are held by upper nodes. This method enables us to save a lot of memory with-

out losing any relevant information. A simpler and less costly procedure is to prune

only the nodes whose children are all bad split points. In this case no updating is nec-

essary. Figure 4 gives an illustrative example of an E-BST with split points disabled

by using the simpler procedure. The threshold is 1.6 and the colored (grey) keys (30,

34, 36, 37, 56, 67, and 69) are removed from the tree, leaving as possible split points

the uncolored keys (25, 29, 38, 40, 45, 48, and 50).
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Fig. 4 Illustrative example of an E-BST and disabled regions with bad split points

Fig. 5 Illustrative example of a

perceptron without activation

function

3.3 Linear models in leaves

In this section, we discuss the process of inducing linear models in the leaves. Exist-

ing batch approaches compute the linear models ether in the pruning phase or in the

growing phase. In the later approach, the algorithms need to perform heavy compu-

tations necessary for maintaining the pre-computed linear models for every possible

split point. While efforts have been made in reducing the computational complexity,

we observe that none of the proposed methods would be applicable when dealing with

high speed data streams, which are described by many numerical attributes having

large domains of unique values. For this reason, we propose the most lightweight

method for inducing linear models, based on the idea of on-line training of percep-

trons. The trained perceptrons will represent the linear models fitted separately in each

sub-space of the instance-space.

An important difference between our proposed method and the batch ones is that

the process of learning linear models in the leaves will not explicitly reduce the size

of the regression tree. The split selection process is invariant to the existence of linear

models in the leaves. However, if the linear model fits well the examples assigned to

the leaf, no further splitting would be necessary and pre-pruning can be applied.

The basic idea is to train perceptrons in the leaves of the tree by updating the weights

after each consecutive example. We use the simplest approach: no attribute selection is

performed. All the numerical attributes are included in the regression equation, which

is represented by a perceptron without an activation function. The weights of the links

are the parameters of the linear equation. This is illustrated in Fig. 5.
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For training the perceptrons, we propose the incremental (stochastic) gradient

descent method, using the same error as in the Perceptron rule, i.e. the mean squared

error. The main difference is that the weights are updated with every example arriving

in the leaf instead of using the whole set. For updating the weights, we use the Delta

rule (also known as Widrow–Hoff rule), for which it is known that the learning process

converges even in the case when the examples do not follow a linear model.

When a new example arrives, the output is computed using the current weights.

Each weight (except w0) is next updated with the product of: the difference between

the output (o) and the real value (y), the normalized value of the corresponding attribute

(xi ) and the learning rate (η).

wi ← wi + η(o − y)xi , i �= 0. (6)

The weights are initially set for the root node to random real valued numbers in the

range [−1, 1]. The learning rate can be kept constant or it can decrease with the number

of examples seen during the process of learning. Details on this process are given in

Appendix B. If we would like the learning rate to be constant, it is usually set to some

small value (e.g., 0.01). The perceptrons can handle only numerical attributes. Cate-

gorical variables can be transformed into a set of binary (numerical) variables before

learning. The values of the attributes should be normalized (standardized) before the

process of learning, so each of them will have the same influence during the process of

training. The normalization can be performed incrementally by maintaining the sums

of target values and their squares from the beginning of learning. We use a variant of

the studentized residual equation, where instead of dividing with one standard devi-

ation (σ ) we divide by three standard deviations. The equation is given in formula

(7).

x ′
i =

xi − x̄

3σ
. (7)

The learning phase of each perceptron is in parallel with the process of growing a

node, and ends with a split or with transforming the growing node into a leaf. If a split

was performed, the linear model in the splitting node is passed down to the child nodes,

avoiding the need of training from scratch: The learning continues in each of the new

growing nodes, independently and according to the examples that will be assigned.

This can be seen as fine tuning of the linear model in the corresponding sub-region of

the instance-space.

3.4 Change detection

When local concept drifts occur, most of the existing methods discard the whole model

simply because its accuracy on the current data drops. Despite the drop in accuracy,

parts of the model can still be good for the regions not affected by the drift. In such

situations, we propose to update only the affected parts of the model. An example of

a system that possesses this capability is the CVFDT system (Hulten et al. 2001). In

CVFDT, splitting decisions are repeatedly re-evaluated over a window of most recent
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examples. This approach has a major drawback: maintaining the necessary counts for

class distributions at each node requires a significant amount of additional memory

and computation (especially when the tree becomes large). We address this problem

by using a lightweight on-line change detection test for continuous signals. Discussed

ideas are applicable for both of the options: with or without linear models in the leaves.

3.4.1 Detection

The change detection mechanism that we propose is on-line and enables local change

detection. The basic idea is to monitor the evolution of the error at every region of

the instance space, and inform about significant changes that have affected the model

tree locally or globally. The detection and adaptation to changes can be done simulta-

neously and independently in different parts of the instance space.

Each node of the tree is associated with a change detection test. The intuition behind

this is simple: each node with the sub-tree below covers a region (a hyper-rectangle)

of the instance space. When concept drift occurs in some part of the instance space,

the model will not correspond to reality and the error over that part of the instance

space will increase.

This suggests a simple method to detect changes: monitor the evolution of the error

at each node. If it starts increasing, this may be a sign of change. To confidently tell

that there is a significant increase in the error due to concept drift, we propose to use

the Page–Hinckley (PH) change detection test (Mouss et al. 2004).

The PH test is a sequential adaptation of the detection of an abrupt change in the

average of a Gaussian signal. This test considers two variables: a cumulative variable

mT , and its minimum value MT after seeing T examples. The first variable, mT , is

defined as the sum of differences between the observed values and their mean accu-

mulated until the current moment, where T is the number of all examples seen so far

and xt is the variable’s value at time t :

mT =

T
∑

t=1

(xt − x̄t − α) (8)

x̄t =
1

t

t
∑

l=1

xl (9)

MT = min{mT , t = 1, . . . , T }. (10)

At every moment, the PH test monitors the difference between the minimum MT and

mT :

P HT = mT − MT . (11)

When this difference is greater than a given threshold (λ), it triggers an alarm about

a change in the distribution (i.e., P HT > λ). The threshold parameter λ depends on

the admissible false alarm rate. Increasing λ entails fewer false alarms, but might miss

some changes.
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The parameter α corresponds to the minimal absolute value of the amplitude of the

jump to be detected. It should be adjusted according to the standard deviation of the

target attribute. Larger deviations will require larger values for α. On the other hand,

large values can produce larger delays in detection.

Our experiments have confirmed that 10% of the standard deviation gives best

results, but the optimal case is achieved in combination with the value of λ. As a

general guideline, when α has a smaller value λ should have a larger value: This is

to reduce the number of false alarms. On the other hand, when α has a larger value λ

should have a smaller value: This is to shorten the delays of change detection.

To standardize these parameters for any problem we normalize the value of the

target and the prediction from the node before computing the absolute error. Addi-

tional experiments have shown that equally good results are achieved for the values

of α = 0.005 and λ= 50 for all the real-world and simulated non-stationary datasets.

If we would like to tolerate larger variations, λ can be set to 100. For more sensible

change detection if the user is willing to accept the risk of increased false alarms, the

value of α can be set to 0.001.

The variable xt is in our case the absolute error at a given node observed at time t

(i.e., |yt − pt | where pt is the prediction at time t). For computing the absolute loss

we have considered two possible alternatives: (1) using the prediction from the node

where the PH test is performed, or (2) using the prediction from the leaf node where

the example will be assigned. As a consequence of this we propose two methods for

change detection:

1. Top-Down (TD) method: If the error is computed using the prediction from the

current node, the computation can be performed while the example is passing the

node on its path to the leaf. Therefore, the loss will be monitored in the direction

from the top towards the “bottom” of the tree.

2. Bottom-Up (BU) method: If the error is computed using the prediction from the

leaf node, the example must first reach the leaf. The computed difference at the

leaf will be then back-propagated to the root node. While back-propagating the

error (re-tracing the path the example took to reach the leaf) the PH tests located

in the internal nodes will monitor the evolution.

The idea for the BU method came from the following observation: When moving

towards the “bottom” of the tree, predictions in the internal nodes become more accu-

rate (as a consequence of splitting). Using more accurate predictions will emphasize

the error in case of drift, shorten the delays and reduce the number of false alarms.

This was investigated and confirmed by the empirical evaluation, which showed that

with the TD method most of the false alarms were triggered at the root node and its

immediate descendants.

3.4.2 Adaptation

There are three possible adaptation strategies for model trees:

1. The first adaptation strategy consists of further splitting and growing new sub-trees

to the old structure. Although the predictions might improve, the structure of the

tree would likely be wrong and misleading.
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2. The second adaptation strategy is to prune the parts of the tree where concept

drift was detected. In case the change was properly detected, the actual model will

be most consistent with the data and the current concept. If a change has been

detected relatively high in the tree, pruning the sub-tree will decrease significantly

the number of leaves which will lead to unavoidable and drastic short-time deg-

radation in accuracy. In these circumstances, an outdated sub-tree may still give

better predictions than a single leaf.

3. The third adaptation strategy is to build an alternate sub-tree for the region where

drift is detected. When a change is detected in a given region, the node will be

marked for re-growing. The re-growing process will initiate a new alternate tree

rooted at the node, which will grow in parallel with the old one. Every example

that will reach a marked node will be used for growing both of the trees. The old

tree will be kept and grown in parallel until the new alternate tree becomes more

accurate. The nodes in the alternate tree will not perform change detection until

the moment the alternate tree replaces the original one.

3.4.3 Discussion on the alternate trees adaptation strategy

The alternate trees will not always replace the original trees. If the detected change is

a false alarm or the localization of the drift is improper, the alternate tree might never

achieve better accuracy. In order to deal with these situations, we propose to monitor

the difference in the accuracy of the alternate tree (AltTree) and the original sub-tree

(OrgTree). This is performed by monitoring the log ratio of the accumulated prequen-

tial mean squared error computed for every example observed at the node where both

of the trees are rooted.

Let S AltT ree
i be the sequence of the prequential accumulated loss (prequential mean

squared error) for the alternate tree and S
OrgT ree
i the corresponding sequence for the

original tree. The prequential accumulated loss is the sum of losses accumulated for

a sequence of examples. For each example, the model first makes a prediction based

on the example’s attribute values, and then the example is used to update the actual

model. The statistic used to compare these errors is the Q statistic and is computed

as Qi (OrgT ree, AltT ree) = log(S
OrgT ree
i /S AltT ree

i ). The sign of Q indicates the

relative performance of both models, while its value shows the strength of the differ-

ence.

However, it is well known that the prequential error is pessimistic, because it con-

tains all the errors from the beginning of the learning, when the model is still not

fully induced. These long term influences hinder the detection of recent improvement.

Gama et al. (2009) propose a formula for using fading factors with the Qi statistic

Qα
i (OrgT ree, AltT ree) = log

(

L i (OrgT ree) + f S
OrgT ree

i−1

L i (AltT ree) + f S AltT ree
i−1

)

, (12)

where L i is the current loss (squared error) computed from the last example. The

prequential error will be updated after computing the Qi statistic. The fading factor f
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can be set to a value close to 1, for example 0.995. If the Qi statistic has values greater

than zero, the original tree has bigger error than the alternate tree.

The Qi statistic can be evaluated on a user predetermined evaluation interval Tmin

(e.g., Tmin = 100 examples). If it is positive, the new alternate tree will replace the old

one. The old tree will be removed, or can be stored for possible reuse in case of reoc-

curring concepts. If the detected change was a false alarm or it was not well localized,

the Qi statistic will increase slowly, and possibly will never reach the value of zero.

For this reason, we need to monitor its average. If instead of moving towards zero it

starts to decrease, the alternate tree is not promising any improvement to the current

model and should be removed.

In addition, a separate parameter can be used to specify a time period in which a

tree is allowed to grow. When the time period for growing an alternate tree has passed

or the average has started to decrease, the alternate tree will be removed from the node

and the allocated memory will be released. In order to prevent premature discarding

of the alternate tree, we start to monitor the average of the Qi statistic after 10nmin

examples have been used for growing and evaluation.

3.5 Discussion of algorithm design choices

The FIMT-DD algorithm2 is based on a compromise between the accuracy achieved

by and the time required to learn a model tree. It therefore offers approximate solu-

tions in real-time. For making splitting decisions, any method can be used that has

high confidence in choosing the best attribute, given the observed data. The Hoeffding

bound was chosen due to its nice statistical properties and the independence of the

underlying data distribution. The growing process is stable because the splitting deci-

sions are supported statistically, so the risk of overfitting is low. This is an advantage

over batch algorithms, where splits in the lower levels of the tree are chosen using

smaller subsets of the data.

To ensure the any-time property of the model tree, we chose perceptrons as linear

models in the leaves. This approach does not reduce the size of the model tree, but

improves its accuracy by reducing the bias as well as the variance component of the

error.

The choice of the change detection mechanism was supported by three arguments:

The method is computationally inexpensive, performs explicit change detection, and

enables local granular adaptation. Change detection requires the setting of several

parameters, which enable the user to tune the level of sensitivity to changes and the

robustness.

4 Experimental evaluation

The experimental evaluation was designed to answer several questions about the algo-

rithm’s general performance:

2 The software is available for download at:http://kt.ijs.si/elena_ikonomovska/.

123

http://kt.ijs.si/elena_ikonomovska/


Learning model trees from evolving data streams 147

1. What is the quality of models produced by FIMT-DD as compared to models

produced by batch algorithms?

2. What is the advantage/impact of using linear models in the leaves?

3. How stable are the incrementally learnt trees?

4. What is the bias-variance profile of the learned models?

5. How robust is the algorithm to noise?

6. How the learned models evolve in time?

7. What is the impact of constrained memory on the model’s accuracy?

8. Is FIMT-DD resilient to type-II errors?

9. How fast can the algorithm detect change?

10. How well can it adapt the tree after concept drift?

4.1 Experimental setup

4.1.1 Parameter settings

For all the experiments, we set the input parameters to: δ = 0.01, τ = 0.05 and

Nmin = 200. All algorithms were run on an Intel Core2 Duo/2.4 GHz CPU with 4 GB

of RAM. All of the results in the tables are averaged over 10 runs. For all the sim-

ulations of drift and for the first real dataset, we use the values α = 0.005 and λ= 50

and Tmin = 150. For the second real dataset we set the values α = 0.01 and λ= 100 for

change detection and Tmin = 100.

4.1.2 Error metrics

The accuracy is measured using the following metrics: mean error (ME), mean squared

error (MSE), relative error (RE), root relative squared error (RRSE), and the correla-

tion coefficient (CC). We further measure the total number of nodes, and the number

of growing nodes. When learning under concept drift, we measure the number of false

alarms, miss-detections and the delays.

4.1.3 Evaluation methodology

Traditional evaluation methodologies used for batch learning are not adequate for

the streaming setting, because they don’t take into consideration the evolution of the

model in time. Several evaluation methodologies for data streams have been proposed

in the literature. Two major approaches are the use of a holdout evaluation and the use

of a prequential evaluation.

The first is a natural extension of batch holdout evaluation. To track model perfor-

mance over time, the model can be evaluated periodically, using a separate holdout

test set. When no concept drift is assumed, the test set can be static and indepen-

dently generated from the same data distribution. In scenarios with concept drift,

the test set should consist of new examples from the stream that have not yet been

used to train the learning algorithm. This is the most preferable method for com-

parison with other algorithms for which there is no other incremental evaluation
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method available, because the learner is tested in the same way. The strategy is

to use a sliding window with a ‘look ahead’ procedure to collect examples from

the stream for use as test examples. After testing is complete, the examples are

given to the algorithm for additional training according to the size of the sliding

step.

The second approach is the use of predictive sequential or prequential error (Dawid

1984). The prequential approach has been used in Hulten et al. (2001). It consists of an

interleaved test-than-train methodology for evaluation. Its main disadvantage is that it

accumulates mistakes over the entire period of learning. Due to this, the learning curve

is pessimistic and current improvements cannot be easily seen due to early mistakes.

To reduce the influence of early errors, Gama et al. (2009) use a fading factor. The

fading-factor method is very efficient since it requires setting up of only one parameter.

Another alternative is to use a sliding window over the prequential error, which will

give a clear picture on the performance of the algorithms over the latest examples used

for training.

According to the above discussion, we propose two incremental evaluation meth-

ods: (1) prequential-window and (2) holdout-window. In the first case, the prequential

error metrics are computed over a window of N most recent examples. In the second

case, the error metrics are computed over a window of examples which have not yet

been used for training. The size of the sliding window determines the level of aggre-

gation and it can be adjusted to the size the user is willing to have. The sliding step

determines the level of details or the smoothness of the learning curve. The holdout-

window methodology provides the least biased evaluation, but can be less practical

for real-life situations.

4.2 Datasets

4.2.1 Artificial data

To evaluate the algorithm on large enough datasets, the only feasible solution is to

use artificial data. We use three well known artificial datasets: the Fried dataset used

by Friedman (1991) and the Losc and Lexp datasets proposed by Karalic (1992). The

Fried dataset contains 10 continuous predictor attributes with independent values uni-

formly distributed in the interval [0, 1], from which only five attributes are relevant and

the rest are redundant. The Losc and Lexp datasets contain five predictor attributes,

one discrete and four continuous, all relevant. These datasets are used in the first part

of the evaluation on stationary streams.

4.2.1.1 Noise. The noise introduced in the artificial datasets is a perturbation factor

which shifts attributes from their true value, adding an offset drawn randomly from

a uniform distribution, the range of which is a specified percentage of the total value

range.

4.2.1.2 Concept drift. The Fried dataset is used also in the second part of the evaluation,

for simulating different types of drift. The simulations allow us to control the relevant

parameters and to evaluate the drift detection and adaptation mechanisms. Using the

Fried data set, we simulate and study three scenarios for concept drift:
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1. Local expanding abrupt drift: The first type of simulated drift is local and abrupt.

The concept drift appears in two distinct regions of the instance space. There are

three points of abrupt change in the training dataset, the first one at 1/4 of the exam-

ples, the second one at 1/2 of the examples and the third at 3/4 of the examples.

At every consecutive change the region of drift is expanded.

2. Global reoccurring abrupt drift: The second type of simulated drift is global and

abrupt. The concept drift appears over the whole instance space. There are two

points of concept drift, the first of which occurs at 1/2 of the examples and the

second at 3/4 of the examples. At the second point of drift the old concept reoccurs.

3. Global and slow gradual drift: The third type of simulated drift is global and

gradual. The first occurrence of the gradual concept drift is at 1/2 of examples

of the training data. Starting from this point, examples from the new concept are

being gradually introduced among the examples from the old concept. After 100k

examples the data contains only the new concept. At 3/4 of examples a second

gradual concept drift is initiated on the same way. Examples from the new concept

will gradually replace the ones from the last concept like before. The drift ends

again after 100k examples.

For all these scenarios, details of the functions and the regions can be found in

Appendix C.

4.2.2 Real data

The lack of real-world datasets for regression large enough to test FIMT-DD’s perfor-

mance has restricted us to only 10 datasets from the UCI Machine Learning Repository

(Blake et al. 1999) and other sources. The smallest dataset is of size 4,177 instances,

while the largest of size 40,769 instances. The datasets are multivariate with nominal

and numeric attributes. All of these datasets were used for the evaluation on stationary

problems, because none of them has been collected with the aim of an online learning

or an incremental analysis.

For the evaluation of learning on non-stationary streaming real-world problems, we

have prepared a dataset by using the data from the Data Expo competition (2009). The

dataset consists of a large amount of records, containing flight arrival and departure

details for all the commercial flights within the USA, from October 1987 to April

2008. This is a large dataset with nearly 120 million records (11.5 GB memory size).

The dataset was cleaned and records were sorted according to the arrival/departure

date (year, month, and day) and time of flight. Its final size is around 116 million

records and 5.76 GB of memory.

We use this dataset for the first time as a supervised machine learning (prediction)

problem, therefore we make a choice of attributes on the basis of the Data Expo experi-

ence with this data. It has been reported that the arrival delay is dependent on the day of

the week, the month, the time of the day and the carrier, the origin and the destination,

among other factors. The 13 attributes are therefore the following: Year,Month, Day of

Month, Day of Week, CRS Departure Time, CRS Arrival Time, Unique Carrier, Flight

Number, Actual Elapsed Time, Origin, Destination, Distance, and Diverted. Details
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on their meaning can be found in Data Expo (2009). The target variable is the Arrival

Delay, given in seconds.

5 Results

In this section, we present the results of the evaluation and sensitivity analysis of the

FIMT-DD algorithm. The results come in three parts. The first part is the evaluation

over stationary data streams and the second part over non-stationary data streams. The

last part is the analysis over the real-world non-stationary dataset, which is suspected

to contain concept drift and noise.

5.1 Results on stationary streams

On the stationary data, we compare our algorithm’s performance, stability and robust-

ness to several state-of-the-art batch algorithms for learning regression/model trees.

5.1.1 Quality of models

Since the 10 real datasets used are relatively small, the evaluation was performed

using the standard method of ten-fold cross-validation, using the same folds for all the

algorithms included. To make a fair analysis and evaluate the impact of linear models

in the leaves, two separate comparisons were performed.

Four basic versions of our algorithm are compared among themselves and to other

algorithms: the basic version FIMT-DD includes both linear models in the leaves and

change detection, FIRT-DD has no linear models in the leaves, FIMT has no change

detection and FIRT has no linear models in the leaves and no change detection. First,

FIRT was compared to CART (Breiman et al. 1998) from R (default settings), and

M5′ (Quinlan 1992) from WEKA (default settings) with the regression-tree option

(M5′RT). Second, FIMT was compared to M5′ from WEKA (default settings) with

the model-tree option (M5′MT), linear regression method LR from WEKA (default

settings), the commercial algorithm CUBIST (2009) (default settings) from Quin-

lan/RuleQuest, and the four algorithms for learning model trees proposed in Potts and

Sammut (2005): two versions of batch learners (BatchRD and BatchRA) and two of

incremental learners (OnineRD and OnlineRA). We also used two versions of FIMT:

FIMT_Const with a constant learning rate and FIMT_Decay with a decaying learning

rate (as described in Appendix B).

The performance measures for CART, M5′ and FIRT averaged across the 10 datasets

are given in Table 1. The detailed (per dataset) results are given in Table 9 (Appendix

A). The comparison of regression tree learners shows that FIRT has similar accuracy

(RRSE, CC) to CART and lower than M5′RT. These results were somewhat expected,

since these datasets are relatively small for the incremental algorithm. FIRT produces

medium sized models (on average 35 leaves), which are larger than CART trees (on

average four leaves), but significantly smaller than the M5′RT trees (on average 245

leaves). The Nemenyi test confirmed that there is no statistically significant differ-
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Table 1 Results from tenfold cross-validation averaged over the real datasets for regression tree learning

algorithms

Algorithm RE% RRSE% Leaves Time (s) CC

M5′RT 47.30 51.72 244.69 29.28 0.82

CART 75.63 62.77 4.18 9.67 0.75

FIRT 55.38 60.11 35.54 0.33 0.75

Table 2 Results from tenfold cross-validation averaged over the real datasets for model tree learning

algorithms

Algorithm RE% RRSE% Leaves Time (s) CC

M5′MT 42.10 46.09 76.71 29.54 0.85

LR 60.48 63.01 1.00 2.59 0.74

CUBIST 48.75 − 20.67 1.02 0.75

FIMT_Const 60.21 104.01 35.54 0.42 0.70

FIMT_Decay 59.40 74.11 35.54 0.42 0.73

BatchRD 41.84 45.27 55.58 6.13 0.85

BatchRA 50.22 53.39 22.85 2.24 0.81

OnlineRD 49.77 53.26 9.98 32.67 0.80

OnlineRA 48.18 52.03 12.78 3.08 0.82

ence (in terms of the correlation coefficient) between FIRT and CART: this was also

confirmed with a separate analysis using the Wilcoxon Signed-Ranks test.

The performance results of model-tree learners averaged across the 10 datasets are

given in Table 2, while detailed (per dataset) results can be found in Table 10 for the

relative error (RE%), Table 11 for the size of the models (leaves) and Table 12 for

the learning time (Appendix A). The comparison of model tree learners shows that

FIMT_Decay and FIMT_Const have similar accuracy to LR, while the rest of the

learners are better (BatchRD being the best). The analysis on the statistical signif-

icance of results (Friedman test for comparing multiple classifiers) followed by the

Nemenyi post-hoc test confirmed this, additionally showing that there is no significant

difference between FIMT and OnlineRA, OnlineRD and BatchRA methods. There is a

significant difference in accuracy between M5′MT, CUBIST and BatchRD over FIMT

and LR, while no significant difference over BatchRA, OnlineRA and OnlineRD. It

was also observed that linear models in the leaves rarely improve the accuracy of the

incremental regression tree on these small real datasets. This could be due to the fact

that the regression surface is not smooth for these datasets. The biggest models on

average are produced by M5′MT and BatchRD, however in this comparison CUBIST

is a special case because it has a special mechanism for creating rules from the tree.

Online learners have lower accuracy than their batch equivalents. FIRT-DD has a sig-

nificant advantage in speed over all of the learners. CUBIST is in the second place.

Another advantage of FIMT-DD is that it can learn with a limited amount of memory

(as allowed by the user), while the other algorithms do not offer this option.
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Table 3 Results from holdout evaluation averaged over the artificial datasets 1000k/300k

Algorithm RE% RRSE% Leaves Time (s) CC

FIRT 0.16 0.19 2452.23 24.75 0.98

CUBIST 0.13 − 37.50 104.79 0.98

FIMT_Const 0.11 0.14 2452.23 27.11 0.98

FIMT_Decay 0.11 0.14 2452.23 26.93 0.98

LR 0.46 0.51 1.00 2468.61 0.83

BatchRD 0.08 0.10 27286.30 5234.85 0.99

BatchRA 0.71 0.69 56.97 2316.03 0.51

OnlineRD 0.10 0.13 6579.50 3099.82 0.98

OnlineRA 0.70 0.68 57.77 2360.56 0.53

For the artificial problems (Fried, Lexp and Losc), we generated 10 random data-

sets, each of size 1 million examples, and one separate test set of size 300k examples.

All the algorithms were trained and tested using identical folds. The results in Table 3

show that the incremental algorithms are able to achieve better accuracy than the batch

algorithms CUBIST, LR and BatchRA. Detailed (per dataset) results can be found in

Table 13 (Appendix A). The best algorithm is BatchRD whose models are much larger.

BatchRA and OnlineRA give the worst results. The linear models in the leaves improve

the accuracy of FIRT because now we are modeling smooth surfaces. The incremental

model trees of FIMT_Const and FIMT_Decay have similar accuracy as OnlineRD,

but are smaller in size and the time of learning is at least 100 times smaller.

5.1.2 Bias-variance profile

A very useful analytical tool for evaluating the quality of models is the bias-variance

decomposition of the mean squared error (Breiman 1998). The bias component of the

error is an indication of the intrinsic capability of the method to model the phenome-

non under study and is independent of the training set. The variance component of the

error is independent of the true value of the predicted variable and measures the var-

iability of the predictions given different training sets. Experiments were performed

for all the real datasets over the same folds used in the cross-validation and for the

artificial ones over the same training sets and the same test set (as described above

in Sect. 5.1.1). The experimental methodology is the following: We train on the 10

independent training sets and log the predictions of the corresponding models over the

test set. Those predictions are then used to compute the bias and the variance using

the derived formula for squared loss in Geman et al. (1992).

Table 4 gives the bias-variance profile of the models learned by the algorithms

FIRT, FIMT_Const, OnlineRD and CUBIST. The results show that the incremental

algorithms (FIRT and OnlineRD) have the smallest values for the variance compo-

nent of the error, which accounts for smaller variability in predictions, given different

training sets. This suggests that incrementally built trees are more stable, and are less

dependent on the choice of training data.
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Table 4 Bias-variance decomposition of the mean squared error for real and artificial datasets

Dataset FIRT FIMT_Const OnlineRD CUBIST

Bias Variance Bias Variance Bias Variance Bias Variance

Abalone 1.19E+01 0.41E+01 1.22E+01 0.39E+01 1.17E+01 0.53E+01 1.16E+01 0.49E+01

Ailerons 0.00E+00 0.00E+00 1.00E-06 4.00E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Mv_delve 9.80E+01 9.68E+01 9.83E+01 9.83E+01 9.79E+01 9.71E+01 9.79E+01 9.76E+01

Wind 4.26E+01 2.64E+01 4.29E+01 3.59E+01 4.20E+01 3.20E+01 4.15E+01 3.18E+01

Cal_housing 1.27E+10 7.51E+09 1.25E+10 7.75E+09 1.25E+10 7.93E+09 1.24E+10 9.37E+09

House_8L 2.58E+09 1.42E+09 2.59E+09 1.55E+09 2.59E+09 1.35E+09 2.57E+09 1.39E+09

House_16H 2.61E+09 1.09E+09 2.61E+09 1.21E+09 2.61E+09 0.93E+09 2.59E+09 1.14E+09

Elevators 0.38E-04 0.19E-04 0.59E-04 1.98E-04 0.37E-04 0.36E-04 0.37E-04 0.26E-04

Pol 1.58E+03 1.42E+03 1.58E+03 1.50E+03 1.60E+03 0.96E+03 1.56E+03 1.5E+03

Winequality 0.72E+00 0.21E+00 0.71E+00 0.31E+00 0.69E+00 0.24E+00 0.69E+00 0.29E+00

Fried 1.62E+00 9.20E-01 1.40E+00 4.30E-01 9.80E-01 1.30E-02 1.50E+00 9.00E-02

Lexp 2.75E-02 4.88E-02 5.57E-04 1.90E-03 1.25E-03 1.05E-03 5.91E-02 1.25E-02

Losc 1.02E-01 2.18E-02 9.61E-02 1.95E-02 1.90E-01 1.20E-05 1.33E-02 4.78E-03

The best variance value is in bold and best bias value is in italics

On the real datasets, CUBIST has the smallest values for the bias component of the

error and FIRT has the smallest values for the variance. The bias of the incremental

learners is slightly higher, but this was somewhat expected given the relatively small

size of the datasets. For the artificial data, incremental learners have again low vari-

ance, and for some of the problems also lower bias. For the Fried dataset, the algorithm

OnlineRD is a winner. The Lexp dataset is modeled best by FIMT_Const with a sig-

nificant difference on the bias component of the error. The Losc dataset is modeled

best by CUBIST. On the artificial data most stable is the OnlineRD algorithm.

5.1.3 Sensitivity analysis

5.1.3.1 Stability. We have analyzed the effect of different orderings of examples on

the performance of incremental learners, both on the real and artificial datasets. In

our experiments, the artificial test and training datasets are of size 300 and 1000k

respectively.

We shuffle the training set 10 times and measure the error, the learning time, the model

size as well as the variable (attribute) chosen at the root node of the learned tree. The

results show that the variance of the root relative squared error over all the real datasets

is in the range [1.3×10−5, 5.6×10−4], with a mean value of 0.000215. The root split

attribute for most of the datasets and for all the permutations of training examples

was same. More precisely, the percentage of cases with a different root split attribute

averaged over all 10 datasets is 14%.

5.1.3.2 Robustness to noise. We also studied the sensitivity of the learners to noise in

the data. The test set was fixed to 300k examples with 10% of noise. The training set

was fixed to 1000k examples and the level of noise was systematically increased from
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Fig. 6 Comparison of the

RMSE evaluated by using the

window-holdout method on the

Fried dataset

0 to 75%. We measured the accuracy and the model size. From the results, we conclude

that the incremental learners respond to noise similarly to the batch learner CUBIST.

As the level of noise rises, accuracy drops. The regression trees without linear models

in the leaves give best results on the Fried dataset. On the other datasets, there is no

significant difference among the algorithms.

5.1.3.3 The Anytime Property. Trees are known for their excellent speed in predicting,

despite the size of the model. The traversal time for an example from the root to the

leaves of the tree is extremely small. The model induced by FIMT-DD is available for

predicting immediately after an initial sequence of examples needed to grow a suffi-

ciently accurate tree. For visualizing the on-time performance of the regression/model

trees we use the learning curves obtained with the previously described evaluation

methods. The prequential-window and the holdout-window method both converge

fast to the holdout method.

In Fig. 6, we give a comparison of the accuracy (RMSE) of FIRT, FIMT_Decay,

OnlineRA and OnlineRD algorithms on the Fried dataset by using the holdout-win-

dow evaluation. Using the holdout window method, all of the models are tested in

the same way, by computing the error only over examples which have not been used

for training. In each consecutive testing, more data for learning has been provided.

As a response, FIRT and FIMT_Decay increase the complexity of the models, which

improves the accuracy. This is not the case for the models induced by OnlineRA and

OnlineRD whose accuracy does not improve in time. Both, FIRT and FIMT_Decay

show no signs of overfitting, which is not clear for OnlineRA and OnlineRD.

5.1.3.4 Dependency on memory constraints. FIMT-DD algorithm is able to learn with

a small constrained amount of available memory: This is achieved with similar mem-

ory management utilities as in the VFDT algorithm. When almost all the available

memory is allocated, the algorithm starts to search for the leaves with the smallest

error estimated on-line and starts to deactivate some of them: In this way, advantage

is given to the leaves with the highest error. Ignoring bad split points also saves some

memory, as well as ignoring bad attributes (which can produce less accurate models).

To evaluate the algorithm’s dependency on memory constraints, we have measured

the accuracy and model size at the end of learning for different quantities of available

memory. Figure 7 depicts the dependency of accuracy on the available memory for

the Fried dataset (the most complex one): The quality of the regression trees does
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Fig. 7 Illustration of the dependency of the model’s quality on the size of the available memory

Fig. 8 Comparison on the

learning time on the Fried

dataset

not significantly depend on the available memory. The models have the same quality

with 20 and 200 MB of memory. For the additional option of training perceptrons in

the leaves, more memory is required: FIMT achieves the same accuracy as FIRT at

∼100 MB of allocated memory. In conclusion, the incremental algorithms can induce

good models using only a small amount of memory.

5.1.3.5 Processing speed. One of the most important characteristics of the proposed

algorithm, along with the anytime property and the ability of learning without storing

any examples, is its processing speed. The processing speed of FIRT-DD is dependent

mostly on the number of attributes, the number of distinct values of each attribute and

the frequency of change. However, as a rough indication of the processing abilities of

the incremental algorithm we give the processing times for the simulated and the real

datasets.

In Fig. 8, we give a comparison of the learning times of FIRT and FIMT_Decay,

with those of the algorithms OnlineRD and OnlineRA. We can see that for OnlineRD

and OnlineRA, the time of learning increases almost exponentially with the number

of examples. On the other hand, FIRT and FIMT_Decay manage to maintain almost

constant processing time with an average speed of approximately 24,000 examples

per second (e/s). For the real-world datasets, the average processing speed is approx-

imately 19,000 examples per second, without the strategy for growing alternate trees
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Table 5 Averaged results from the evaluation of change detection with the pruning adaptation strategy

over 10 experiments

Change point 250k Change point 500k Change point 750k

#FA’s Global delay PH delay Global delay PH delay Global delay PH delay

Local abrupt drift TD 0.0 12071.0 4006.9 5029.3 1458.2 8631.5 894.1

BU 0.0 30403.0 1542.1 6967.7 550.3 9519.0 601.9

Global abrupt drift TD 0.0 NA NA 1995.6 273.3 7002.7 676.9

BU 0.0 NA NA 374.1 374.1 412.5 412.5

Global gradual drift TD 0.7 NA NA 21673.8 3473.5 17076.0 6200.6

BU 0.0 NA NA 18934.6 18934.6 19294.7 2850.0

enabled. This option would decrease the speed due to an increased number of E-BST

structures which need to be maintained for further growing.

5.2 Results on time-changing streams

5.2.1 Change detection

The second part of the experimental evaluation analyzes and evaluates the effective-

ness of the change detection methods proposed. The comparison is performed only on

the artificial datasets (each with size of 1 million examples), where the drift is known

and controllable. This allows us to make precise measurement of delays, false alarms

and miss-detections.

Tables 5 and 6 give averaged results over 10 experiments for each of the arti-

ficial datasets. We measure the number of false alarms for each point of drift, the

Page–Hinckley test delay (number of examples monitored by the PH test before

the detection) and the global delay (number of examples processed in the tree from

the point of the concept drift until the moment of the detection). The delay of the

Page–Hinckley test gives an indication of how fast the algorithm will be able to start

the adaptation strategy at the local level, while the global delay shows how fast the

change was detected globally. Table 5 contains results on change detection when the

pruning strategy is used, while Table 6 contains results when the strategy of growing

alternate trees is used.

The general conclusions are that both of the proposed methods are quite robust,

and rarely trigger false alarms. An exception is the dataset with gradual concept drift

for which the TD method triggers one false alarm in seven of 10 experiments. Both

of the methods detect all the simulated changes for all the types of drift. For the local

abrupt concept drift, the BU method has larger global delay but smaller PH delay.

This indicates that the TD method can enable faster adaptation if localization of drift

is proper. The situation is opposite for the global abrupt drift. For the global gradual

drift the situation cannot be resolved by only looking at the delays. Therefore, further

discussion is provided in the following sub-sections. Experiments were performed
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Table 6 Averaged results from the evaluation of change detection with the alternate trees adaptation strat-

egy over 10 experiments

Change point 250k Change point 500k Change point 750k

#FA’s #Adapt. Global

delay

PH

delay

Global

delay

PH

delay

Global

delay

PH

delay

Local abrupt

drift

TD 0.0 20.8 12071.0 4006.9 4282.7 768.4 5438.7 548.2

BU 0.0 16.3 30403.0 1542.1 6582.6 457.3 6863.7 1399.2

Global abrupt

drift

TD 0.0 27.4 NA NA 1995.6 273.3 5692.3 451.7

BU 0.0 3.8 NA NA 374.1 374.1 410.5 410.5

Global gradual

drift

TD 0.0 43.7 NA NA 21673.8 3473.5 12389.8 3157.9

BU 0.0 52.8 NA NA 18934.6 18934.6 16684.5 13186.1

also on datasets without drift, where the change detection methods did not trigger any

false alarms. The delays and the number of adaptations are discussed in Sect. 5.2.2.

5.2.1.1 Resilience to type-I and type-II errors. To examine FIMT-DD’s resilience

to type-I (false positive) and type-II errors (false negative), we perform a set of

experiments over all the datasets (stationary and non-stationary) with the change detec-

tion option activated. FIMT-DD does not generate any false positives on the stationary

datasets or false negatives on the non-stationary datasets.

5.2.2 Change adaptation

To evaluate the change adaptation mechanism, we compare the change detec-

tion methods with two possible adaptation strategies to the “No Detection” option

and the incremental algorithms OnlineRD and OnlineRA. Table 7 gives the results

over the last 10,000 examples of the stream, using the holdout-window evaluation

method. The discussion is structured by the different scenarios of simulated drift.

5.2.2.1 Conclusions on local abrupt drift. The results for the Local abrupt drift dataset

show that the algorithms OnlineRD and OnlineRA have poor abilities to adapt to local

abrupt drift. The error of OnlineRD and OnlineRA is higher than the “No Detection”

option. Best results are achieved with the AltTree strategy. A more detailed analysis

has shown that the TD method mostly detects changes in the higher nodes of the tree.

This can be seen in Fig. 9 where for the third point of change we observe an additional

peak due to the pruning of a significant number of nodes, which might be more than

necessary. The BU method, on the other hand, detects changes typically at the lowest

node whose region is closest to the region affected by the drift. This is a sign of a good

localization of the concept drift. On the same figure we observe that although at the

end the results are similar, the BU change detection method enables faster adaptation

to the new concept which is due to proper localization.

Figure 10 compares the learning curves for the two different change detection

methods (BU and TD) and the AltTree strategy obtained by using the sliding window

evaluation on the local abrupt concept drift. In the comparison, we also include the

situation when no change detection is performed (solid line). The AltTree strategy
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Fig. 9 Learning curves for the Prune adaptation strategy to local abrupt drift in the Fried dataset, using

holdout sliding window evaluation over a window of size 10k and a sliding step 1k

Fig. 10 Learning curves for the AltTree adaptation approach to local abrupt drift in the Fried dataset, using

holdout sliding window evaluation over a window of size 10k and a sliding step 1k

prevents reactions to false alarms. Drastic drop of accuracy is avoided. The models

have similar errors with both of the change detection methods proposed.

5.2.2.2 Conclusions on global abrupt drift. The analysis on the Global abrupt drift

dataset yields different results. Best accuracy is achieved by the OnlineRD and Onli-

neRA algorithms. They are able to completely rebuild the tree at each point of change

better than FIMT-DD. Since the drift is global, Prune and AltTree do the same thing,

re-growing the whole tree after the change, thus the results are similar. The BU method

performs better due to proper detection of drift. The TD approach does not detect the

change at the root node, but somewhere in the lower nodes, which can be seen on

Fig. 11. This is evident also from the number of adaptations given in Table 6, which
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Fig. 11 Learning curves for the AltTree adaptation approach to global abrupt drift in the Fried dataset,

using holdout sliding window evaluation over a window of size 10k and a sliding step 1k

is almost seven times higher than for BU. Because of that, neither of the adaptation

strategies used with TD will enable proper correction of the structure. If “No detec-

tion” is used the size of the tree becomes around five times larger as compared to the

other strategies.

5.2.2.3 Conclusions on global gradual drift. For the Global gradual drift dataset best

results are achieved using the Prune strategy. The results are in favor of the TD method.

The trees obtained are smaller and more accurate because of the on-time adaptation.

For the same reasons, pruning is a better strategy in this case than growing alternate

trees. The BU method performs worse than TD because once a change is detected the

adaptation of the model hinders the detection of additional changes although the drift

might still be present and increasing.

5.2.3 Comparison when rebuilding

Figure 12 ilustrates the ability of the AltTree adaptation strategy to learn the new

phenomenon. As a reference strategy, we rebuild the tree by using examples from the

new concept only (option Rebuild, segmented line). The conclusions are as follows:

detection of local concept drift enables best adaptation when the tree does not need to

be completely rebuilt. The proposed change detection methods are able to localize the

drift properly and adapt the tree with minimal loss of accuracy. In Fig. 12 we can see

that TD/BU AltTree method provides smallest error at any-time, thus the adaptation

can be considered as appropriate.

As a general conclusion, when no detection is performed the tree improves its

accuracy due to consecutive splitting, but becomes much larger than necessary. The

structure would likely be misleading due to improper hierarchy of splits. For different

types of drift different algorithms perform best and there is no generally applicable

method.
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Fig. 12 A comparison of learning curves for the TD/BU AltTree adaptation strategy, on the local abrupt

gradual drift in the Fried dataset, obtained by using holdout-window evaluation with window size 10k and

sliding step 1k

Table 8 Performance results over the last 100k examples of the data stream on the Airline dataset

Dataset Measures No detection Top-Down (TD) Bottom-Up (BU)

Prune AltTree Prune AltTree

Airline AE 17.99 14.91 14.80 14.85 14.79

MSE/SD 862.54±8.56 741.90±8.69 731.73±8.62 733.49±8.59 728.56±8.58

RE 0.99 0.82 0.81 0.81 0.80

RRSE 1.02 0.94 0.93 0.93 0.93

Nodes 86509.00 31.00 143.00 101.00 41.00

Growing nodes 7558.00 16.00 72.00 51.00 21.00

5.3 Results on real-world data

Figure 13 gives a comparison of the different adaptation strategies (both in terms of

accuracy and model size) on the Airline dataset from the DataExpo09 competition.

The reference case is “No detection”. The AltTree strategy improves greatly the accu-

racy at any time, while providing significantly smaller models. When no change detec-

tion is performed the tree contains nearly 50,000 leaves, of which only 7500 can grow

further.

The learning curves confirm the existence of many concept drifts, which are occur-

ring irregularly at very high rates. The changes are of both local and global type,

resulting in partial or complete restructuring of the tree. The results in Table 8 obtained

for the last 100k examples seen, show that the AltTree strategy achieves continuously

smaller error and performs equally well with both of the change detection methods

(TD or BU).
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Fig. 13 Learning curves for the Data Expo Airline dataset using sliding prequential-window evaluation

with size 1 M and sliding step 100k

The most influential attributes were, as suspected, the Origin, the Destination, the

Flight time, the Day of week, the Day of month and the Departure and Arrival time.

Most of the changes were detected for splits on the attributes Origin and Destination,

moderately on the attribute Unique Carrier and only few on the date and the time

of flying. This suggests that, the delays were most of the time related to the flying

destinations and the carriers.

A change in the frequency of the flights from or to a certain destination, the closing

of an airport, an airline entering a crisis and similar events can change the relations

between the target attribute (the delay) and the input attributes. Due to the explicit

change detection mechanism of FIRT-DD, the regression tree can be used to explain

and describe such changes which occurred at irregular periods over the years. A more

detailed case study might reveal more interesting facts on the flight delays and their

connection to the airlines or the flying destinations, but this is out of the scope of this

paper.
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6 Conclusions and further work

In this paper, we presented an algorithm for learning model trees from time-changing

data streams. To the best of our knowledge, FIMT-DD is the first algorithm for learning

model trees from time-changing data streams with explicit drift detection. The algo-

rithm is able to learn very fast (in a very small time per example) and the only memory

it requires is for storing sufficient statistics at tree leaves. The model tree is available

for use at any time in the course of learning, offering an excellent processing and

prediction time per example.

In terms of accuracy, the FIMT-DD is competitive with batch algorithms even for

medium sized datasets and has smaller values for the variance component of the error.

It effectively maintains an up-to-date model even in the presence of different types of

concept drifts. The algorithm enables local change detection and adaptation, avoiding

the costs of re-growing the whole tree when only local changes are necessary.

One direction for further research, emerging from the current state of the art in the

area of regression analysis on data streams, is the problem of on-line computation

of a confidence in individual predictions. There is relevant work in batch learning

scenarios (Gammerman and Vovk 2002, 2007) as the most notable, but little attention

has been given to incremental algorithms. One example is the work of Rodrigues et al.

(2008).

Another promising direction is to extend the proposed algorithms for learning option

trees (for regression) from time-changing streaming data. Option trees can be seen as

compact and easily interpretable models, which can improve the limited look-ahead

and instability of regular regression (decision) trees. Their contribution can also be

seen in enhancing the learning process for more complex tasks, such as multi-target

regression in a streaming setting.
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Appendix

A Detailed results on stationary streams

See Appendix Tables 9,10,11,12, and 13.

B Details on FIMT_Decay option

To enable a smooth decay of the learning rate, we propose a simple formula (12) for

decreasing the value of the learning rate with the number of instances used for training

123



164 E. Ikonomovska et al.

Table 9 Results of tenfold cross-validation for regression tree learners on the real datasets

Dataset Size CART M5′RT FIRT

RRSE(%) Leaves CC RRSE(%) Leaves CC RRSE(%) Leaves CC

Abalone 4,177 74.68 10.6 0.67 70.26 41.8 0.71 77.31 8.5 0.63

Ailerons 13,750 58.67 9.6 0.81 46.31 246.7 0.89 56.73 23.4 0.82

Mv_delve 40,769 27.51 8.0 0.96 4.76 312.1 0.99 8.97 98.8 0.99

Wind 6,574 59.56 7.9 0.80 53.28 107.4 0.85 60.68 11.2 0.79

Cal_housing 20,640 67.67 12.0 0.74 51.79 439.7 0.86 61.46 49.6 0.79

House_8L 22,784 69.14 10.2 0.72 62.45 251.9 0.78 66.99 50.1 0.74

House_16H 22,784 79.38 12.1 0.61 70.80 347.9 0.71 78.28 42.8 0.63

Elevators 16,599 68.09 12.8 0.73 52.14 382.6 0.86 74.86 31.9 0.66

Pol 15,000 36.76 7.0 0.93 22.57 264.9 0.97 29.18 27.1 0.96

Winequality 4,898 86.27 6.5 0.51 82.85 51.9 0.56 86.62 12.0 0.50

Table 10 Results of tenfold cross-validation (RE%) for model tree learners on the real datasets

Dataset CUBIST M5′ MT FIMT_Const FIMT_Decay LR Batch Batch Online Online

RD RA RD RA

Abalone 63.20 63.97 74.10 74.18 66.96 63.91 66.41 66.45 66.95

Ailerons 100.00 37.67 102.35 85.53 41.05 37.54 39.32 38.36 40.24

Mv_delve 0.70 0.54 4.83 8.49 38.32 0.06 1.19 0.40 2.05

Wind 44.60 45.98 53.77 60.48 46.90 43.53 44.02 44.48 44.32

Cal_housing 39.10 39.80 48.90 49.24 55.73 40.63 45.27 48.77 48.64

House_8L 50.30 51.39 65.37 69.61 75.10 51.86 55.48 62.31 56.89

House_16H 52.50 56.13 67.91 63.72 78.49 57.07 62.20 71.61 66.58

Elevators 49.90 34.78 82.50 80.35 43.52 34.25 39.01 36.87 39.76

Pol 6.80 6.83 16.20 18.09 71.50 7.06 63.34 43.99 30.38

Winequality 80.40 83.81 86.21 84.26 87.30 82.49 85.97 84.48 85.96

the perceptron:

η =
η0

(1 + sηd)
(13)

The initial learning rate η0and the learning rate decay parameter ηd should be set

to appropriately low values (e.g., η0 = 0.1 and ηd = 0.005).

C Details on the simulations of different types of concept drift

The original function for the Fried dataset is: y = 10 sin(πx1x2) + 20(x3 − 0.5)2 +

10x4 + 5x5 + σ(0, 1),where σ (0,1) is a random number generated from a normal

distribution with mean 0 and variance 1.
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Table 11 Results of tenfold cross-validation (learning time in seconds) for model tree learners on the real

datasets

Dataset CUBIST M5′MT FIMT_Const FIMT_Decay LR Batch Batch Online Online

RD RA RD RA

Abalone 0.190 2.692 0.041 0.043 0.324 0.589 0.270 0.869 0.325

Ailerons 0.320 14.727 0.661 0.656 1.068 11.865 0.885 148.517 2.355

Mv_delve 1.290 135.125 0.907 0.911 15.449 12.968 11.799 13.974 12.526

Wind 0.450 8.179 0.138 0.135 0.663 1.797 0.657 4.114 0.744

Cal_housing 1.330 48.183 0.356 0.358 3.102 4.998 2.911 5.504 2.930

House_8L 1.50 29.931 0.357 0.352 1.671 4.907 1.921 4.099 1.962

House_16H 2.780 34.515 0.705 0.704 1.757 11.359 2.156 15.667 2.658

Elevators 0.540 11.1 0.367 0.366 0.736 4.905 0.732 14.41 1.203

Pol 1.480 8.24 0.606 0.610 0.771 7.125 0.820 117.468 5.737

Winequality 0.270 2.745 0.067 0.071 0.331 0.841 0.291 2.117 0.398

Table 12 Results of tenfold cross-validation (size) for model tree learners on the real datasets

Dataset CUBIST M5′MT FIMT_Const FIMT_Decay Batch Batch Online Online

RD RA RD RA

Abalone 11.5 8.4 8.5 8.5 7.1 2.0 2.7 2.0

Ailerons 1.0 5.8 23.4 23.4 13.5 4.7 3.9 2.5

Mv_delve 8.6 9.9 98.8 98.8 166.4 117.2 49.5 54.2

Wind 15.4 7.2 11.2 11.2 10.8 4.1 4.0 4.1

Cal_housing 41.8 214.0 49.6 49.6 120.3 24.8 7.1 9.8

House_8L 21.9 117.2 50.1 50.1 60.7 29.5 8.7 19.3

House_16H 29.6 171.3 42.8 42.8 81.4 33.8 4.8 18.9

Elevators 18.8 39.6 31.9 31.9 37.0 8.2 11.9 6.3

Pol 25.1 159.2 27.1 27.1 46.8 2.0 3.9 8.3

Winequality 33.0 34.5 12.0 12.0 11.8 2.2 3.3 2.4

Local expanding abrupt drift. The first region with drift is defined by the following

inequalities: R1 ≡ x2d < 0.3 & x3 < 0.3 & x4 > 0.7 & x5 < 0.3. The new function

for this region is: y1R1 = 10x1x2 + 20(x3 − 0.5) + 10x4 + 5x5 + σ (0, 1). The second

region is defined by the following inequalities: R2 ≡ x2 > 0.7 & x3 > 0.7 & x4 <

0.3 & x5 > 0.7. The new function for this region is: y1R2 = 10cos(x1x2) + 20(x3 −

0.5)+ex4 +5x2
5 +σ(0, 1). At the second point of change R1 and R2 are expanded by

removing the last inequality (x5 < 0.3 and x5 > 0.7, respectively). At the third point

of change, the regions are expanded again by removing the last inequalities (x4 > 0.7

and x4 < 0.3, respectively).

Global reoccurring abrupt drift. The change is performed by misplacing the vari-

ables from their original position in the above given function. After the first change

the new function is: y2 = 10 sin(πx4x5)+ 20(x2 − 0.5)2 + 10x1 + 5x3 +σ(0, 1). For

the second change, the old concept reoccurs.
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Table 13 Results on the artificial datasets: The algorithms were run for 10 randomly generated pairs of

train/test sets (1000k/300k), averages over the 10 runs are given here

Algorithm Dataset RE RRSE Leaves Time (s) CC

FIRT Fried 0.31 0.32 2406.6 42.26 0.95

CUBIST 0.24 NA 58.2 192.47 0.97

FIMT_Const 0.26 0.27 2406.6 46.72 0.96

FIMT_Decay 0.26 0.27 2406.6 46.93 0.96

LR 0.50 0.52 1.0 2509.18 0.85

BatchRD 0.19 0.19 289.9 2341.83 0.98

BatchRA 0.20 0.20 160.8 1946.87 0.98

OnlineRD 0.19 0.20 120.7 2253.09 0.98

OnlineRA 0.20 0.21 143.8 2013.05 0.98

FIRT Lexp 0.09 0.11 2328.8 15.82 0.99

CUBIST 0.06 NA 27.5 59.19 0.99

FIMT_Const 0.01 0.02 2328.8 19.81 1.00

FIMT_Decay 0.01 0.02 2328.8 19.07 1.00

LR 0.67 0.75 1.0 2785.64 0.67

BatchRD 0.01 0.04 43969.6 6411.54 0.99

BatchRA 0.92 0.88 9.1 2549.39 0.47

OnlineRD 0.004 0.02 13360.1 4039.49 0.99

OnlineRA 0.90 0.85 28.5 2645.06 0.53

FIRT Losc 0.09 0.14 2621.3 16.16 0.99

CUBIST 0.09 NA 26.8 62.71 0.99

FIMT_Const 0.07 0.14 2621.3 14.81 0.99

FIMT_Decay 0.07 0.14 2621.3 14.80 0.99

LR 0.22 0.26 1.0 2111.03 0.96

BatchRD 0.02 0.07 37599.5 6951.18 0.99

BatchRA 1.00 0.99 1.0 2451.83 0.08

OnlineRD 0.11 0.17 6257.7 3006.89 0.98

OnlineRA 1.00 0.99 1.0 2423.58 0.08

Global slow gradual drift. At the first point of change, examples are generated

using the old and the new function: y3 = 10 sin(πx4x5) + 20(x2 − 0.5)2 + 10x1 +

5x3 + σ(0, 1). At the second point of change, the situation is similar and the new

function is: y4 = 10 sin(πx2x5) + 20(x4 − 0.5)2 + 10x3 + 5x1 + σ(0, 1).
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