
Learning Models for Object Recognition

Pedro F. Felzenszwalb

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139

pff@ai.mit.edu

Abstract

We consider learning models for object recognition from
examples. Our method is motivated by systems that
use the Hausdorff distance as a shape comparison mea-
sure. Typically an object is represented in terms of a
model shape. A new shape is classified as being an in-
stance of the object when the Hausdorff distance be-
tween the model and the new shape is small. We show
that such object concepts can be seen as halfspaces (lin-
ear threshold functions) in a transformed input space.
This makes it possible to use a number of standard algo-
rithms to learn object models from training examples.
When a good model exists, we are guaranteed to find
one that provides (with high probability) a recognition
rule that is accurate. Our approach provides a measure
which generalizes the Hausdorff distance in a number
of interesting ways. To demonstrate our method we
trained a system to detect people in images using a sin-
gle shape model. The learning techniques can be ex-
tended to represent objects using multiple model shapes.
In this way, we might be able to automatically learn a
small set of canonical shapes that characterize the ap-
pearance of an object.

1. Introduction

In this paper, we consider the problem of object recog-
nition. Our main goal is to explore how classical recog-
nition systems can benefit from learning techniques. In
particular, we concentrate on recognizing objects using
the Hausdorff distance as a shape comparison measure.

Comparing shapes using the Hausdorff distance has
proven to be a reliable and efficient method for object
recognition (see [8, 14, 7]). In this context, shapes are
sets of points obtained from images using edge detec-
tion. Some examples are shown in Figure 1. Typically,
an object is represented in terms of an ideal shape,
which is referred to as the model. A new shape is clas-
sified as an instance of the object if the Hausdorff dis-
tance between the model and the new shape is small.

We show that such object concepts can be seen as half-
spaces (linear threshold functions) in a transformed in-
put space. This makes it possible to use a number of
standard algorithms to learn object models. While we
concentrate on using the Hausdorff distance for shape
comparison, our techniques can be modified to com-
pare shapes using the Chamfer distance (see [1, 3]), or
the generalization of the Hausdorff distance introduced
by Olson in [12].

Most recognition systems simply use an instance of
the object as the model. In that case, it might be nec-
essary to manually edit the model to correct for noise
and remove background clutter. We believe that an
intelligent system should be able to learn from natural
examples. Moreover, in some cases it is not clear what
would be a good model for a particular object. By
using learning techniques we can estimate the model
using training examples alone. The training examples
for a particular object are divided into a set of positive
examples, and a set of negative examples. Figure 2
shows some of the examples we used to train a system
to detect people. Note that the positive examples have
large variation in shape, as they come from different
people and each person can be in a number of differ-
ent poses. Each positive example also has background
clutter which should not be part of the model.

Our learning method only assumes that there exists
some model which can be used for recognition. The
model is estimated from the training examples. When
a good model exists, we are guaranteed to find one that
provides (with high probability) a recognition rule that
is accurate. This notion is made precise using the PAC
model of learnability, which we describe in Section 5.
The learning approach generalizes the Hausdorff dis-
tance in a number of interesting ways. These general-
izations are described in Sections 4 and 5. We demon-
strate our method by training a system to detect people
in images using a single shape model. In the last sec-
tion, we discuss how our techniques can be extended to
represent objects using a number of canonical shapes.

1

Figure 1: Example of edge detection for shape extraction.

2. Related Work

Shvaytser [16] considered learning visual concepts in bi-
nary images. Most of his results are negative, showing
that many simple visual concepts are not learnable (in
polynomial time) from positive examples alone. This
includes concepts similar to the ones we consider. We
show that interesting concepts can be learned by using
both positive and negative examples.

Gavrila and Philomin [6] use a measure similar to
the Hausdorff distance for shape comparison. Instead
of learning a shape model from training examples, they
simply store a large number of positive examples in
memory (on the order of a thousand). A new shape
is considered an instance of the target object if it is
similar to any of the stored shapes. In contrast, we
show that using learning techniques we can build a sin-
gle shape model which captures the information from
all examples. When a single shape model is not good
enough, it might be possible to learn a small set of
canonical shapes, as discussed in Section 8.

Jacobs, Weinshall and Gdalyahu [9] considered the
general problem of characterizing the appearance of an
object by storing a number of example shapes (or im-
ages). They were interested in methods that can se-
lect a small number of examples which characterize an
object well. It was pointed out that standard cluster-
ing techniques don’t perform well when using robust
shape comparison measures such as the partial Haus-
dorff distance. Our techniques provide a principled way
to generate canonical shapes that characterize the ap-
pearance of an object.

Most recent learning methods in computer vision
are not based on classical recognition techniques. For

example, Papageorgiou and Poggio [13], Schneiderman
and Kanade [15], and Viola and Jones [17] developed
systems that yield good recognition accuracy. These
methods introduced new representations for visual con-
cepts. In this paper we concentrate on learning con-
cepts that are represented by two-dimensional shapes.
In particular, our learning method is motivated by sys-
tems that use the Hausdorff distance and similar mea-
sures for recognition.

3. Hausdorff Distance

We will only consider the directed Hausdorff distance,
which is defined as follows. Let A and B be two finite
point sets. The distance from A to B is given by

h(A, B) = max
a∈A

min
b∈B

‖a− b‖. (1)

This measures the maximum distance from a point in
A to its nearest point in B.

The main strength of the Hausdorff distance is that
it does not require that points in A and B exactly
match. In particular, moving the points by a small
amount only changes the Hausdorff distance by a small
amount. This is extremely important for recognizing
objects based on their shapes. Locations in an image
are quantized, introducing positional errors. Moreover,
most objects don’t have fixed shapes. The Hausdorff
distance can tolerate some shape variation.

One of the problems with the classical Hausdorff dis-
tance is that it is not robust with respect to noise or
outliers. Sometimes an instance of an object is not fully
visible in an image. This can happen because of noise
in the imaging process, errors during edge detection,

2

or some part of the object might be occluded. To deal
with this problem, the classical distance is modified by
replacing the maximum value in equation (1) with the
Kth ranked value for some parameter K. The partial
Hausdorff distance from A to B is defined as

hK(A, B) = Kth

a∈A
min
b∈B

‖a − b‖.

For example, by taking K = |A|/2, the partial distance
reflects the median distance from points in A to their
closest points in B.

4. Object Recognition

We can extract shape information from an image using
edge detection (see [4]). Some examples are shown in
Figure 1. In this domain, the problem of recognition
is to decide if a shape B is an instance of a particular
object. Suppose we have an ideal shape A which is a
model for the target object. We can say that B is an
instance of the object if the partial Hausdorff distance
from A to B is at most some threshold d. One problem
with this definition is that cluttered areas in an image
will be recognized as instances of the object. This is
because if B is very dense, there will be a point in B
near every point of A. In practice, this problem can
be solved by checking not only that hK(A, B) ≤ d, but
also that hL(B, A) ≤ d. The distance from B to A is
called the reverse distance.

In our framework, we start with decisions based only
on hK(A, B). We will show that such decisions can be
seen as linear threshold functions in a transformed in-
put space (here the input is the shape B). The linear
threshold functions that are equivalent to decisions of
the form hK(A, B) ≤ d have coefficients that are 0 or
1. By allowing for arbitrary coefficients we generalize
the partial Hausdorff distance in two interesting ways.
First, the measure can give different importance to dif-
ferent parts of a shape. Moreover, negative coefficients
allow the measure to reject cluttered image areas, by
saying that B should not have points at some locations.
This makes it unecessary to use the reverse distance as
described above.

Note that hK(A, B) ≤ d holds exactly when at least
K points from A are at distance at most d from some
point in B. It is common to interpret this decision
function using the notion of dilation. The dilation of
B by r is denoted Br, and it consists of the set of
points that are at distance at most r from some point
in B. Using the concept of dilation, hK(A, B) ≤ d
holds when at least K points from A are contained
in Bd. Now remember that A and B correspond to
points from images. We can represent these sets as n

dimensional vectors, where n is the number of pixels in
the images. Let A be the vector representation of A.
A is a 0, 1 vector, where the i-th dimension indicates
if the i-th pixel in the image is in A. Using the vector
representation of our sets, the number of points from
A contained in Bd is exactly the dot product A · Bd.
So we can represent our decision function based on the
Hausdorff distance as a linear threshold function,

hK(A, B) ≤ d ⇔ A · Bd ≥ K. (2)

Note that the input to the linear threshold function is
B

d, and not B. As mentioned above, decisions based
on the partial Hausdorff distance correspond to the lin-
ear threshold functions with 0, 1 coefficients. By allow-
ing A to be an arbitrary vector, we obtain a general-
ization of the partial Hausdorff distance. In the classi-
cal distance, every part of the model shape is equally
important. In the linear threshold function, a large
value in A might indicate a very discriminating fea-
ture. Also, negative values in A indicate that instances
of the target object shouldn’t be dense everywhere. In
the next section we will obtain yet another generaliza-
tion of the partial Hausdorff distance as a consequence
of our learning techniques.

The importance of the relation in equation (2) is the
connection between a robust measure of shape simi-
larity and simple concepts defined by linear threshold
functions. Historically, linear threshold functions or
halfspace concepts were considered too simple to yield
good classification systems (see [9]). We have shown
that we can represent any concept defined by the par-
tial Hausdorff distance as a halfspace concept, by trans-
forming the input space in an appropriate manner. In-
tuitively, dilating the input shapes yields a more robust
representation. For example, let B be obtained by per-
turbing the points in A. The dot product of A and B

can be arbitrary. On the other hand, the dot product
of A and B

d reflects the similarity between the two
shapes (as long as d is large enough).

5. PAC Learning

We say that an algorithm learns concepts from labeled
examples if it can find (with high probability) recogni-
tion rules that are accurate. The PAC learning model
makes this intuition precise. We give a brief description
of the model here, see [10] for an in depth introduction.

Let X be the space of all possible examples. We
assume that examples are drawn at random from some
unknown distribution D. Each example is labeled as
positive or negative, according to a concept c ∈ C,
where C is a class of possible concepts. The learning

3

Positive examples

Negative examples

Figure 2: Some of the random examples used to train the people detection system.

problem is to find a hypothesis h which agrees with c on
most examples. The error between h and c is defined
as

error(h) = Prx∈D[c(x) 6= h(x)].

A learning algorithm has access to a set of random
examples that are labeled according to c and should
output a hypothesis with small error. We say that C
is PAC learnable if for every concept c ∈ C and distri-
bution D over X we can find a hypothesis h that with
probability at least 1−δ has error at most ε. This cap-
tures the idea that h is probably approximately correct
(PAC). The number of labeled examples necessary to
compute h should not be too large, but it is allowed to
grow as ε and δ get small.

The two parameters ε and δ correspond to two types
of failures which can occur. The error parameter ε is
necessary because sometimes two concepts c1 and c2

differ only at examples which are very rare according
to D. In this case, the random labeled examples might
not give any clue as to which of the two is the cor-
rect concept. The confidence parameter δ is necessary
because occasionally the learning algorithm might be
unlucky and get unrepresentative examples. For exam-
ple, there is a small chance that all random examples
are equal. In that case, the learning algorithm will have
very little information about the target concept.

As described in the last section, we are interested in
learning concepts of the form

c(B) =

{

positive if A · Bd ≥ K
negative otherwise

(3)

For now, assume that d is known. In that case, we can
see B

d as the input to our concepts. This makes the
concepts be linear threshold functions. Linear thresh-
old functions split the input space with a hyperplane.
Instances on one side of the hyperplane are labeled as
negative, and instances on the other side are labeled
positive. The problem of learning halfspaces is one of
the most studied topics in learning theory. For exam-
ple, Linear Programming can be used to learn linear
threshold functions in the PAC sense (see [2]). Namely,
by using a large enough number of training examples,
we can obtain a hypothesis that has error at most ε
with confidence 1 − δ. The number of examples that
are necessary grows linearly in n (the dimension of the
input space) and polynomial in 1/ε and 1/δ. In prac-
tice we use the perceptron algorithm (see [11]). The
perceptron algorithm has many nice properties. It is
conceptually simple and easy to implement. The al-
gorithm is very fast and uses little memory. Moreover,
the perceptron algorithm can tolerate noise, and learns
a good hypothesis even when there is no concept that
classifies all examples correctly (see [5]).

If we don’t know d in advance we must learn richer
concepts. In general, we consider a small set of possible
dilation parameters d1, . . . , dm. For example, we can
assume that d is not very large and only consider posi-
tive integer values. Picking di can be seen as a problem
of model selection. A standard technique to solve this
problem is to use cross-validation. In this context, our
original set of training examples is divided into two
sets, corresponding to a training set and a validation
set. We learn a hypothesis for each possible di using

4

the training set, and measure its performance using the
validation set. The final hypothesis is the one which
performs best on the validation set.

Another way to allow for an arbitrary dilation pa-
rameter yields a nice generalization of our concepts.
Define a new input space, given by the concatenation
of the B

di . The new inputs live in a nm dimensional
space, where n is the number of pixels in the original
input images, and m is the number of dilation param-
eters being considered. To be precise, let

T (B) = [Bd1 · · ·Bdm].

Our new concepts are linear threshold functions of
T (B). The coefficients of these functions can be writ-
ten as [A1 · · ·Am]. Note that we can represent any
concept of the form in equation (3) if d = di for some
i. Simply let Aj = 0 for all j 6= i and Ai = A. The
threshold remains the same.

The linear threshold functions of T (B) generalize
our old concepts in an intuitive way. The new concepts
can capture the idea that some features of the model
are better localized than others. A positive value in Ai

indicates that there should be a feature in a particular
area of B. The area is a disc with radius di. Since there
are coefficients corresponding to different dilation pa-
rameters, we can represent shapes that have both rigid
and deformable parts. The rigid parts are represented
by coefficients in Ai, where di is small, while the de-
formable parts are represented by coefficients in Aj,
where dj is large.

6. Object Detection

The problem of object detection is to locate all in-
stances of an object in an image. Once we have learned
a model to recognize the target object we can use it to
solve the object detection problem. For each possi-
ble location in an image, we check if the image patch
around it is an instance of the target object. Note that
there are many locations in an image, a typical image
has around 104 locations. Most locations don’t contain
the target object, so the distribution of examples seen
by the recognition system is very skewed. To correctly
classify all locations in an image the recognition system
must have a very small false positive rate.

In the PAC framework, the error of a hypothesis is
measured with respect to an arbitrary distribution D
over the examples. We only assume that the training
examples come from the same distribution as the test
examples. If we want to train models for object detec-
tion we should use many more negative examples than
positive ones. This ensures that we will get a small
number of false positive detections overall.

(a) (b)

Figure 3: Illustration of a model. Bright pixels corre-
spond to large coefficients, and dark pixels correspond
to small coefficients. (a) shows all coefficients of the lin-
ear threshold function and (b) shows only the positive
coefficients.

Examples Mistakes
Positive set 105 3
Negative set 69870 0

Table 1: Performance of a typical classifier on the test
data. Mistakes in the positive set correspond to false
negatives, and mistakes in the negative set correspond
to false positives.

7. Experimental Results

We applied our learning techniques to build a system
that can detect people walking in our lab. Positive
examples were obtained by capturing several people
walking in different directions. We have images from
seven people walking in two different directions. The
total number of positive examples is 529. The negative
examples are all possible image patches from different
images which do not contain people. These were im-
ages from different enviroments. The total number of
negative examples is 349.344. Some of the examples
are shown in Figure 2.

We learned concepts of the form in equation (3).
The value for the dilation parameter d was automat-
ically selected using cross-validation, as described in
Section 5. We considered five different possible dila-
tion parameters, corresponding to a dilation of 1,2,3,4
or 5 pixels. To evaluate our techniques we performed
multiple training trials. In each trial 80% of the exam-
ples were used as training data (selected at random),
and the remaining 20% as test data. One of the learned
models is shown in Figure 3. The model corresponds to
the coefficients of the linear threshold function. A di-
lation parameter of d = 3 was selected (automatically)
in each trial. There was very little variaton in perfor-
mance over the different trials. Table 1 displays the
performance of a typical hypothesis on the test data.

5

Figure 4: Detection results.

6

The system always had less than 5% false negatives
and no false positives.

As described in Section 6, we can use the learned
models to detect objects in new images. Some detec-
tion results are shown in Figure 4. There is a box
around each detected object. Note that objects are
detected multiple times across a small set of transla-
tions. This makes sense since the training images were
not aligned perfectly. We could easily use some heuris-
tic to eliminate the multiple detections. For example,
we could select the center position for each cluster of
detected locations.

8. Multiple Views

In this section we describe a direction for future work.
The techniques we have presented so far assume that
instances of an object are well described by a two-
dimensional shape. This is only true for a limited set of
objects. For example, the shape of an arbitrary three-
dimensional object can vary due to viewing position.
One way to allow for shape variation is to represent
objects using a number of canonical views.

We can generalize our framework to represent ob-
jects using more than one model shape. Now we say
that a new shape is an instance of a target object if it
is similar to any of the canonical views of that object.
Remember that in our framework, the set of shapes
that are similar to a particular model form a halfspace
in a transformed input space. Using this idea, the set
of shapes which are similar to at least one of the canon-
ical views of an object form a union of halfspaces in the
transformed input space. Each halfspace corresponds
to one of the canonical views. So the problem of learn-
ing a set of canonical views to represent an object can
be seen as learning a union of halfspaces.

References

[1] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf.
Parametric correspondence and chamfer match-
ing: Two new techniques for image matching. In
IJCAI, pages 659–663, 1977.

[2] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. J. ACM, 36(4):929–965,
1989.

[3] G. Borgefors. Hierarchical chamfer matching:
A parametric edge matching algorithm. PAMI,
10(6):849–865, November 1988.

[4] J. Canny. A computational approach to edge de-
tection. PAMI, 8(6):679–698, November 1986.

[5] Y. Freund and R. Schapire. Large margin classi-
fication using the perceptron algorithm. Machine
Learning, 37(3):277–296, 1999.

[6] D. Gavrila and V. Philomin. Real-time object de-
tection for smart vehicles. In ICCV, pages 87–93,
1999.

[7] D. Huttenlocher. Monte carlo comparison of dis-
tance transform based matching measures. In
DARPA, pages 1179–1184, 1997.

[8] D. Huttenlocher, G. Klanderman, and W. Ruck-
lidge. Comparing images using the hausdorff dis-
tance. PAMI, 15(9):850–863, September 1993.

[9] D. Jacobs, D. Weinshall, and Y. Gdalyahu. Classi-
fication with nonmetric distances: Image retrieval
and class representation. PAMI, 22(6):583–600,
June 2000.

[10] M. Kearns and U. Vazirani. An Introduction to
Computational Learning Theory. MIT Press, 1994.

[11] M. Minsky and S. Papert. Perceptrons. MIT Press,
1969.

[12] C. Olson. A probabilistic formulation for hausdorff
matching. In CVPR, pages 150–156, 1998.

[13] C. Papageorgiou and T. Poggio. A trainable sys-
tem for object detection. IJCV, 38(1):15–33, June
2000.

[14] W. Rucklidge. Efficient Visual Recognition Us-
ing the Hausdorff Distance. Springer-Verlag, 1996.
LNCS 1173.

[15] H. Schneiderman and T. Kanade. A statistical
method for 3d object detection applied to faces
and cars. In CVPR, pages I:746–751, 2000.

[16] H. Shvaytser. Learnable and nonlearnable visual
concepts. PAMI, 12(5):459–466, May 1990.

[17] P. Viola and M. Jones. Robust real-time object de-
tection. Technical Report 2001/01, Compaq CRL,
February 2001.

7

