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Abstract

We investigate the task of learning models for visual object recognition from natural

language descriptions alone. The approach contributes to the recognition of fine-grain

object categories, such as animal and plant species, where it may be difficult to collect

many images for training, but where textual descriptions of visual attributes are readily

available. As an example we tackle recognition of butterfly species, learning models from

descriptions in an online nature guide. We propose natural language processing methods

for extracting salient visual attributes from these descriptions to use as ‘templates’ for

the object categories, and apply vision methods to extract corresponding attributes from

test images. A generative model is used to connect textual terms in the learnt templates

to visual attributes. We report experiments comparing the performance of humans and

the proposed method on a dataset of ten butterfly categories.

1 Introduction
Recent years have seen great advances in object category recognition by the use of machine

learning approaches rather than hand-built models. However, progress in this area is limited

by the onerous task of manually collecting and labelling large training sets. The problem is

compounded by the need to collect a training set for each new category to be recognised,

making it difficult to scale up from the 10-100’s of categories currently tackled [8, 12] to

the 1000’s which are needed to cover the space of object categories recognised by humans.

These challenges have led to much interest in exploiting other existing sources of image

annotation, for example keywords [5] or image captions on web pages [3, 10, 17, 19]. While

most previous work has either assumed the availability of pre-processed keywords [5] or

used only simple text processing methods ignoring syntax or high-level semantics of text,

e.g. searching Google Images for “car” or “voiture” to find example car images [10, 17, 19],

in this paper we consider the use of Natural Language Processing (NLP) methods to extract

information beyond keywords from naturally occurring English text.

For ‘top-level’ object categories (person, car, cat, dog, etc.) it is difficult to find images

with corresponding textual descriptions of visual properties, for example we can find many

images annotated “my car” but few annotated “my Ford car which can be recognised by it be-

ing blue, having two wheels visible and a red stripe down the side”. However, for fine-grain
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Figure 1: Example visual description from eNature for the Red Admiral butterfly Vanessa

atalanta. The question we investigate in this paper is whether a computer can learn to recog-

nise this species of butterfly from the textual description alone, and indeed can humans?

categories such as animal or plant species, detailed visual descriptions are readily available

in the form of online nature guides. An example of the level of description available in

such sources is shown in Figure 1. These descriptions are different from image captions

or conventional dictionary definitions in providing definitions of visual rather than semantic

properties of objects. Properties described are often both detailed and discriminative, includ-

ing aspects such as colours, shapes and patterns which are not found in ‘casual’ annotation

of images where the content is clear from the image itself.

We investigate the task of learning to recognise fine-grain categories, using species of

butterflies as an example. Addressing such categories is important in the aim of increas-

ing object recognition abilities beyond the current number of categories, and is particularly

salient as it becomes harder to find many example images as we move from coarse to fine-

grain categories. The method we propose here uses NLP methods to automatically extract

salient visual properties from naturally occurring English descriptions taken from an online

nature guide [6]. We investigate two main questions: (i) can a computer learn a model to

recognise each category from these textual descriptions alone? and (ii) can humans? We

learn models to recognise ten categories (species) of butterflies with no example images. We

compare our method against human performance given the same textual descriptions, and

obtain accuracy comparable to that of a non-native English speaker.

Related work. A number of authors have investigated using single keyword searches to

find example training images from the world wide web [2, 10, 17, 19], and refining results

using vision. Duygulu et al. [5] investigated learning from images annotated with a set of

keywords, posing the task as one of machine translation between ‘visual’ and textual words.

Gupta and Davis [13] have recently investigated using prepositions and comparative adjec-

tives e.g. “sky above road” in a machine translation approach. While certainly an advance

over using only keywords (nouns), as noted such annotation is not readily available, and

indeed the authors manually annotated their training images [13].

The use of text has also been investigated for learning recognition of individuals [3, 7].

Berg et al. [3] use linguistic cues including part-of-speech (PoS) tagging to find proper nouns

in text from news pages accompanying images. Everingham et al. [7] extract annotation from

automatically-aligned video subtitles and scripts, but use no linguistic processing. Work by

Laptev et al. [15] has also exploited script text, training classifiers to identify ‘actions’ in the

text to find training data for activity recognition.

Two pieces of work concurrent to ours [9, 14] have investigated recognition of object



WANG et al.: LEARNING OBJECT RECOGNITION FROM DESCRIPTIONS 3

Danaus Heliconius Heliconius Junonia Lycaena
plexippus charitonius erato coenia phlaeas

Nymphalis Papilio Pieris Vanessa Vanessa
antiopa cresphontes rapae atalanta cardui

Figure 2: Ten species of butterflies used in the experiments.

categories from named ‘attributes’ e.g. “black, furry, hooves”, supporting learning of new

object categories without example images. Farhadi et al. [9] train binary classifiers for a set

of 64 attributes and use these predicted attributes as features for object category recognition.

Lampert et al. [14] recognise new animal categories without training images by sharing at-

tributes learnt from other categories. Our work differs in that we extract attributes directly

from text, rather than requiring these to be specified manually [9, 14], and in that we inves-

tigate recognition of fine-grain categories, for which such text is readily available.

Overview. In Section 2 we describe the textual/image datasets collected for training and

testing respectively. Section 3 describes the NLP components of our method, which extract

a ‘template’ model of a category from a textual description. Section 4 covers the extraction

of visual attributes from a test image, and Section 5 the model used to ‘score’ an image

against the learnt template models. In Section 6 we report results of our proposed method

and human performance, and Section 7 offers conclusions.

2 Dataset

For the experiments reported here we selected ten categories (species) of butterflies. Butter-

flies are a salient domain to investigate since visually they have both distinctive and common

properties (see Figure 2). Compared to ‘top-level’ categories (person, car, bicycle, etc.) there

are few ‘global’ features, e.g. configuration of parts, which can be used to discriminate be-

tween species. To our knowledge, one previous work [16] has investigated visual recognition

of butterfly species, by matching local invariant features to training images. We collected nat-

ural text descriptions for each category from the eNature online nature guide [6]; examples

of the descriptions can be found in Figures 1 & 3 and are discussed further in Section 3.

For each of the ten categories we collected images to use as a test set from Google Im-

ages by querying with the Latin name of the species e.g. “Danaus plexippus”. The images

returned were manually filtered for those actually depicting the butterfly of interest. The

dataset comprises 832 images in total, with the distribution ranging from 55 to 100 images

per category. Figure 2 shows an example image for each category. As can be seen, sev-

eral categories are challenging to distinguish, sharing orange/black colours. There is also

considerable variation in illumination and pose.

3 Natural language processing

Our NLP approach extracts models from the textual descriptions obtained from eNature

(Figure 1). Although full natural language understanding (such as full summarisation of hu-
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Heliconius charitonius: 3-3 3/8" (76-78 mm). Wings long and narrow. Jet-black above, banded with lemon-yellow (sometimes

pale yellow). Beneath similar; bases of wings have crimson spots.

Junonia coenia: 2-2 1/2" (51-63 mm). Wings scalloped and rounded except at drawn-out FW tip. Highly variable. Above, tawny-

brown to dark brown; 2 orange bars in FW cell, orange submarginal band on HW, white band diagonally crossing FW. 2 bright

eyespots on each wing above: on FW, 1 very small near tip and 1 large eyespot in white FW bar; on HW, 1 large eyespot near upper

margin and 1 small eyespot below it. Eyespots black, yellow-rimmed, with iridescent blue and lilac irises. Beneath, FW resembles

above in lighter shades; HW eyespots tiny or absent, rose-brown to tan, with vague crescent-shaped markings.

Figure 3: Example textual descriptions obtained from eNature. Textual descriptions range

from brief to elaborate descriptions.

Description

1 3/4-2 1/4" (44-57 mm). FW tip extended, clipped. Above, black with orange-red to vermilion bars across FW and

on HW border. Below, mottled black, brown, and blue with pink bar on FW. White spots at FW tip above and below, bright blue

patch on lower HW angle above and below.

Ground truth template Learnt template

above fw colour : black above fw colour : black

above fw pattern : [red to vermilion] bars above fw pattern : [red to vermilion] bars

above fwm colour : above fwm colour :

above fwm pattern : [white] spots above fwm pattern : [white] spots

above hw colour : black above hw colour :

above hw pattern : above hw pattern :

above hwm colour : above hwm colour : black

above hwm pattern : [red to vermilion] bars; [blue] patch above hwm pattern : [red to vermilion] bars; [blue] patch

below fw colour : black brown blue below fw colour : black brown blue

below fw pattern : [pink] bar below fw pattern : [pink] bar

below fwm colour : below fwm colour :

below fwm pattern : [white] spots below fwm pattern : [white] spots

below hw colour : below hw colour :

below hw pattern : below hw pattern :

below hwm colour : below hwm colour :

below hwm pattern : [blue] patch below hwm pattern : [blue] patch

Figure 4: An example template, for Vanessa atalanta. fw and hw stand for Forewing and

Hindwing respectively, and fwm and hwm for Forewing Margin and Hindwing Margin re-

spectively. The left column shows the manually-filled ground truth template, while the right

shows the template automatically filled by our method. The disagreements between entries

in the ground truth and automatically filled templates are shown in bold.

man argumentation, for example) is beyond current NLP capabilities, considerable progress

has been made in the more limited task of information extraction, which turns unstructured

but local and factual information in text into structured data, so-called templates. As the

eNature texts tend to describe standard butterfly properties (such as colours and patterns) in

relatively stereotypical fashion, it is possible to both design templates describing the infor-

mation needed and to automatically fill these templates.

Templates. The templates used act as models of the visual attributes of a butterfly from

textual descriptions. They contain slots for various butterfly attributes including colours,

patterns and their location (such as the forewing or hindwing of the butterfly). An example

template is shown in Figure 4. Once the templates are filled automatically from the textual

descriptions, they can be used as models for our proposed classifier.

Template filling. We propose a framework to extract salient attributes from the butterfly

descriptions and to fill our templates automatically. To ensure resilience across different de-

scriptions from different sources, the text is processed with a generic and modular pipeline

as shown in Figure 5. The text is first tokenised into a list of word tokens. The sequence of
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Tokenisation
Part-of-Speech 

Tagging
Custom 

Transformation Chunking Template 
Filling

Above, black with orange-
red to vermilion bars 
across FW and on HW 
border.  Below, mottled 
black, brown, and blue 
with pink bar on FW.  

above  ,  black  with  orange  
-  red  to  vermilion  bars  
across  fw  and  on  hw  
border  .  below  ,  mottled  
black  ,  brown  ,  and  ,  
blue  with  pink  bar  on  
fw  .  

above/IN ,/, black/JJ with/IN 
orange/NN -/IN red/JJ to/TO 
vermilion/VB bars/NNS across/
IN fw/NN and/CC on/IN hw/
NN border/NN ./. below/IN ,/, 
mottled/VBN black/JJ ,/, brown/
JJ ,/, and/CC blue/JJ with/IN 
pink/JJ bar/NN on/IN fw/NN ./. 

[S above/RB ,/, [AP black/JJ ] 
with/IN [NP orange/JJ -/HYP 
red/JJ to/TO vermilion/JJ 
bars/NNS ] across/IN [NP fw/
NN ]  and/CC on/IN [NP hw/
NN border/NN ] ./. below/RB ,/, 
mottled/VBN [AP black/JJ ,/, 
brown/JJ ,/, and/CC blue/JJ ] 

above fw colour : black
above fw pattern : [red to vermilion] bars
above hwm colour : black
above hwm pattern : [red to vermilion] bars
below fw colour : black brown blue
below fw pattern : [pink] bar

above/RB ,/, black/JJ with/IN 
orange/JJ -/HYP red/JJ to/TO 
vermilion/JJ bars/NNS across/
IN fw/NN and/CC on/IN   hw/
NN border/NN ./. below/RB ,/, 
mottled/VBN black/JJ ,/, brown/
JJ ,/, and/CC blue/JJ with/IN 
pink/JJ bar/NN on/IN fw/NN ./.    

Figure 5: Pipeline for converting textual descriptions into templates. The input text is first di-

vided into tokens, then a Part-of-Speech (PoS) tagger computes PoS tags for each token. The

tags are modified by a list of rules to adapt to the specific style of the eNature descriptions.

Chunking is then performed to extract noun phrases (NP) and adjective phrases (AP). Finally

a template is filled by matching the resulting ‘chunks’ against a list of colours, patterns and

location terms.

tokens is then tagged with a part-of-speech (PoS) tagger, which labels each token in a given

text with a PoS tag, e.g. nouns (NN), adjectives (JJ) or verbs (VB). We used the freely avail-

able C&C tagger [4], which is a state-of-the-art tagger trained and used for newspaper texts

(on which most current taggers operate). The eNature butterfly descriptions, however, have

some genre-specific properties, such as a tendency to suppress subjects (“Dark with pale

margins.”) and verbs (“White spots at FW tip.”). As no tagged corpus of nature guides exists

which would allow us to retrain the tagger for that new genre, a few custom transforma-

tions adapt the output of the tagger to correct any known mistakes. These include handling

of butterfly-specific terms such as forewings and hindwings, changing all tokens matching

a predefined list of colours to adjectives and tagging all “above” and “below” as adverbs

(“Above, black with red bars”) unless they occur before an adjective or a noun where they

are tagged as prepositions (“red above border”).

Partial parsing is performed on the tagged text by chunking [1], which extracts ‘chunks’

of text matching a pre-specified tag sequence. We extract noun phrases (“wing has blue

spots”) and adjective phrases (“wings are black”). These extracted phrases are then filtered

through a list of colours and patterns, and mapped onto one or more template slots using

simple heuristics. Thus, the sentence containing the extracted attribute is searched for a

predefined list of location terms to decide on its location (top or bottom wings). Similarly,

a list of location terms such as “margin” is matched with surrounding words within the

clause containing the attribute to determine whether the attribute is located on the forewing

or hindwing, and whether it is located on either wing’s margin. Figure 4 shows an example

output template filled by our method and the comparison to the corresponding ground truth

template filled by hand. Over the ten categories the template-filling gives recall of 83% and

precision of 78%, where an entry is considered correct only if the location (above/below and

forewing/hindwing), colour and pattern terms match exactly.

4 Visual processing

This section describes the visual processing component of our approach, which extracts vi-

sual attributes of an image for matching against the models learnt from text. Our method

bases recognition on two simple visual attributes determined salient from the textual de-

scriptions: (i) dominant (wing) colour; (ii) coloured spots.
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Figure 6: Examples of semi-automatic segmentation: input image (left) and segmentation

result (right). Green and red points on the input image indicate the foreground/background

points specified by the operator. The operator clicked 2/0 and 6/6 foreground/background

points for the left and right images respectively.

Figure 7: Examples of spot detection. For clarity, detected spots are shown at 3 times the

scale of detection. Several false positives are visible, for example on the abdomen in the

leftmost image.

Image segmentation. In early experiments we found that significant challenges are posed

by variation in the background of the image, which are hard to overcome without training

images. Therefore as a first processing step the butterfly is segmented from the background.

As a pragmatic decision we use a semi-automated approach – learning a generic butterfly

model to support fully automatic segmentation would require many training images, and is

left for future work. We use the ‘star shape’ graph-cut approach proposed by Veksler [21].

In this method, pixels are assigned to foreground/background by solving a graph-cut con-

strained such that the resulting segmentation is a ‘star shape’ – from a given centre point

the foreground shape can be described by a set of rays from that point which cross the

foreground/background boundary exactly once; butterflies approximately satisfy this shape

property. To segment the image, the operator must specify the centre of the butterfly, and

can add additional points constraining parts of the image to be foreground or background.

Figure 6 shows example segmentations obtained with the constraint points marked (total of

2 and 12 for each image respectively). Over the entire dataset a median of 8 points per im-

age were marked to obtain high quality segmentations like the ones shown. We consider

this an acceptable level of supervision for applications e.g. a mobile nature field guide, and

the semi-automated approach avoids having to replicate humans’ prodigious experience and

ability in segmentation.

Spot detection. The presence of spots of a particular colour is a strong cue to identifying

butterfly species. Our method detects spots using a two step approach. First, candidate im-

age regions likely to be spots are extracted by applying the Difference-of-Gaussians (DoG)

interest point operator [18] to the image at multiple scales. In a second stage, image de-

scriptors are extracted around each candidate spot, and classified as ‘spot’ or ‘non-spot’.

As descriptors we use the SIFT descriptor [18] computed at three consecutive octave scales

around the interest point. A linear classifier trained using logistic regression is used. Figure 7

shows example spot detections; by setting a high threshold on the classifier few false positive

detections are observed, at the cost of some missed detections.

In order to train the spot classifier, training images are required. One approach [11] would
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be to use images obtained from a web search e.g. using the keyword “spots” [11]. However,

we find that even a concept as simple as ‘spot’ is domain-specific, for example spots on

butterflies little resemble the images returned by Google Images which include graphic de-

signs, skin conditions and sunspots. We therefore trained a ‘butterfly spot’ detector using

hand-marked butterfly images. Note, however, that no class information i.e. the category of

butterflies was used in this training process.

Colour modelling. Our learnt templates contain the names of dominant (wing) and spot

colours for a given butterfly category. In order to connect these names to image observa-

tions, models for each colour name are required. As in the case of spots, we found that

querying Google Images for colour names [20] in order to learn colour models gave poor

results, and so we instead learnt colour models specific to the butterfly domain. Differences

observed include ‘yellow’ which is used for anything from off-white to orange colours in

butterfly descriptions, compared to the canonical ‘buttercup’ hue. For each colour name ci

a probability distribution p(z|ci) was learnt from training images, where z is a pixel colour

observation in the perceptually uniform L*a*b* space. The distribution is modelled using a

simple Parzen density estimator with a Gaussian kernel. Note that as in the spot model, no

class information is used to learn the colour models.

5 Generative model
Given an input image the task of predicting the category of butterfly depicted is cast as one

of Bayesian inference, using a generative model for each of the ten butterfly categories.

Denoting the image I, the probability of observing that image given the butterfly category Bi

is defined as a product over spot observations S and ‘wing’ (other) colour observations W :

p(I|Bi) = p(S|Bi)p(W |Bi) (1)

We assume that spots are generated independently with colour according to a prior over

colour names specific to category Bi:

p(S|Bi) = ∏
j

∑
k

p(zs
j|c

s
k)P(cs

k|Bi) (2)

where zs
j is the observed L*a*b* colour of spot j, and p(z|c) is one of the models relat-

ing measurements to colour names, as detailed above. Note that we marginalise over the

category-specific spot colour name prior P(cs
k|Bi). The dominant colour of the butterfly is

captured by assuming non-spot pixels of the image to be generated from a second category-

specific colour name distribution P(cw
k |Bi):

p(W |Bi) = ∏
j

∑
k

p(zw
j |c

w
k )P(cw

k |Bi) (3)

where zw
j are L*a*b* observations of non-spot pixels, and again we marginalise over the

colour name distribution.

To specify the generative model requires two prior distributions P(cs
k|Bi) and P(cw

k |Bi)
over spot and dominant colour names respectively. These are specified by converting the

templates learnt from the textual descriptions (Section 3).

Spot colour name prior. For the spot model, the set of colour names in the template

is converted to a prior by assigning equal probability to each colour in the template. As an

example, if the template contains white spots and black spots, we assume that the probability

of each is 0.5. The prior is regularised to avoid zero probabilities by adding a small constant.
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Figure 8: Results of the human experiment. Confusion matrices are shown for (a) native

English speakers and (b) non-native English speakers. Numbers in cells are the percent-

age classification/misclassification rates. The overall balanced accuracy is 72% for native

English speakers and 51% for non-native English speakers.

Dominant colour name prior. To model the dominant colour attribute in our learnt tem-

plates, we need to convert this to a prior over colour names representing the concept that we

expect ‘most of’ the butterfly pixels to be generated by this colour model. This is captured

by defining the prior P(cw
k |Bi) as a mixture of two components:

P(cw
k |Bi) = αP(cw

k |Θ
d
i )+(1−α)P(cw

k |Θ
o
i ) (4)

where P(cw
k |Θ

d
i ) denotes the prior over colour names for the dominant colour, which is set

to 1 for the corresponding template colour, and zero for all others; P(cw
k |Θ

o
i ) denotes the

prior over colour names for ‘other’ colours and is set uniformly for all other colour names

appearing in the template. As an example, if the template contains a dominant colour of

‘orange’ and other colours ‘black’ and ‘white’ then P(cw
k |Θ

d
i ) is 1 for orange and zero for all

other colours, and P(cw
k |Θ

o
i ) is 0.5 for black and white.

The parameter α controls how much of the image is expected to be explained by the

dominant colour. Rather than setting this to an arbitrary value we define a hyper-prior over

its value and marginalise. We use a Beta distribution with parameters a = 8 and b = 4. This

captures that we expect on average around 2/3 of the image to be the dominant colour, and

with 90% probability at least 50% of the image.

Classification. For each butterfly category, the corresponding learnt template is converted

to prior distributions over colour names as described above. By evaluating the likelihood of

the image p(I|Bi) under each model, the image is then classified by assigning it the category

Bi which maximises the likelihood – lacking further information, we assume that the prior

over butterfly categories P(Bi) is uniform.

6 Experimental results

We report here the results of two sets of experiments: (i) performance of humans on the

task of recognising butterflies from textual descriptions; (ii) performance of our proposed

method.
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Balanced Accuracy

Human
Non-native English speakers 51.0%

Native English speakers 72.0%

Ground truth templates

Spot colours only 39.1%

Dominant colours only 40.0%

Spots + Dominant colours 56.3%

Learnt templates

Spot colours only 39.1%

Dominant colours only 35.3%

Spots + Dominant colours 54.4%

Table 1: Results of (i) use of ground truth vs. automatically filled templates; (ii) combination

of visual attributes. The results show moderate reduction in accuracy arising from errors in

the automatic template filling. The individual visual attributes (spots and dominant colour)

perform similarly to each other, with the combination improving accuracy substantially.

Human performance. Human performance was measured in order to establish the dif-

ficulty of recognising butterflies from textual descriptions, since humans might reasonably

be considered to exhibit ‘upper-bound’ performance on this task. The experiment was con-

ducted via a web-page, with participants mainly drawn from Computer Science staff and

students at the University of Leeds. The web-page displayed (i) the description of one of the

ten categories, picked at random; (ii) a set of ten images of butterflies, one per category, again

picked at random. Participants were requested to select the image of the butterfly described.

In addition, participants were asked to indicate whether they were native English speakers,

and if they considered themselves an ‘expert’ on butterflies. Each participant was limited to a

single trial to prevent learning from the images. Participants took 60–350 seconds (10th/90th

percentiles) to complete the task, reflecting its challenging nature.

There were 253 participants in total, comprising 201 native and 52 non-native English

speakers. Butterfly ‘experts’ were excluded from the experiment. Figure 8 shows the con-

fusion matrices obtained across all participants. The balanced accuracy for native English

speakers is 72% while the accuracy for non-native English speakers is much lower at 51%.

The results show the difficulty of the task at hand even for humans. The category Heliconius

charitonius (see Figure 2) proved most difficult to recognise from the provided description

for both native (31% accuracy) and non-native English speakers (17% accuracy). In this

case the poor accuracy can be accounted for by two deficiencies in the description (Figure 3,

top): (i) the description is brief, including little discriminatory information; (ii) the “lemon-

yellow” bands described in the text most often appear white in the image, and are confused

with the white spotted bands of Papilio cresphontes (see Figure 2).

Proposed method. The proposed method was evaluated on the same butterfly dataset used

in the human experiment. We first compare classification results using models built from the

learnt templates and ground truth templates respectively, to examine the effect of errors in the

templates arising from the imperfect NLP methods. Figure 9 shows the confusion matrices

for both schemes. The average balanced accuracy using models from learnt templates is

54.4%, substantially better than chance (10%), and comparable to the performance of non-

native English speakers (51%). The accuracy exceeded 80% for four out of the ten categories.

As in the human experiment the category Heliconius charitonius proved problematic, with

no images of this category being correctly categorised. The reason is similar to the human

confusion for this category – the ‘yellow’ bands are misclassified as white, and the spots

clearly visible in the images (see Figure 2) are not mentioned in the description (Figure 3,
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Figure 9: Results of the proposed method. The confusion matrices for classifiers using

(a) ground truth templates and (b) automatically learnt templates are shown. The balanced

accuracy is 56.3% and 54.4% respectively. Accuracy varies greatly over the categories – see

text for discussion.

top), causing additional confusion with the white spots of Vanessa atalanta.

Errors in the automatically learnt templates have a modest effect on the overall accu-

racy: 56.3% (ground truth) vs. 54.4% (automatic). An example error in the learnt templates

occurred for Junonia coenia (Figure 3, bottom). The description “Eyespots black, yellow-

rimmed” is incorrectly parsed as a pair of dominant colours black and yellow, resulting in an

incorrect colour model.

Table 1 summarises the mean accuracy across all categories for each experiment, addi-

tionally comparing the accuracy of the proposed method using either of the visual attributes

(spot and dominant colours) in isolation, and in combination. Each attribute in isolation

performs similarly – 39.1% for spots and 35.3% for dominant colour. The two attributes

prove complementary, with the combined accuracy being 54.4%. This suggests that it will

be fruitful to add further attributes, for example patterns, by extending the visual processing

to other properties of the learnt templates.

7 Conclusions and future work

We have proposed methods for learning models of object categories from readily available

natural language descriptions in online nature guides, and showed that using NLP methods

allows extraction of visually salient attributes from such text. Our method achieved moder-

ate accuracy for 10 categories of butterflies, interestingly comparable to a non-native English

speaker in our human experiment. Future work will concentrate on four aspects: (i) improved

information extraction from text; (ii) combining information from multiple texts and more

general corpora; (iii) more complete vision models learnt with weaker supervision; (iv) ef-

fectively combining text information with a few images. We believe the latter – a judicious

combination of rich information from text with a small training set will always outperform

learning of models from text alone.
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