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Abstract

This paper offers a new approach to learning discrete models for human-robot interaction (HRI) 

from small data. In the motivating application, HRI is an integral part of a pediatric rehabilitation 

paradigm that involves a play-based, social environment aiming at improving mobility for infants 

with mobility impairments. Designing interfaces in this setting is challenging, because in order to 

harness, and eventually automate, the social interaction between children and robots, a behavioral 

model capturing the causality between robot actions and child reactions is needed. The paper 

adopts a Markov decision process (MDP) as such a model, and selects the transition probabilities 

through an empirical approximation procedure called smoothing. Smoothing has been successfully 

applied in natural language processing (NLP) and identification where, similarly to the current 

paradigm, learning from small data sets is crucial. The goal of this paper is two-fold: (i) to 

describe our application of HRI, and (ii) to provide evidence that supports the application of 

smoothing for small data sets.

I. INTRODUCTION

Research on pediatric rehabilitation over the last decade has been focusing on HRI as a way 

to improve skills in children who face social and communication challenges [1]–[3]. These 

studies suggest, for example, that children with autism are able to socially engage in play 

activities with interactive robots, and even sometimes prefer this type of interaction over that 

with adults or computer games [4]. Building on this idea, the work of this paper is set in a 

context where HRI is to be exploited to serve a different population, with relevant objectives. 

The (early) rehabilitation paradigm here focuses on motor skills. The paper is novel in using 

HRI to promote another fundamental skill in early development; that is, the ability to 

locomote (mobility), for very young children (<2 years) with motor impairments.

Early independent locomotion is highly linked to changes in infants’ perception, spatial 

knowledge, social, and language development [5]–[8]. Once infants start moving, they begin 

to perceive the environment in fundamentally different ways [9]. Populations with delays at 

their onset of independent locomotion, such as infants diagnosed with Down syndrome [10], 

[11], have fewer opportunities for self-initiated exploration of their environment and 

interactions with peers. However, when they are presented with an opportunity for social 

interaction, they are more responsive compared to children with primarily social 

impairments, such as children with autism [12]. The hypothesis in this paper is that using 
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HRI with this population may be advantageous in terms of promoting locomotor ability, and 

potentially self-initiated exploratory and social actions.

To apply HRI in this paradigm, this work involves scenarios that match the infants’ abilities 

and interests based on their age and level of impairment [7], [13], [14]. These scenarios are 

play activities that may or may not require complex actions from the infants (e.g. climb an 

inclined platform or a staircase in order to reach and interact with the robot). Since infants 

are sometimes required to act beyond their level of ability, a body-weight support system 

was added to potentially assist their movement [13]. One of the primary goals of this early 

rehabilitation paradigm is to increase the duration and frequency of the infants’ locomotor 

actions by controlled infant-robot interaction. Achieving this interaction in a safe, exciting, 

and effective manner through automation, brings about an interesting HRI problem.

The HRI problem at hand involves some automated decision-making: what should the robot 

do to keep the infant moving? In this case, the particular instance of decision- making is 

arguably more challenging than in other HRI applications primarily for two reasons: (i) the 

automation system is called to interact with a very young population, and (ii) the automation 

system is called to effectively work in a much more complex and dynamic environment, 

compared to that typically used in other HRI pediatric studies [4].

Indeed, infants’ behavior and response to automation can vary much more compared to older 

children and adults. There is significant between- and within-subject variability that may be 

attributed to the rapid developmental processes during the first two years of human 

development [15]. However, in this paradigm, the level of variability may be altered by the 

infants’ motor impairments and the complex tasks in the environment they are ‘asked’ to 

perform [16]. In this case, exploration of locomotion may produce unpredictable atypical 

and unique patterns. In addition to the above, available data for such complex interactions 

are extremely scarce. There is a need for developing models that can capture the infants’ 

actions and intentions in such environments, and under these constraints.

For human intent prediction, Markovian models have been successfully applied in other HRI 

applications. A Markovian model like a Partially Observable Markov Decision Process 

(POMDP) [17] encodes human intention as hidden states, and treats human actions as 

observables. A timed POMDP model has been proposed [18] for an automated car to learn 

socially appropriate behaviors in Pittsburgh-left application scenarios involving human-

driven cars. Other related work focuses on updating inaccurate POMDP priors based on 

observations using maximum likelihood (ML) [19]. A common thread in these approaches is 

an underlying assumption on rational human behavior and large amount of observation data. 

Furthermore, the POMDP model is very demanding in terms of computation (NEXP-

complete), and even infinite horizon versions of such problems can be shown to be 

undecidable under different optimality criteria [20].

A Mixed Observability Markov Decision Process (MOMDP) may present a better option in 

terms of computational complexity. An MOMDP considers components of states, rather than 

the whole state, as being unobservable, and has been used for intention-aware robot motion 

planning [21]. In this application, states of robots and humans are treated as observable, and 
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it is only human intention that is treated as unobservable, assuming that humans follow 

specific strategies which are known. Optimal policies for robots are then computed by 

forming a belief over human intention. In slightly different instances of applications of 

MOMDPs in HRI [22], the class of human subjects is considered as the unobservable 

variable. While it is true that in general MOMDPs drastically decrease the complexity of the 

problem, they usually require fully known submodels for each one of the unobservable 

variables. In other words, in an MOMDP formulation if the unobservable variable (human 

intention, for instance) becomes known, then the whole (human) behavior is determined as 

well: given the human intention, one can directly predict every human action. Implied in this 

derivation is that humans are still assumed to reason rationally.

An MDP is a model that may seem simplistic compared to POMDPs and MOMDPs, but it 

has also been utilized in HRI applications [23], [24]—perhaps not in the degree that the 

aforementioned models have. Where it lacks in refinement, however, an MDP gains in 

computational expediency, since it has a smaller number of tunable parameters. This type of 

model has been used in a multi-user social HRI context [23], and in space applications [24]. 

In the latter case, the system starts from an inaccurate prior and through observations tries to 

update the MDP, but because of the size of the model the update process is restricted to 

select out of a finite set of parameters. When the true values of the model parameters are 

indeed in that finite set, then the model update will eventually converge to the real model 

[25].

In the particular application scenario treated in this paper, neither an accurate prior, nor a 

sufficiently large body of observations can be assumed. For this reason, a process is sought 

for updating the model in real time, and take into account every single observation available 

at the time where robot action decisions have to be made. With speed and adaptability being 

the focus, therefore, this paper brings together for the first time in an HRI context an MDP 

modeling formulation with a computationally efficient machine learning technique called 

smoothing [26]. Smoothing, a technique traditionally applied in the domain of NLP, is 

designed to operate and “interpolate” over sparse data sets; it is used here to approximate the 

unknown parameters of the MDP with an accuracy that a naive ML algorithm is not able to 

match. The paper demonstrates that it is possible to construct and learn an abstract model of 

human behavior in the form of an MDP from very small data sets, in a way that shows 

promise for closing feedback control loops in real-time, computing interaction policies that 

incorporate knowledge derived from the latest available observations.

II. TECHNICAL APPROACH

This section formalizes an abstract model for HRI in the context of pediatric early mobility 

rehabilitation, combines this model with a machine learning technique that has been proven 

successful in the area of NLP from relatively small bodies of text, and finally, it outlines a 

general approach to behavior planning for the robot.

The model of choice here is an MDP. This is a model of computation that can represent a 

discrete dynamical system meaningfully that takes a sequence of actions with uncertain 

outcomes, trying to maximize some notion of utility (its total reward) [21]. This model is 
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deemed appropriate for the following reasons. First, it can abstractly capture important 

features of HRI in the form of states, actions, and transition between states, in a probabilistic 

manner that can relate to the uncertainty associated with human behavior. Second, when 

appropriately designed, this model can be made conveniently simple and abstract, to present 

the designer with a limited set of parameters that need to be tuned, and in this way facilitate 

the learning process. The construction of such a model for robot-assisted pediatric 

rehabilitation is detailed in Section II-A that follows.

In terms of the second component mentioned, the technique of choice is smoothing [26]. 

Smoothing will be brought to bear to identify the parameters of the MDP, and specifically, 

its transition probabilities. Those transition probabilities are assumed to capture the infant’s 

action preferences in response to robot actions. The learning algorithm will be updating (on-

line) estimates on those transition probabilities, based on observations of robot action and 

infant action pairs, assuming implicitly some causality between the former and the latter. 

And although typically one would perform such a parameter update with more conventional 

methods such as ML and with formal guarantees of convergence [27], the training data size 

required to obtain convergence is unreasonably big for pediatric rehabilitation applications. 

In fact, the approximation of the probabilities with maximum likelihood after the (small) 

amount of observations typically obtained over four to eight clinical sessions are usually 

very crude and inaccurate. Smoothing, on the other hand, which is a machine learning 

technique primarily used in NLP [26] to compensate for sparsity in data and give a fair 

approximation of parameters of the real system, seems to have a better chance of succeeding 

on small data sets. Statistical learning theory [27] defines small data sets as those where the 

ratio of the number of training examples n to the VC dimension d of the target concept class 

is smaller than an (arbitrary) constant, say n/d < 20. While smoothing does not guarantee 

convergence or fair approximation for very small data, it typically provides better 

approximations than ML in practice. Details on the adaptation and application of smoothing 

on MDPs modeling HRI in the current pediatric early rehabilitation paradigm are provided 

in Section II-B. Section II-C is outlining the utilization of the outcome of the learning 

algorithm for optimally regulating robot behavior aiming at maximizing infant mobility in 

the form of being robot-triggered or facilitated.

A. Prior model construction

The MDP model is supposed to abstractly encode in its states the possible configurations 

that infant and robot can find themselves in. These configurations are thought of as the 

activities that each of the two “players” in this game are engaged to. Each activity, or action, 

of one player is expected to have a response, or reaction, by the other. For example a robot 

may move toward the infant, and seeing that the infant may try to get closer, move away, or 

simply do nothing. Viewing the interaction at this (high) level, and wanting to distinguish 

between pairs of activities by the corresponding players, indicates that the states in the 

intended model should encode combinations of activities of infant and robot.

There are therefore two interacting dynamical systems and one is interested in combinations 

of states of these two systems. This sounds like a parallel composition [28] of two transition 

systems: one describing evolutions, or sequences of activity transitions on the robot, and 
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another, similar, on the child. Let us therefore define two separate MDPs, one for the robot, 

Mr and one for the young child Mc, with state and action sets (Sr, Ar) and (Sc, Ac) 

respectively, and a reward function R from states to reals that encourages behaviors that 

enhance rehabilitation objectives—for instance, time in motion, or distance traveled—and 

penalizes inactivity or disengagement. States, therefore, in which the child is moving will 

naturally produce higher rewards than states where the child stands still. Let the parallel 

composition of Mr and Mc be denoted M, having state set S and action set A, and reward 

function be an extension of R onto Sr × Sc.

The underlying transition system of M is what we would call the arena (e.g. underlying 

graph) of a two-player game [29]. It has the structure of a bipartite graph, where players 

(child and robot) take turns executing transitions. In this system, however, only one type of 

transitions are controllable: those of the robot. The child’s transitions are uncontrollable and 

in M they are modeled as random ones, with initially unknown transition probabilities. 

These transition probabilities will be the target of the learning algorithm.

Since there is a fundamental difference between behaviors of different children, there is no 

basis for assuming that one M model would work for all cases. For each particular subject, 

therefore, MDP M is initialized with the probabilities associated with the transitions 

triggered by the child all equal to zero. As observations are made during the course of the 

rehabilitation sessions, these probabilities will be updated. But initially, the graph of M has 

several disconnected components, with the states in each (fully) connected component 

sharing the same child’s state (see Fig. 1). There are (controllable) transitions between any 

two states in a connected component, but no transitions from a state in one component to a 

state in another.

B. Learning model parameters from observed behavior

Model M is key to effectively regulating the interaction between human and automation 

during the rehabilitation session. The key idea is to update and refine M on-line based on 

observations of child’s reaction to robot actions. This section describes the approach to 

updating the parameters of M, i.e., the transition probabilities.

The updating, or learning, process for M adds increasingly more links to the initial group of 

isolated cliques (see Fig. 1). An intuitive choice of update on the transition probabilities, 

rooted in ML, is to estimate them as the ratio of times that this particular transition has been 

observed, over the total number of transitions taken by the child as a response to robot’s 

actions. The problem with such an ML approximation approach to the child’s transition 

probabilities is that it requires a significant amount of data (number of total transitions) in 

order to achieve adequate degree of convergence. And the amount of data that can be 

collected from a young child is by default limited; infants develop fast, and after a certain 

time interval data cease to be representative of the child’s particular developmental stage.

Smoothing is designed to compensate for sparsity in a learning data set. Quite common in 

early applications of NLP, it was shown to interpolate much more effectively compared to 

other contemporary methods [26]. Motivated by its success in NLP, this paper uses Kneser-
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Ney smoothing to learn the unknown transition probabilities in MDPs from small sets of 

observations.

To use Kneser-Ney smoothing, which operates on subsequences of letters, or symbols, the 

transitions in M will be considered as pairs of states, or bi-gram elements: subsequences of 

length two. For a transition that takes the system from si−1, to si, for example, the 

subsequence will be of the form si−1si. The learning algorithm thus keeps a record of the 

frequency of those subsequences that correspond to observed child’s transitions. If the 

frequency of occurrence of a transition from s′ to s″ upon action a is ca(s′s″), With s′ and 

s″ representing arbitrary states, and |·| denoting the cardinality of a set, Kneser-Ney 

smoothing approximates the probability of actually reaching state si upon executing action a 
using the following expression [26]

(1)

and with a discount constant parameter δ ∈ (0, 1), and a normalizing constant

(2)

it assigns probabilities to all possible si−1si transitions—i.e., even those that haven’t been 

observed:

(3)

Note that smoothing can also be used in semi-Markov models where the probabilities 

depend on two or more recent states and/or actions [26].

C. Model-based decision making

The goal of the automated system is to choose a sequence of actions that maximizes the 

expected total reward , with γ in the role of a discount factor that reflects the 

preference of immediate rewards over future ones, and using t to denote the discrete time 

step, and st, at the state and action taken at time t, respectively. A standard method is called 

Q-learning [30].

Application of Q-learning on MDP M yields an optimal policy π : S → A which maximizes 

the expected total reward. Given a relatively small MDP representing the child-robot social 

interaction dynamics, one can update the model and adjust the strategy on-line: each time 

the smoothing algorithm updates the parameters of the MDP, a new optimal strategy can be 

computed.
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An ε-greedy exploration approach balances exploration with exploitation. The robot 

explores available action options with probability εt(s), and chooses optimal action based on 

available information with probability 1 − εt(s). Then it is ensured [30] that if 

with 0 < c < 1 and N(st) with denoting the number of times state st has been visited, then 

learning policy will satisfy the “greedy in the limit with infinite exploration” property.

The whole learning and decision-making process described so far is summarized in 

Algorithm 1.

Algorithm 1

Learning and decision making loop.

Input: set of states S, set of actions A, prior transition probabilities Pa(si|si−1), reward function R(s), coefficient c.

Set: N(s) = 0, N(s; a) = 0, N(s′; s; a) = 0, εt(s) = 0, ∀s ∈ S, ∀a ∈ A; current state st.

Do

 • N(st) := N(st) + 1

 • εt(st) := c/N(st)

 • Q-learning (current MDP):

  − with probability 

  − with probability 

 • N(st; at) := N(st; at) + 1

 • Observe new state sn

 • N(sn; st; at) := N(sn; st; at) + 1

 • Update transition probabilities:

  – if maximum likelihood: 

  – if Kneser-Ney smoothing: (3)

 • st ← sn

End

III. SIMULATION RESULTS

This section presents simulation results of the combined on-line learning and decision-

making approach to regulating robot behavior in HRI within a play-based pediatric motor 

rehabilitation environment. The HRI context is that of a game played between the child and 

the robot, where each player is trying to “chase” and “catch” the other, and the roles of 

pursuer and evader switching depending on the distance between child and robot.

A. Early rehabilitation paradigm description

The key insight here is that in order to keep the child engaged and participating, the system 

has to be responsive, adaptive and excite interest. Thus the robot tries to engage the child in 

games of chase. One simple game is when the two players start standing on a straight line 

facing each other. The goal for the robot is to make the child chase it. If the child does not 
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respond the roles reverse: the robot becomes “it” and closes the distance with the child until 

the child is intrigued to start chasing the robot again. From an algorithmic perspective, the 

problem is to find out what preferences does the particular child has in this game, and based 

on these preferences develop game strategies to secure the maximum possible engagement—

the latter quantified by periods of time where the human subject were in motion.

B. Model construction and identification

This section illustrates how the prior model of Section II-A for the game of chase can be set 

up to capture some essential aspects of HRI in the considered application of robot-assisted 

pediatric rehabilitation, and how this model can be refined based on observations during the 

course of the particular rehabilitation task: cover a distance of X feet in a straight line, 

crawling or walking—depending on the developmental stage. The model parameters are 

identified in two ways, which are then compared to establish the effectiveness and accuracy 

of each: ML and smoothing.

The prior model of Section II-A consists of two components: the robot’s state machine with 

state set Sr = {F, S, B} and action set Ar = {f, s, b}, and the child’s state machine with state 

set Sc = {N, G} and action set Ac = {n, g}. The semantics of these symbols is as follows: 

Symbol F stands for the robot moving forward (toward the child), S denotes the state where 

the robot stands still, and B represents the condition where the robot moves backward (away 

from the child). Symbols {f, s, b} express the robot actions that give rise to transitions to 

states F, S, and B, respectively. On the human side, symbol G stands for the child making 

progress toward her goal of X feet of distance, and N for not making progress. Similarly, g 
and n are thought of as actions taken by the child and resulting in transitions to states G and 

N, respectively. The parallel composition of these two state machines then gives rise to the 

transition system of Fig. 1.

In the system of Fig. 1, the objective is to reach and remain at the states drawn in the lower 

portion of the figure, sharing the state component G, which stands for the child making 

progress toward its rehabilitation task goal. As a result, those states are assigned to higher 

rewards compared to the ones above sharing the N component. In fact, states (B, G) and (S, 
G) are relatively more desirable compared to (F, G), because in the latter the robot is 

“spending its capital,” which is its distance to the child, and is thus reducing its future 

reaction options. The former two states therefore are weighted higher than the latter in the 

reward function.

The transition probability matrix Pa(s′|s) that represents the chance of jumping from any 

state s to a state s′ upon the robot executing an action a ∈ {f, s, b} is expressed now for a 

given state, say si in the form

(4)

dropping the inner parentheses from states (,) to simplify notation. The prior, initial values 

for the probabilities in (4) are set to
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(5)

with the matrices understood in reference to Fig. 1, having, as elements the probabilities of 

reaching the particular state from the state in Fig. 1 that is drawn in the same graphical 

arrangement as that of the element in the matrix. For example, the probability of reaching (F, 
N) from states (F, N), (S, N) and (B, N) is 1, whereas that of reaching (F, N) from (F, G), (S, 
G) and (B, G) is zero.

The true, actual transition probabilities are assumed to be

(6)

but these matrices are unknown to the automation system. The parameters of (6) are used to 

generate simulated observation data for the learning algorithm, and serve as a standard for 

comparing the performance of the parameter approximation methods.

C. Model learning

Now Algorithm 1 is employed to refine the prior model of Fig. 1 initialized with (5). Five 

thousand simulated observations are produced, to form a data sample that is considered here 

as relatively big. Both ML and smoothing are used to estimate the unknown transition 

probabilities, and the results are tabulated in Table I.

In general, Table I suggests that both ML and smoothing perform equally well on relatively 

large data sets. (In the particular case of learning the transition probabilities of the MDP of 

Fig. 1, the VC dimension is estimated at 36.) The difference, however, is stark on much 

smaller data sets. A different test is now conducted on a set of just fifty simulated 

observations, and the results are listed in Table II.

It is clear from Table II that smoothing outperforms ML on small data sets. With fifty 

observations the latter has barely changed the inaccurate prior, whereas smoothing has 

already provided accurate rough approximations of the actual probabilities. As it can be 

expected, the discrepancy in the respective approximations is reflected in the effectiveness of 

the decision-making algorithm that reasons based on those estimates. Table III lists the Q-

values computed based on the learning outcomes of Table II, and compares them to those 

that would have been computed if the actual, true model were known a priori. The entries of 

the Q-matrix express the utility of executing the action a (which indexes the column as {f, s, 
b} respectively) at the state s (which indexes the row as {F, N; S, N; B, N; F, G; S, G; B, G} 
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respectively). Despite the apparent roughness of the smoothing approximation in Table II, 

decision-making based on these learning outcomes leads to optimal action in five out of the 

six cases. Since in five states, the maximum Q-value occurs at the same action as for the 

actual model. In comparison, the ML estimates lead to optimal decision only in one out of 

six cases.

IV. CONCLUSIONS

The results reported provide evidence supporting the development of algorithms with the 

potential of automating robot-assisted early intervention paradigms that combine mobility 

and socialization. It is possible to construct an abstract, discrete, model of human behavior 

incrementally from small data set, by adapting techniques drawn from natural language 

processing. Decision-making algorithms based on such methods are capable of 

outperforming alternative standard techniques for learning the parameters of such discrete 

models for HRI. The ultimate goal is to incorporate HRI in the field of early mobility 

rehabilitation and potentially provide high-dosage personalized training in a variety of 

environments under conditions where human- provided services, although ideal, may not be 

possible.
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Fig. 1. 
Prior MDP graph for game of chase between robot and child.
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TABLE III

Q-VALUES AFTER 50 OBSERVATIONS

Models based on Q-values

Actual Model

4.0964 2.3376 3.8181

4.1493 2.0402 3.7279

4.1262 2.2370 3.6254

5.5992 4.5893 7.0582

5.4711 4.7350 6.7306

5.7833 4.6284 7.1082

Kneser-Ney Smoothing

4.0675 4.2799 5.2671

5.4228 2.9256 4.6509

4.5232 4.0293 4.5206

6.0414 5.4814 7.9313

5.4722 6.6547 7.7858

6.2522 4.7164 8.1482

Maximum likelihood

2.3474 2.6601 3.9026

3.1998 2.4951 5.2598

2.3914 2.5565 5.7405

6.9909 8.0786 6.8522

6.7610 7.8980 8.0994

6.8986 5.9486 5.7857
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