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1 Introduction

Designing robots that learn by themselves to perform
complex real-world tasks is a still-open challenge for
the field of Robotics and Artificial Intelligence. While
powerful and very general learning techniques readily
exist that—at least in principle—enable robots to learn
complex tasks, most of them suffer from their enor-
mous sample complexity, a limitation that prohibits
their application in most realistic robot applications.
Learning more accurate functions from less data is
thus a key issue in robot learning.

This paper investigates robot learning in a lifelong
learning framework. In lifelong learning, the learner
faces an entire collection of learning tasks, not just
a single one. Thus, it provides the opportunity for
synergy among multiple tasks. To obtain this synergy,
the central question in lifelong learning is: How can a
learner re-use knowledge gathered in its previous n�1
learning tasks to reduce the sample complexity in its
n-th? In other words: How can the learner transfer
knowledge across multiple tasks?

Recent research has produced a variety of methods
that transfer knowledge across learning tasks (see lit-
erature review in [6]). Such methods learn domain-
specific knowledge, and use it to guide generalization
in subsequent learning tasks. However, these methods
weigh previous learning tasks equally strongly—thus,
they may fail when only a small subset of learning tasks
is related appropriately. In this paper we describe a se-
lective approach to lifelong learning, the TC algorithm
(short for task clustering), which we just have begun to
explore in our lab [7]. TC transfers knowledge across
multiple tasks by adjusting the distance metric in near-
est neighbor generalization. To increase robustness to
unrelated tasks, TC arranges all learning tasks hierar-
chically. When a new learning task arrives, TC relates
it to the task hierarchy, in order to transfers knowledge
selectively from the most related tasks only. As a re-
sult, TC is more robust than its unselective counterpart
(which would transfer knowledge from all available
tasks). Thus far, TC has been successfully applied to
perception tasks involving visual and ultrasonic input,
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using our mobile robot XAVIER1.

2 The TC Algorithm

The TC algorithm has been designed to support fast
learning of large sets of similar classification tasks:

1. Nearest neighbor generalization. At the underly-
ing function approximation level, the TC algorithm
uses nearest neighbor for generalization (see e.g.
[5]).

2. Adjusting the distance metric. TC uses a globally
weighted Euclidean distance metric:

distd (x ; y) =

sX
i

d(i)
�
x(i) � y(i)

�2
:

Hered denotes an adjustable vector of weighting fac-
tors. TC transfers knowledge across tasks by adjust-
ing d for some tasks, then re-using it in others. This
is done by minimizing the distance between training
examples that belong to the same class, while maxi-
mizing the distance between training examples with
opposite class labels:

E(d) =
X
x;y

�xy distd(x ; y)

where

�xy =

(
1 if class(x) = class(y)
�1 if class(x) 6= class(y)

Notice that the idea of tuning a distance metric is
well-established (see e.g. [1, 4, 2, 3]). TC applies
these ideas to the transfer of knowledge (concerning
the importance of input features) across multiple
learning tasks.

3. Estimating the task transfer matrix. Obviously,
using theE-optimal distance metric obtained for one
task when learning another task will only improve
the results when both tasks demand a similar fea-
ture weighting. To determine the degree to which
tasks are related to each other, TC computes the task
transfer matrix

C = (cn;m)

1World Wide Web: http://www.cs.cmu.edu/�Xavier



Figure 3: Task hierarchy. Notice that early on, the task hierarchy separates the three
different task types. The related task cluster, f2; 4; 5; 6g, is identified whenT � 3 clusters
are available.

which contains a value cn;m for each pair of learning
tasks n and m. The value cn;m is the expected
generalization accuracy for task n when using m’s
E-optimal distance metric. Each element cn;m is
estimated via k-fold cross-validation.

4. Clustering learning tasks. TC clusters allN learn-
ing tasks into T � N bins, denoted by A1; : : : ; AT ,
by minimizing

J =
1
N

TX
t=1

X
n2At

1
jAtj

X
m2At

cn;m:

J measures the averaged estimated generalization
accuracy that is obtained when task n 2 At uses the
E-optimal distance metrics of another task m 2 At

in the same cluster. In other words, minimizing J

groups those tasks together that are most related.

5. Constructing the task hierarchy. By repeating
the clustering process for different values of T , TC
constructs a hierarchy of task clusters (see example
in the next section). Notice that each task cluster
defines its own E-optimal distance metric (Step 2
above).

6. Transfer to novel tasks. When a new task arrives,
TC first determines the most related task cluster,
then uses the E-optimal distance metric of that task
cluster for nearest neighbor generalization in the new
task. In other words, TC selects the most related
cluster of tasks and transfers knowledge from this
cluster only.

3 Example and Results

Figure 1 shows a database collected using our mobile
robot XAVIER. Here the “new” task involves distin-
guishing open from closed doors (Figure 1e,f). TC can
exploit distance metrics learned in 12 previous learn-
ing tasks, all of which involve the recognition of peo-
ple. Four of those tasks use the same encoding as the
door status recognition tasks (hence are well-related),
whereas the other eight tasks use different encodings
(they are unrelated; in fact, transfer from those hurts
the performance. See [7] for details). The task transfer
matrix is shown in Figure 2. Each entry in this matrix
indicates the effect of transferring knowledge from a
task n to another task m. The first line corresponds to
the “new” task. Here white boxes indicate an increase
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Figure 4: Performance results. (a) Error as a function of training examples. (b) Reduction in sample complexity. All results are averaged
over 100 experiments. The bars indicate confidence intervals.

in generalization accuracy, whereas black boxes indi-
cate a decrease. As can be seen in Figure 2, the testing
tasks benefits most from the tasks called 2, 4, 5, and
6, which are the tasks with the same input encoding.
Figure 3 depicts the entire task hierarchy, obtained by
clustering the task space using different numbers of
clusters T . Notice that TC discovers the different in-
put encodings, which are found in different branches
of the hierarchy.

Figure 4a shows performance results, comparing (1)
regular nearest neighbor without transfer (thin curve in
Figure 4a), (2) unselective transfer not using the task
hierarchy (grey curve), and (3) selective transfer in TC
(thick curve). Obviously, unselective transfer performs
only slightly better than plain nearest neighbor, basi-
cally because most tasks are unrelated. If knowledge
is transferred selectively, nearest neighbor generalizes
much more accurately from less data. The reduction in
sample complexity is captured in 4b, which shows the
result of a series of statistical comparisons of this error
obtained when using the regular vs. the TC distance
metric, for varying numbers of training examples. In
the grey area the regular weighted (E-optimal) distance
metric is superior at the 95% confidence level. In the
dividing dark region between both methods generalize
about equally well. As the main result, TC requires
only approximately a third of the training examples
required without transferring knowledge.

4 Summary

In lifelong learning, the learner faces an entire collec-
tion of related learning tasks. This paper shows how
hierarchical structure can be discovered in the space
of learning tasks, and how it can be used to selectively
transfer knowledge to other, new learning tasks, in or-
der to boost generalization. The results indicate that

(a) more can be learned from less data if knowledge
is transferred from previous learning tasks, and (b)
selectively transferring knowledge is superior to unse-
lective transfer—unless, of course, all tasks are indeed
appropriately related to the new learning task.

These results are well in tune with other results ob-
tained in robot perception, robot control and game
playing domains [6], which illustrate that a lifelong
learner can generalize more accurately from less data
if it transfers knowledge acquired in previous learning
tasks.
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