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1 Introduction

Designing robots that learn by themselves to perform
complex real-world tasks is a still-open challenge for
thefield of Roboticsand Artificia Intelligence. While
powerful and very genera learning techniques readily
exist that—at least in principle—enablerobotsto learn
complex tasks, most of them suffer from their enor-
mous sample complexity, a limitation that prohibits
their application in most realistic robot applications.
Learning more accurate functions from less data is
thus a key issue in robot learning.

This paper investigates robot learning in a lifelong
learning framework. In lifelong learning, the learner
faces an entire collection of learning tasks, not just
a single one. Thus, it provides the opportunity for
synergy among multipletasks. To obtain this synergy,
the central questionin lifelong learning is. How can a
learner re-use knowledge gathered initspreviousn — 1
learning tasks to reduce the sample complexity in its
n-th? In other words: How can the learner transfer
knowledge across multipletasks?

Recent research has produced a variety of methods
that transfer knowledge across learning tasks (see lit-
erature review in [6]). Such methods learn domain-
specific knowledge, and use it to guide generalization
in subsequent learning tasks. However, these methods
weigh previous learning tasks equally strongly—thus,
they may fail when only asmall subset of |earning tasks
isrelated appropriately. In thispaper we describe a se-
lective approach to lifelong learning, the TC algorithm
(short for task clustering), which wejust have begunto
explorein our lab [7]. TC transfers knowledge across
multipl e tasks by adjusting the distance metricin near-
est neighbor generalization. To increase robustness to
unrelated tasks, TC arranges al learning tasks hierar-
chically. When anew learning task arrives, TC relates
it to thetask hierarchy, in order to transfers knowledge
selectively from the most related tasks only. As are-
sult, TC ismorerobust than its unsel ective counterpart
(which would transfer knowledge from all available
tasks). Thusfar, TC has been successfully applied to
perception tasks involving visua and ultrasonic input,
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using our mobile robot XAVIER?.

2 TheTC Algorithm

The TC agorithm has been designed to support fast
learning of large sets of similar classification tasks:

1. Nearest neighbor generalization. At the underly-
ing function approximation level, the TC algorithm
uses nearest neighbor for generalization (see eg.

[5D).

2. Adjusting the distance metric. TC usesaglobally
weighted Euclidean distance metric:

disty(z,y) = ¢Zd<i> (20— )7

Hered denotesan adjustabl evector of weighting fac-
tors. TC transfers knowledge across tasks by adjust-
ing d for sometasks, thenre-using it in others. This
isdone by minimizing the distance between training
examples that bel ong to the same class, while maxi-
mizing the distance between training examples with
opposite class labels:

E(d) = Z&w disty(z, y)

x7y

where

A {1 if class(x) = class(y)
w T ) -1 if class(x) # class(y)

Notice that the idea of tuning a distance metric is
well-established (see eg. [1, 4, 2, 3]). TC applies
theseideasto the transfer of knowledge (concerning
the importance of input features) across multiple
learning tasks.

3. Estimating the task transfer matrix. Obviously,

using the £’-optimal distancemetric obtained for one
task when learning another task will only improve
the results when both tasks demand a similar fea-
ture weighting. To determine the degree to which
tasksare related to each other, TC computesthe task
transfer matrix

C =

(€n,m)
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Figure 3: Task hierarchy. Notice that early on, the task hierarchy separates the three
different task types. Therelated task cluster, {2, 4, 5, 6}, isidentifiedwhenT" > 3clusters

are available.

which containsavaluec,, ,,, for each pair of learning
tasks » and m. The vaue ¢, ., is the expected
generalization accuracy for task » when using m’s
E-optimal distance metric. Each element ¢, ,,, isS
estimated via k-fold cross-validation.

. Clustering learning tasks. TC clustersall N learn-

ing tasksinto 7" < N bins, denoted by A1, ..., A,

by minimizing
1

J:ﬁiz

t=1n€EA;

g Crym-

1
|At meEAt
J measures the averaged estimated generalization
accuracy that isobtained whentask n € A; usesthe
F-optimal distance metrics of another task m € A;
in the same cluster. In other words, minimizing .J

groups those tasks together that are most related.

. Constructing the task hierarchy. By repeating
the clustering process for different values of 7', TC
constructs a hierarchy of task clusters (see example
in the next section). Notice that each task cluster
defines its own E-optimal distance metric (Step 2
above).

6. Transfer to novel tasks. When anew task arrives,
TC first determines the most related task cluster,
then usesthe F'-optimal distance metric of that task
cluster for nearest neighbor generalizationinthenew
task. In other words, TC selects the most related
cluster of tasks and transfers knowledge from this
cluster only.

3 Example and Results

Figure 1 shows a database collected using our mobile
robot XAVIER. Here the “new” task involves distin-
guishing open from closed doors (Figure 1ef). TC can
exploit distance metrics learned in 12 previous learn-
ing tasks, al of which involve the recognition of peo-
ple. Four of those tasks use the same encoding as the
door status recognition tasks (hence are well-related),
whereas the other eight tasks use different encodings
(they are unrelated; in fact, transfer from those hurts
the performance. See|[7] for details). Thetask transfer
matrix isshown in Figure 2. Each entry in this matrix
indicates the effect of transferring knowledge from a
task n to another task m. Thefirst line correspondsto
the“new” task. Here white boxesindicate an increase
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Figure 4: Performanceresults. (a) Error asafunction of training examples. (b) Reductionin sample complexity. All results are averaged

over 100 experiments. The barsindicate confidenceintervals.

in generalization accuracy, whereas black boxes indi-
cate adecrease. Ascan be seenin Figure 2, thetesting
tasks benefits most from the tasks called 2, 4, 5, and
6, which are the tasks with the same input encoding.
Figure 3 depicts the entire task hierarchy, obtained by
clustering the task space using different numbers of
clusters T'. Notice that TC discovers the different in-
put encodings, which are found in different branches
of the hierarchy.

Figure 4a shows performance results, comparing (1)
regular nearest neighbor without transfer (thin curvein
Figure 4q), (2) unselective transfer not using the task
hierarchy (grey curve), and (3) selectivetransfer in TC
(thick curve). Obviously, unselectivetransfer performs
only slightly better than plain nearest neighbor, basi-
cally because most tasks are unrelated. If knowledge
istransferred selectively, nearest neighbor generalizes
much more accurately fromlessdata. Thereductionin
sample complexity is captured in 4b, which showsthe
result of aseriesof statistical comparisonsof thiserror
obtained when using the regular vs. the TC distance
metric, for varying numbers of training examples. In
thegrey areatheregular weighted (F-optimal) distance
metric is superior at the 95% confidence level. In the
dividing dark region between both methods generalize
about equally well. As the main result, TC requires
only approximately a third of the training examples
required without transferring knowledge.

4 Summary

In lifelong learning, the learner faces an entire collec-
tion of related learning tasks. This paper shows how
hierarchical structure can be discovered in the space
of learning tasks, and how it can be used to selectively
transfer knowledge to other, new learning tasks, in or-
der to boost generalization. The results indicate that

(8 more can be learned from less data if knowledge
is transferred from previous learning tasks, and (b)
selectively transferring knowledgeis superior to unse-
lective transfer—unless, of course, all tasks areindeed
appropriately related to the new learning task.

These results are well in tune with other results ob-
tained in robot perception, robot control and game
playing domains [6], which illustrate that a lifelong
learner can generalize more accurately from less data
if it transfers knowledge acquired in previous learning
tasks.
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