
S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, "Learning Movement Primitives," in In-

ternational Symposium on Robotics Research (ISRR2003), Springer Tracts in Advanced

Robotics. Ciena, Italy: Springer, 2004.

Learning Movement Primitives

Stefan Schaal1,2, Jan Peters1, Jun Nakanishi2, Auke Ijspeert1,3

1 Computational Learning and Motor Control Laboratory, Computer Science and Neurosci-

ence, University of Southern California, Los Angeles, CA 90089-2520, USA
2 Dept. of Humanoid Robotics and Computational Neuroscience, ATR Computational Neu-

roscience Laboratory, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, 619-0288 Kyoto, Japan
3 School of Computer and Communication Sciences, EPFL, Swiss Federal Institute of

Technology Lausanne, CH 1015 Lausanne, Switzerland

Abstract. This paper discusses a comprehensive framework for modular motor control

based on a recently developed theory of dynamic movement primitives (DMP). DMPs are a

formulation of movement primitives with autonomous nonlinear differential equations,

whose time evolution creates smooth kinematic control policies. Model-based control

theory is used to convert the outputs of these policies into motor commands. By means of

coupling terms, on-line modifications can be incorporated into the time evolution of the

differential equations, thus providing a rather flexible and reactive framework for motor

planning and execution. The linear parameterization of DMPs lends itself naturally to

supervised learning from demonstration. Moreover, the temporal, scale, and translation

invariance of the differential equations with respect to these parameters provides a useful

means for movement recognition. A novel reinforcement learning technique based on

natural stochastic policy gradients allows a general approach of improving DMPs by trial

and error learning with respect to almost arbitrary optimization criteria. We demonstrate the

different ingredients of the DMP approach in various examples, involving skill learning

from demonstration on the humanoid robot DB, and learning biped walking from

demonstration in simulation, including self-improvement of the movement patterns towards

energy efficiency through resonance tuning.

1 Introduction

With the advent of anthropomorphic and humanoid robots [e.g., 1], a large number

of new challenges have been posed to the field of robotics and intelligent systems.

Lightweight, highly complex, high degree-of-freedom (DOF) bodies defy accurate

analytical modeling such that movement execution requires novel methods of

nonlinear control based on learned feedforward controllers [e.g., 2], a control

strategy that is also particularly needed since high gain control is not a viable al-

ternative due to frequent contacts of the robot with an unknown environment.

Movement planning in high dimensional motor systems offers another challenge.

While efficient planning in typical low dimensional industrial robots, usually

characterized by three to six DOFs, is already a complex issue [3, 4], optimal

planning in 30 to 50 DOF systems with uncertain geometric and dynamic models

is quite daunting, especially in the light of the required real-time performance in a

reactive robotic system. As one more point, advanced sensing, using vision, tactile

sensors, acoustic sensors, and potentially many other sources like olfaction, dis-

2

tributed sensor networks, nanosensors, etc., play a crucial role

in advanced robotics. Besides finding reliable methods of

processing in such sensor rich environments, incorporating the

resulting information into the motor and planning loops in-

creases the above-mentioned complexity of planning and

control even more.

One of the fundamental questions, common to many of the

above issues, revolves around identifying movement primi-

tives [e.g., 5]. The existence of movement primitives seems,

so far, the only possibility how one could conceive that

autonomous systems can cope with the complexity of motor

control and motor learning [5-7]. Developing a theory of con-

trol, planning, learning, and imitation with movement primi-

tives is therefore currently a rather prominent topic in both

biological and robotic sciences. In the following sections, we will first sketch our

idea of Dynamic Movement Primitives, originally introduced in [8-10], illustrate

their potential for planning, movement recognition, perception-action coupling,

imitation learning, and general reinforcement learning, and exemplify this frame-

work in various applications from humanoid robotics with the humanoid robot DB

(Figure 1) and simulation studies.

2 Dynamic Movement Primitives

The goal of motor learning can generally be formulated in terms of finding a task-

specific control policy:

u = x, t,() (1)

that maps the continuous state vector x of a control system and its environment,

possibly in a time t dependent way, to a continuous control vector u. The parame-

ter vector denotes the problem specific adjustable parameters in the policy .

Given some cost criterion that can evaluate the quality of an action u in a particu-

lar state x, dynamic programming, and especially its modern relative, reinforce-

ment learning, provide a well founded set of algorithms of how to compute the

policy for complex nonlinear control problems. Unfortunately, as already noted

in Bellman’s original work, learning of becomes computationally intractable for

even moderately high dimensional state-action spaces.

As a potential way to simplify learning control policies, research has turned to-

wards a more macroscopic representation of policies in form of movement primi-

tives, or, more precisely policy primitives [11]. Movement primitives are param-

eterized policies that can achieve a complete movement behavior. Planning com-

plex movement based on a small number of such movement primitives can avoid

the combinatorial complexity of motor learning in high dimensional movement

systems. Thus, a key research topic, both in biological and artificial motor control,

revolves around the topics: what is a good set of primitives, how can they be for-

malized, how can they interact with perceptual input, how can they be adjusted

autonomously, how can they be combined task specifically, and what is the origin

Figure 1: The hu-

manoid robot DB

3

of primitives? In order to address these

questions, we suggest to resort to some

of the most basic ideas of dynamic

systems theory. A dynamic system can

generally be written as a differential

equation:

 ˙ x = f x, , t() (2)

which is almost identical to Equation

(1), except that the left-hand-side de-

notes a change-of-state, not a motor command. Such a kinematic formulation is,

however, quite suitable for motor control if we conceive of this dynamic system as

a kinematic planning policy, whose outputs are subsequently converted to motor

commands by an appropriate standard controller (Figure 2) [12]. It should be

noted, however, that a kinematic representation of movement primitives is not

necessarily independent of the dynamic properties of the limb. Proprioceptive

feedback can be used to on-line modify the attractor landscape of a DMP in the

same way as perceptual information [13-15]. Figure 2 indicates this property with

the “perceptual coupling” arrow — the example in Section 3.2 will clarify this is-

sue.

The two most elementary behaviors of nonlinear dynamic systems are point at-

tractive and limit cycle behaviors, paralleled by discrete and rhythmic movement

in motor control. The idea of dynamic movement primitives (DMP) is to exploit

well-known simple formulations of such attractor equations to code the basic be-

havioral pattern (i.e., rhythmic or discrete), and to use statistical learning to adjust

the attractor landscape of the DMP to the detailed needs of the task. As will be

outlined in the next section, several appealing properties, such as perception-

action coupling and reusability of the primitives, can be accomplished in this

framework.

2.1 Planning with DMPs

The key question of DMPs is how to formalize nonlinear dynamic equations such

that they can be flexibly adjusted to represent arbitrarily complex motor behaviors

without the need for manual parameter tuning and the danger of instability of the

equations. We will sketch our approach in the example of a discrete dynamic sys-

tem for reaching movements — an analogous development holds for rhythmic

systems.

Assume we have a basic point attractive system, for instance, instantiated by

the second order dynamics

˙ z = z z g y() z(), ˙ y = z + f (3)

where g is a known goal state,
z
 and

z
 are time constants, is a temporal

scaling factor (see below) and y , ˙ y correspond to the desired position and velocity

generated by the equations, interpreted as a movement plan. For appropriate pa-

rameter settings and f=0, these equations form a globally stable linear dynamic

system with g as a unique point attractor. Could we find a nonlinear function f in

Feedforward
Controller

uff

ufb
+

+

+

–

θdesired
Feedback
Controller

θ
u

Movement
Primitive

Task Specific
Parameters

Perceptual
Coupling

Plant

Figure 2: Sketch of a control diagram with

dynamic movement primitives.

4

Equation (3) to change the rather trivial exponential convergence of y to allow

more complex trajectories on the way to the goal? As such a change of Equation

(3) enters the domain of nonlinear dynamics, an arbitrary complexity of the re-

sulting equations can be expected. To the best of our knowledge, this problem has

prevented research from employing generic learning in nonlinear dynamic systems

so far. However, the introduction of an additional canonical dynamic system (x,v)

˙ v = v v g x() v(), ˙ x = v (4)

and the nonlinear function f

f x,v,g() = iwiv
i=1

N

i

i=1

N

, where i = exp hi
x

g
c i

2

(5)

alleviates this issue. Equation (4) is a second order dynamic system similar to

Equation (3), however, it is linear and not modulated by a nonlinear function.

Thus, its monotonic global convergence to g can be guaranteed with a proper

choice of
v
 and

v
, e.g., such that (4) is critically damped. Assuming that all

initial conditions of the state variables x, v, y, z are zero, the quotient x / g [0,1]

can serve as a phase variable to anchor the Gaussian basis functions
i
 (charac-

terized by a center c i and bandwidth hi), and v can act as a “gating term” in the

nonlinear function (5) such that the influence of this function vanishes at the end

of the movement. If the weights w
i
 in (5) are bounded, the combined system in

(3), (4), and (5) asymptotically converges to the unique point attractor g.

It is not the particular instantiation in Equations (3), (4), and (5) what is the

most important idea of DMPs, but rather it is design principle. A DMP consists of

two sets of differential equations: a canonical system

˙ x = h x() (6)

and a transformation system

˙ y = g y, f x()() (7)

The canonical system needs to generate two quantities: a phase variable x, and a

phase velocity v, i.e., x = [x v]
T . The phase x is a substitute for time and allows

us anchoring our spatially localized basis functions (5). The appealing property of

using a phase variable instead of an explicit time representation is that we can ma-

nipulate the time evolution of phase, e.g., by additive coupling terms or phase re-

setting (cf. Section 3.2) — in contrast, time cannot be manipulated easily. The

phase velocity v is a multiplicative term in the nonlinearity (5). If v is set to zero,

the influence of the nonlinearity vanishes in the transformation system, and the

dynamics of the transformation system with f=0 dominate its time evolution. In

the design of a DMP, we usually choose a structure for canonical and transforma-

tion systems that are analytically easy to understand, such that the stability prop-

erties of the DMP can be guaranteed. The transformation system makes use of f to

generate the desired movement represented in the variables y. In the following, we

give the equations for the canonical and transformation systems for another for-

mulation of a discrete system, and also a rhythmic system.

5

A Discrete Acceleration DMP

The canonical system and the function approximator are identical to Equation (4)

and Equation (5), respectively. The transformation system is:

˙ z = z z r y() z() + f , ˙ y = z, ˙ r = g g r() (8)

This set of equations moved the nonlinear function into the differential equation of

ż . Thus, ˙ z ,z, y can be interpreted as the desired acceleration, velocity, and posi-

tion, i.e., ˙ ̇ y , ˙ y , y , generated by the DMP. In order to ensure a continuous accelera-

tion profile for ˙ ̇y , we had to introduce a simple first order filter for the goal state

in the ṙ equation – if
z
 and

z
 are chosen for critical damping, i.e.,

z
=

z
/ 4 ,

then g = z / 2 is a suitable time constant for the ṙ equation for a three-fold re-

peated eigenvalue of
1,2,3

=
z
/ 2 of the linear system in Equation (8) with f=0.

The advantage of this “acceleration” DMP is that it can easily be used in conjunc-

tion with an inverse model controller that requires a continuous desired accelera-

tion signal.

A Phase Oscillator DMP

By replacing the point attractor in the canonical system with a limit cycle oscilla-

tor, a rhythmic DMP is obtained [9]. Among the simplest limit cycle oscillators is

a phase-amplitude representation:

˙ r =
r

A r(), ˙ = 1 (9)

where r is the amplitude of the oscillator, A the desired amplitude, and its

phase. For this case, Equation (5) is modified to

f r,() = iw i

T
v

i=1

N

i

i=1

N

, where v = r cos ,r sin[]
T

and i = exp hi mod ,2() c i()
2()

(10)

The transformation system in Equations (3) remains the same, except that we now

identify the goal state g with a setpoint around which the oscillation takes place.

Thus, by means of A, , and g , we can independently control amplitude, fre-

quency, and setpoint of an oscillation.

2.2 Imitation Learning with DMPs

An important issue is how to learn the weights wi in the nonlinear function f that

characterize the spatiotemporal path of a DMP. Given that f is a normalized basis

function representation with linear parameterization [e.g., 16], a variety of learn-

ing algorithms exist to find w i. Let us assume we are given a sample trajectory

ydemo (t), ˙ y demo (t), ˙ ̇ y demo (t) with duration T, e.g., as typical in imitation learning [5].

Based on this information, a supervised learning problem results with the follow-

ing target for f:

� For the transformation system in Equation (3), using g = ydemo (T) :

f target = ˙ y demo zdemo where ˙ z demo = z z g ydemo() zdemo() (11)

� For the transformation system in Equation (8)

6

f target = ˙ ̇ y demo z z r ydemo() ˙ y demo() (12)

In order to obtain a matching input for f target , the canonical system needs to be

integrated. For this purpose, in Equation (4), the initial state of the canonical sys-

tem is set to v = 0, x = ydemo (0) before integration. An analogous procedure is per-

formed for the rhythmic DMP. The time constant is chosen such that the DMP

with f=0 achieves 95% convergence at t=T. With this procedure, a clean super-

vised learning problem is obtained over the time course of the movement to be ap-

proximated with training samples (v, f target) (cf. Equations (5) and (10)). For

solving the function approximation problem, we chose a nonparametric regression

technique from locally weighted learning (LWPR) [17] as it allows us to deter-

mine the necessary number of basis functions N, their centers c i , and bandwidth

hi automatically.

2.3 Reinforcement Learning of DMPs

While imitation learning provides an excellent means to start a movement skill at a

high performance level, many movement tasks require trial-and-error refinement

until a satisfying skill level is accomplished. From the viewpoint of DMPs, we

need non-supervised learning methods to further improve the weights w={w i},

guided by a general reward or optimization criterion. We assume that an arbitrary

optimization criterion J governs our learning process, such that it is not possible to

obtain analytical gradients dJ /dw . Thus, the gradient needs to be estimated from

empirical data. Levenberg-Marquardt and Gauss-Newton algorithms are a possible

choice for this task [18] – however, both algorithms often dare large jumps in pa-

rameter space under the assumption that an aggressive exploration of parameters is

permissible, and are not very robust in stochastic settings. As an alternative, we

developed a novel reinforcement learning algorithm, the Natural-Actor Critic

(NAC) [19]. The NAC is a stochastic gradient method, i.e., it injects noise in the

control policy to provide the necessary exploration for learning. We will illustrate

the NAC algorithm in the context of the acceleration DMP in Section 3.2.

The DMP in Equation (8) can be interpreted as creating an acceleration com-

mand ˙ ̇ y = ˙ z in the top equation of (8). In the NAC, this acceleration command is

treated as the mean of a Gaussian control policy

˙ ̇ y | x,v,z, y() = 1 2
2

exp
1

2
2

˙ ̇ y ˙ ̇ y ()
2

 (13)

with variance
2
. Given a reward r(˙ ̇ y , x,v, y,z) at every time step of the move-

ment, the goal of learning is to optimize the expected accumulated reward

J w() = E r
ti=0

T{ } where the expectation is take with respect to all trajectories

starting at the same start state and following the stochastic policy above. As de-

veloped in detail in [19], the natural gradient d ˜ J / dw
i
 can be estimated by a linear

regression procedure:

7

Define for one

roll - out r :
 Rr = rt ,r

t=0

T

 and r =
log ˙ ̇ y t |, x t ,v t , y t ,z t() / w

1

t=0

T

r

After multiple roll- outs,

compute ˜ J / dw :
 =

1

T

2

T

M

,R =

R1

R2

M

,
˜ J / dw

c

 =

T()
1

T
R

(14)

where c is the regression parameter corresponding to the constant offset in the re-

gression. The natural gradient is a more efficient version of the regular gradient

that takes into account the Riemannian structure of the space in which the optimi-

zation surface lies [20]. The above algorithm can also be formulated as a recursive

estimation method using recursive least squares [21], and the variance
2
 of the

stochastic policy can be included in the parameters to be optimized. By updating

w with gradient ascent (or descent) according to the natural gradient estimate, fast

convergence to a locally optimal parameterization can be accomplished.

2.4 Miscellaneous Issues of DMPs

Several other issues of DMPs are worth mentioning:
� Invariance Properties of DMPs: In all the different DMP variants above, the weights

wi determine the particular shape of the trajectories realized by the DMP, the parame-

ter the speed of a movement, and some other parameters like g or A the amplitude of

the movement. In order to exploit the property that DMPs code kinematic control poli-

cies, i.e., the plans can theoretically be re-used in many parts of the workspace, it is

desirable that DMPs retain their qualitative behavior if translated and if scaled in space

or time. From a dynamic systems point of view, we wish that the attractor landscape of

a DMP does not change qualitatively after scaling, a topic addressed in the framework

of “topological equivalence” [22]. It can easily be verified, that if a new DMP is cre-

ated by multiplying , g, or A in any of the DMPs above by a factor c, a simple multi-

plication of all state variables and change-of-state variables by a factor c or c con-

stitutes the required homeomorphism to proof topological equivalence.

� Multiple Degree-of-Freedom DMPs: So far, our treatment of DMPs focused on sin-

gle degree-of-freedom (DOF) systems. An extension to multiple DOFs is rather

straightforward. The simplest form employs a separate DMP for every DOF. Alterna-

tively, all DMPs could share the same canonical system, but have separate transfor-

mation systems, as realized in [23]. In this case, every DOF learns its own function f.

By sharing the same canonical system, very complex phase relationships between in-

dividual DOFs can be realized and stabilized, for instance, as needed for biped loco-

motion in the examples in Section 3.3.

� Superposition of DMPs: Given that DMPs create kinematic control polices, a super-

position of DMPs to generate behaviors that are more complex is possible. For in-

stance, a discrete DMP could be employed to shift the setpoint of a rhythmic DMP,

thus generating a point-to-point movement with a superimposed periodic pattern. For

example, with this strategy is possible to bounce a ball on a racket by producing an os-

cillatory up-and-down movement in joint space of the arm, and use the discrete system

to make sure the oscillatory movement remains under the ball such that the task can be

accomplished [e.g., 13, 24]. Other forms of superposition are conceivable, and future

work will evaluate the most promising strategies.

8

� Movement Recognition with DMPs: The invariance properties described above ren-

der the parameters w of a DMP insensitive towards movement translation and spatial

and temporal scaling. Thus, the w vector can serve as a classifier for DMPs, e.g., by

using nearest neighbor classification or more advanced classification techniques [e.g.,

16]. In [10], we demonstrated how DMPs can be used for character recognition of the

Palm Pilot graffiti alphabet.

3 Evaluations

The following sections give some examples of the abilities of DMPs in the context

of humanoid robotics. We implemented our DMP system on a 30 DOF Sarcos

Humanoid robot (Figure 1). Desired position, velocity, and acceleration informa-

tion was derived from the states of the DMPs to realize a computed-torque con-

troller (Figure 2). All necessary computations run in real-time at 420Hz on a mul-

tiple processor VME bus operated by VxWorks.

3.1 Imitation Learning

In [10], we demonstrated how a complex tennis forehand and tennis backhand

swing can be learned from a human teacher, whose movements were captured at

the joint level with an exoskeleton. In [9], imitation learning for a rhythmic tra-

jectory using the phase oscillator DMP from Section 2.1 was evaluated. All DMPs

referred to the same canonical system (cf. Section 2.4). Very complex phase rela-

tionships between the individual DOFs could be realized, and switching between

different movement amplitudes and frequencies was easily accomplished by

changing the appropriate parameters of the DMP. Due to space constraints, we ask

to refer the reader to [8, 9, 23] for detailed explanations and illustrations.

3.2 Reinforcement Learning

In a preliminary application of the rein-

forcement learning method of Section 2.3,

we optimized the weights of the accelera-

tion DMP to create smooth joint-level tra-

jectories in the spirit of 5th order polynomi-

als [e.g., 25, 26]. The reward per trajectory

was

R = 1000 y T() g()2

+ ˙ y
2

T()() + ˙ ̇ y
2

t()
t=0

T

Weights of each DMP were initialized to

zero. Each movement started at y=0 and

moved within 500ms to g=1. Figure 3 il-

lustrates the convergence of the Natural

Actor Critic algorithm in comparison to a non-natural gradient method, Episodic

Reinforce [27]. The NAC algorithm converges smoothly with about one order of

magnitude faster performance than Episodic Reinforce. Smooth bell-shaped ve-

locity profiles of the DMP are reached after about 150-200 trials, which is compa-

Figure 3: Convergence of Natural Actor

Critic reinforcement learning for learning

the weights of a DMP.

9

rable to human learning in related tasks [28]. This initial evaluation demonstrates

the efficiency of the NAC algorithm for optimizing DMPs, although more thor-

ough evaluations are needed for various reward criteria and also multi-DOF tasks.

3.3 Learning Resonance Tuning in Biped Locomotion

As a last evaluation of DMPs, we applied the phase oscillator DMP to simulated

biped locomotion [29] of a planar biped (Figure 4). Motion capture data from hu-

man locomotion was employed to learn an initial trajectory pattern, which, after

some modest tuning of the speed and amplitude parameters of the DMP achieved

stable locomotion. Consider the following update law for the phase and frequency

of the canonical system of the DMP in at the moment of heel-strike:

˙ = ˆ n + t t
heel strike() heel strike

robot(); ˆ n+1 = ˆ n + K
measured

n ˆ n() (16)

where is the Dirac delta function, n is the number of steps, = 1/ , and

heel strike

robot is the phase of the mechanical oscillator (robot) at heel strike defined as

heel strike

robot
= 0 at the heel strike

of the leg with the corre-

sponding oscillator, and

heel strike

robot
= at the heel strike

of the other leg.
measured

n is

the measured frequency of lo-

comotion defined by
measured

n
= /T

n

, where

T
n
 is the time for one step of

locomotion (half period with

respect to the oscillator). This

equation introduces phase re-

setting of the DMP at heel-

strike as long as the natural

frequency of the robot does

not correspond to the natural frequency of the canonical system of the DMP; more

details can be found in [29]. Figure 5 depicts the time course of adaptation of the

movement frequency of the DMPs

for the right leg DOFs due to the up-

date law above. The frequency

gradually increases until it reaches

approximately resonance frequency

of the simulated robot legs. This

simulation provides a nice example

how imitation learning can initially

be used to start a movement skill,

and self-improvement can optimize

the pattern for the particular inertial

and geometric structure of the robot.

Figure 4: Four rhythmic DMPs drive the four actuated

joints of a planar biped simulation, consisting of two hip

and two knee joints. A PD controller is used to track the

trajectories generated by the DMPs.

Figure 5: Time course of trajectories of right leg

DOFs using the phase resetting adaptation law.

The movement frequency slowly increases until

resonance tuning is accomplished.

10

4 Conclusion

This paper described research towards generating flexible movement primitives

out of nonlinear dynamic attractor systems. We focused on motivating the design

principle of appropriate dynamic systems such that discrete and rhythmic move-

ments could be learned for high-dimensional movement systems. In particular, we

emphasized methods of imitation learning and reinforcement learning for acquir-

ing motor skills with movement primitives. We also described some implementa-

tions of our methods of dynamic movement primitives on a complex anthropo-

morphic robot, demonstrating imitation learning of complex rhythmic movement,

re-using of learn skills in related situations, and resonance tuning for biped loco-

motion. We believe that the framework of dynamic movement primitives has a

tremendous potential for understanding autonomous generation of complex motor

behaviors in humans and humanoids.

Acknowledgments
This research was supported in part by National Science Foundation grants ECS-0325383, IIS-0312802, IIS-0082995, ECS-0326095,
ANI-0224419, a NASA grant AC#98-516, an AFOSR grant on Intelligent Control, the ERATO Kawato Dynamic Brain Project funded

by the Japanese Science and Technology Agency, and the ATR Computational Neuroscience Laboratories. A.I. is supported by a Young

Professorship Award from the Swiss National Science Foundation.

References
1. Menzel, P. and F. D'Alusio, Robosapiens: Evolution of a new

species. 2000: Cambridge, MA: MIT Press.

2. Nakanishi, J., J.A. Farrell, and S. Schaal, Composite adaptive

control with locally weighted statistcal learning. International

Journal of Robotics Research, submitted.

3. LaValle, S.M., Planning algorithms. 2003.

4. Latombe, J.-C., Robot motion planning. 1991, Boston: Kluwer

Academic Publishers. xviii, 651 p.

5. Schaal, S., Is imitation learning the route to humanoid robots?

Trends in Cognitive Sciences, 1999. 3(6): p. 233-242.
6. Schaal, S., Learning robot control, in The handbook of brain

theory and neural networks, 2nd Edition, M.A. Arbib, Editor.

2002, MIT Press: Cambridge, MA. p. 983-987.

7. Schaal, S., Arm and hand movement control, in The handbook

of brain theory and neural networks, 2nd Edition, M.A. Arbib,

Editor. 2002, MIT Press: Cambridge, MA. p. 110-113.

8. Ijspeert, A., J. Nakanishi, and S. Schaal. Trajectory formation

for imitation with nonlinear dynamical systems. in IEEE Inter-

national Conference on Intelligent Robots and Systems (IROS

2001). 2001.

9. Ijspeert, A., J. Nakanishi, and S. Schaal, Learning attractor

landscapes for learning motor primitives, in Advances in Neural

Information Processing Systems 15, S. Becker, S. Thrun, and K.

Obermayer, Editors. 2003, Cambridge, MA: MIT Press.

10. Ijspeert, J.A., J. Nakanishi, and S. Schaal. Movement imitation

with nonlinear dynamical systems in humanoid robots. in Inter-

national Conference on Robotics and Automation (ICRA2002).

2002. Washinton, May 11-15 2002.

11. Sutton, R.S., D. Precup, and S. Singh, Between MDPs and semi-

MDPs: a framework for temporal abstraction in reinforcement

learning. Artificial Intelligence, 1999. 112: p. 181-211.

12. Craig, J.J., Introduction to robotics. 1986, Reading, MA:

Addison-Wesley.
13. Rizzi, A.A. and D.E. Koditschek. Further progress in robot

juggling: Solvable mirror laws. in IEEE International Confer-

ence on Robotics and Automation. 1994. San Diego, CA.

14. Schaal, S. and D. Sternad. Programmable pattern generators. in

3rd International Conference on Computational Intelligence in

Neuroscience. 1998. Research Triangle Park, NC.

15. Williamson, M., Neural control of rhythmic arm movements.

Neural Networks, 1998. 11(7-8): p. 1379-1394.
16. Bishop, C.M., Neural networks for pattern recognition. 1995,

New York: Oxford University Press.

17. Vijayakumar, S. and S. Schaal. Locally weighted projection re-

gression: An O(n) algorithm for incremental real time learning

in high dimensional spaces. in Proceedings of the Seventeenth

International Conference on Machine Learning (ICML 2000).

2000. Stanford, CA.
18. Press, W.P., et al., Numerical recipes in C – The art of scientific

computing. 1989, Cambridge, MA: Press Syndiacate University

of Cambridge.

19. Peters, J., S. Vijayakumar, and S. Schaal. Reinforcement learn-

ing for humanoid robotics. in Humanoids2003, Third IEEE-RAS

International Conference on Humanoid Robots. 2003.

Karlsruhe, Germany, Sept.29-30.
20. Amari, S., Natural gradient learning for over- and under-

complete bases In ICA. Neural Comput, 1999. 11(8): p. 1875-

83.

21. Ljung, L. and T. Söderström, Theory and practice of recursive

identification. 1986: Cambridge MIT Press.

22. Jackson, E.A., Perspectives of nonlinear dynamics, Vol.1. 1989,

New York: Cambridge University Press.

23. Ijspeert, J.A., J. Nakanishi, and S. Schaal. Learning rhythmic

movements by demonstration using nonlinear oscillators. in

IEEE International Conference on Intelligent Robots and Sys-

tems (IROS 2002). 2002. Lausanne, Sept.30-Oct.4 2002: Pis-

cataway, NJ: IEEE.

24. Schaal, S., D. Sternad, and C.G. Atkeson, One-handed juggling:

A dynamical approach to a rhythmic movement task. Journal of

Motor Behavior, 1996. 28(2): p. 165-183.

25. Sciavicco, L. and B. Siciliano, Modeling and control of robot

manipulators. 1996, New York: MacGraw-Hill.

26. Stein, R.B., M.N. Ogusztöreli, and C. Capaday, What is opti-

mized in muscular movements?, in Human Muscle Power, N.L.

Jones, N. McCartney, and A.J. McComas, Editors. 1986, Hu-

man Kinetics Publisher: Champaign, Illinois. p. 131-150.

27. Williams, R.J., Simple statistical gradient-following algorithms

for connectionist reinforcement learning. Machine Learning,
1992. 8: p. 229-256.

28. Shadmehr, R. and F.A. Mussa-Ivaldi, Adaptive representation

of dynamics during learning of a motor task. Journal of Neuro-

science, 1994. 14(5): p. 3208-3224.

29. Nakanishi, J., et al. Learning from demonstration and adapta-

tion of biped locomotion with dynamical movement primitives.

in Workshop on Robot Learning by Demonstration, IEEE Inter-

national Conference on Intelligent Robots and Systems (IROS

2003). 2003. Las Vegas, NV, Oct. 27-31.

