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Learning Multi-Boosted HMMs for Lip-Password

Based Speaker Verification
Xin Liu, Member, IEEE, and Yiu-ming Cheung, Senior Member, IEEE

Abstract— This paper proposes a concept of lip motion pass-
word (simply called lip-password hereinafter), which is composed
of a password embedded in the lip movement and the underlying
characteristic of lip motion. It provides a double security to a
visual speaker verification system, where the speaker is verified
by both of the private password information and the underlying
behavioral biometrics of lip motions simultaneously. Accordingly,
the target speaker saying the wrong password or an impostor
who knows the correct password will be detected and rejected. To
this end, we shall present a multi-boosted Hidden Markov model
(HMM) learning approach to such a system. Initially, we extract
a group of representative visual features to characterize each lip
frame. Then, an effective lip motion segmentation algorithm is
addressed to segment the lip-password sequence into a small set
of distinguishable subunits. Subsequently, we integrate HMMs
with boosting learning framework associated with a random
subspace method and data sharing scheme to formulate a precise
decision boundary for these subunits verification, featuring on
high discrimination power. Finally, the lip-password, whether
spoken by the target speaker with the pre-registered password
or not, is identified based on all the subunit verification results
learned from multi-boosted HMMs. The experimental results
show that the proposed approach performs favorably compared
with the state-of-the-art methods.

Index Terms— Lip-password, lip motion segmentation,
multi-boosted HMMs, random subspace method, data sharing
scheme.

I. INTRODUCTION

SPEAKER verification has received considerable attention

in the community because of its attractable applications

such as financial transaction authentication, secure access

control, security protection, human-computer interfaces, and

so forth [1], [2]. It aims at verifying a claimed speaker using

pre-stored information, whereby the speaker will be either
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Fig. 1. A speaker verification system based on different modalities, i.e. audio
modality (e.g. acoustical signal) and video modality (e.g. face, lip motion).

accepted as a target speaker or rejected as an impostor under

a certain matching criterion.

In general, speech not only conveys the linguistic infor-

mation but also characterizes the speaker identity, which can

thus be utilized for speaker verification [3]. Traditionally, the

acoustic speech signals may probably be the most natural

modality to achieve speaker verification. Although a purely

acoustic-based speaker verification system has shown the

effectiveness in its application domain, its performance would

be degraded dramatically in the environment corrupted by

the background noise or multiple talkers. Under the circum-

stances, as shown in Fig. 1, speaker verification by taking

into account some video information, e.g., the still frames

of face, has shown an improved performance over acoustic-

only systems [4], [5]. Nevertheless, the access-controlled

systems utilizing the still face images are very susceptible

to the poor quality of pictures, variations in pose or facial

expressions [6]. Further, such a system may be easily deceived

by a face photograph placed in front of the camera as well.

In recent years, speaker verification utilizing or fused with

lip motions has attracted much attention [7]–[9]. As a kind

of behavioral biometric trait, the lip motions accompanying

with the lip shape variations, tongue and teeth visibility, have

been demonstrated to encode rich information to characterize

the speaker. For instance, Luettin et al. [10] first extracted a

group of visual lip region features and then utilized the Hidden

Markov Model (HMM) with the mixtures of Gaussians to build

the spatio-temporal models for speaker identification, while

Wark et al. [11] utilized the Gaussian Mixture Model (GMM)

to build the statistical speaker models for identity identifica-

tion. Later, Shafait et al. [12] extracted a group of suitable

visual features from the sequential mouth regions and utilized
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the GMM classifier for person authentication. Faraj et al. [13]

obtained a group of lip motion features associated with GMM

for person verification. Specifically, by considering a uni-

fied feature selection and discrimination analysis framework,

Ertan et al. [14] have utilized the explicit lip motion infor-

mation associated with HMM for speaker identification and

speech-reading.

Nevertheless, to the best of our knowledge, the perfor-

mance of the existing lip motion based speaker verification

systems is far behind our expectation. The main reasons are

two-fold: (1) The principal feature components representing

each lip frame are not always sufficient to distinguish the

biometric properties between different speakers; (2) The tra-

ditional lip motion modeling approaches, e.g. single GMM

[11], [12], single HMM [10], [15], often fail to learn the

model discriminatively and are thus incompetent to verify

some hard-to-classify examples. For instance, some diverse lip

motions are so similar that the corresponding models learned

from these conventional approaches are not discriminative

enough to verify their corresponding speakers. Recently, some

researchers have attempted to adopt multi-modal expert fusion

systems by combining audio, lip motion and face information

to enhance the security and improve the overall verification

performance [4], [16]. Nevertheless, the appropriate fusion

between different modalities is still a non-trivial task nowa-

days.

In this paper, we shall concentrate on the single modality

only, i.e. lip motion, although the underlying technique can

be fused with the other modalities as well. We first propose a

concept of lip motion password (simply called lip-password1

hereinafter), which is composed of a password embedded

in the lip movement and the underlying characteristic of

lip motion. Subsequently, a lip-password protected speaker

verification system aiming at holding a double security, is

established. That is, the claimed speaker will be verified

by both of the password information and the underlying

behavioral biometrics of lip motions simultaneously. Accord-

ingly, the target speaker saying the wrong password or an

impostor who knows the correct password will be detected

and rejected. Further, such a system has at least four merits:

(1) The modality of lip motion is completely insensitive to

the background noise; (2) The acquisition of lip motions

is somewhat insusceptible to the distance; (3) Lip-password

protected speaker verification system can be performed silently

in a hidden way; (4) It is simply applicable to a speech

impaired person.

As for the single modality of lip motions, it should point

out that almost all the related speaker verification systems

in the literature generally take the whole utterance as the

basic processing unit [11], [15]. Note that the design of a lip-

password protected system should be able to simultaneously

detect both of the following two cases: (1) the target speaker

saying the wrong password, and (2) an imposter saying the

correct password. Unfortunately, these traditional methods are

incompetent for such task. In general, the lip-password always

1The concept and the characteristics of lip-password were firstly initiated
by the second author of this manuscript.

comprises of multiple subunits, i.e. the visibly distinguishable

unit of visual speech elements. These subunits indicate a

short period of lip motions and always have diverse moving

styles between different elements, which should be considered

individually, but not as a whole, to describe the underlying

lip-password information. To this end, we shall present a

multi-boosted HMM learning approach to such a lip-password

based speaker verification system. In this paper, we mainly

focus on digital lip-password only, although the underlying

techniques are extensible for non-digits as well. First, we

extract a group of representative visual features to character-

ize each lip frame, and then propose an effective algorithm

to segment the lip-password sequence into a small set of

distinguishable subunits. Subsequently, we integrate HMMs

with boosting learning framework associated with random

subspace method (RSM) and data sharing scheme (DSS) to

formulate a precise decision boundary discriminatively for

these subunits verification. Finally, the lip-password whether

spoken by the target speaker with the pre-registered pass-

word or not is identified based on all subunit verification

results learned from multi-boosted HMMs. The experimen-

tal results have demonstrated the efficiency of the proposed

approach. The preliminary version of this paper was reported

in [17].

The remaining part of this paper is organized as follows:

Section II will overview the related works, i.e. the discrimi-

nation analysis, HMM-based speaker verification framework,

and the Adaboost learning. Section III presents the proposed

multi-boosted HMMs learning framework, in which the visual

feature extraction and lip motion segmentation are also intro-

duced. The experimental results are conducted in Section IV.

Finally, the concluding remarks are given in Section V.

II. OVERVIEW OF RELATED WORKS

During the past decade, several techniques, e.g. Neural

Networks (NN) [18], GMM [11], [12], and HMM

[14], [15], have been developed for lip motion based

applications. In general, the successful achievement of lip

motion based speaker verification lies in a closer investigation

of the physical process and behavioral biometrics within the

corresponding lip motion activities, which always incorporate

strong temporal correlations between the observed frames.

Hence, HMM has been the most popular technique because

its underlying state structure can successfully model these

temporal correlations. Nevertheless, the performance of the

existing lip-motion and HMM-based speaker verification

systems is still far behind our expectations. The main

reasons are two-fold: (1) The extracted visual features are

not so discriminative enough for lip motion investigation

and subsequent similarity measurement; (2) The learned

models are not sufficient to discriminatively characterize the

different lip motion activities. Therefore, the discriminative

learning is still desirable. In this paper, we shall integrate

HMMs with the boosting learning framework to achieve

robust lip-password based speaker verification. Accordingly,

the following sub-sections will first survey the discrimination

analysis in HMM-based approaches, and then briefly introduce
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its framework for speaker verification. Finally, we shall give

an overview of a typical boosting learning framework, namely

Adaboost algorithm [19].

A. Discrimination Analysis

In the literature, the discriminative learning of HMM-based

speaker verification systems can be roughly summarized along

two lines: discriminative feature selection and discriminative

model learning. The former methods aiming at minimizing

the classification loss will not only emphasize the informative

features, but also filter out the irrelevant ones. Ertan et al. [14]

have found that the joint discrimination measure of any two

features is less than the sum of their individual discrimination

power. Accordingly, they utilized Bayesian theory to select

the representative features discriminatively provided that the

feature components were statistically independent. However,

it is very difficult to determine which feature component has

more discrimination power. Often, the feature components are

not statistically independent of each other.

The latter approaches featuring on parameter optimizations

always achieve a better performance than non-discriminative

approaches. In HMM, its parameters are normally esti-

mated by Maximum Likelihood Estimation (MLE). Recently,

some researches have found that the decision boundary

obtained via the discriminative parameters learning algo-

rithms is usually superior than the decision boundary

obtained simply from MLE. Typical examples include max-

imum mutual information (MMI) [20], conditional maxi-

mum likelihood (CML) [21] and minimum classification error

(MCE) [21]. These methods that maximize the conditional

likelihood or minimize the classification error rate always

outperform the MLE approach. Nevertheless, their computa-

tions are generally laborious and may not be implemented

straightforwardly [20].

In the literature, the majority of the existing HMM-based

speaker verification systems just employ a single HMM for

lip motion analysis and similarity measurement, which may

not lead to good performance due to its limited discrimi-

nation power. Until most recently, classifier ensemble based

systems trained on different data subsets or feature subsets

have always generated more discrimination power for better

performance [22]–[24]. Differing from the sum rule and major-

ity vote, Adaboost [19] aims at building a strong classifier

by sequentially training and combining a group of weak

classifiers in such a way that the classifiers can gradually focus

more and more on hard-to-classify examples. Accordingly, the

mistakes made by such a strong classifier will be decreased.

Recently, GMM and HMM have been successfully integrated

with boosting framework to form a discriminative sequence

learning approaches [25]–[27]. For instance, Siu et al. [26]

utilized the boosting method to discriminatively train GMMs

for language classification. Foo et al. [27] employed adaptively

boosted HMMs to achieve visual speech elements recognition.

From their experimental results, it can be found that the

traditional single modeling and classification methods cannot

identify some samples because of less discrimination capabil-

ity while the boosted modeling and classification approaches

often provide the promising results by successfully identifying

these hard-to-classify examples.

B. Overview of HMM-based Speaker Verification

Let the video databases comprise a group of lip motions and

each lip motion contains a series of lip frame sequences. For

the HMM of the eth lip motion, its model λe = (πe, Ae, Be),

is built with N hidden states Se = {Se
1, Se

2, . . . , Se
N }. Sup-

pose λe is trained from the observed lip sequence Oe =

{oe
1, oe

2, . . . , oe
le
} and emitted from a sequence of hidden states

se = {se
1, se

2, . . . , se
le
}, se

i ∈ Se, where le is the total number

of frames. Let the output of an HMM take M discrete values

from a finite symbol set V e = {ve
1, v

e
2, . . . , v

e
M }. For an

N-state-M-symbol HMM, the parameters in the model λe are

summarized as follows:

1) The initial distribution of the hidden states πe =

[πi ]1×N = [P(se
1 = Se

i )]1×N (1 ≤ i ≤ N) , where se
1 is

the first observed state in the state chain.

2) The state transition matrix Ae = [ai, j ]N×N =
[

P(se
t+1 = Se

j

∣

∣se
t = Se

i )
]

N×N
(1 ≤ i, j ≤ N , 1 ≤ t ≤

le), where se
t+1 and se

t represent the states at the (t +1)th

and t th frame, respectively.

3) The symbol emission matrix Be = [b j (k)]N×M =
[

P(ve
k at t

∣

∣

∣
se

t = Se
j )

]

N×M
(1 ≤ j ≤ N , 1 ≤ k ≤ M). It

indicates the probability distribution of a symbol output

ve
k conditioned on the state Se

j at the t th frame.

In general, a typical estimate of λe can be iteratively com-

puted using Baum-Welch algorithm [28]. Such a method has

the advantages of easy implementation and fast convergence.

Given the test observation sequence Os = {os
1, os

2, . . . , os
ls
},

the goal of the speaker verification task is to find a decision by

computing the likelihood between Os with the target speaker

model λ(T ) and imposter model λ(I ). Suppose the observed

variables are conditionally independent of each other, the

likelihood can be computed as follows:

P(Os |λi ) =

ls
∏

t=1

P(os
t |λi ) , λi ∈ {λ(T ), λ(I )}, (1)

where the likelihood score P(os
t |λi ) is generally measured

by means of the forward-backward process while its most

probable path is obtained via Viterbi decoding algorithm [28].

In general, the modality for HMM-based speaker verifica-

tion can be regarded as a binary classification problem, which

can be extensionally grouped into closed-set and open-set

learning problems. In the closed-set case, the tested speakers

are recorded to be known, and the models of both the target-

speaker and imposter can be learned during the training phase.

Given an observed sequence: Os = {os
1, os

2, . . . , os
ls
}, the

classification for this type of speaker verification problem is

performed based on the log likelihood ratio (LLR):

L L R(Os ) =

ls
∑

t=1

[

log
P(os

t |λ(T ) )

P(os
t |λ(I ) )

]

i f L L R(Os ) ≥ τ : accepted;

Otherwi se : reject . (2)
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In the open-set case, the imposters are recorded to

be unknown and its model may not be well determined.

Given a test observed sequence recorded from unknown utter-

ance, the verification task is to find whether it belongs to

the target speaker registered in the database or not. As for

the lip-password protected speaker verification system, the

password utterances differing from the registered one are also

considered to be imposters even they come from the same

speaker. Note that, the frame length of the utterance may be

slightly different even for the same phrase uttered by the same

speaker. Thereupon, this kind of verification problem can be

conducted based on normalized log likelihood (NLL):

N L L(Os ) =
1

ls

ls
∑

t=1

log P(os
t |λ(T ) )

i f N L L(Os ) ≥ τ : accepted;

Otherwi se : reject . (3)

C. Overview of Adaboost Learning

Let us consider a binary classification problem. There is

a set of Nt labeled training samples (x1, y1), (x2, y2), . . .,

(xNt , yNt ), where yi ∈ {1,−1} denotes the class label for

the sample xi ∈ R
n . The weight wi is assigned to get the

uniform value initially. Let h(x) denote a decision stump (i.e.

weaker classifier), the procedure of AdaBoost involves a series

of boosting rounds R of weaker classifier learning and weight

adjusting under a loss minimization framework, which aims

to produce a decision rule as follows:

HR(x) =

R
∑

m=1

αmhm(x), (4)

where αm represents the confidence of decision stump hm .

The optimal value of αm can be generally accomplished via

minimizing an exponential loss function [19]:

Loss(HR(x)) =

Nt
∑

i=1

exp(−yi HR(xi )). (5)

Given the current ensemble classifier Hr−1(x) and newly

learned weak classifier hr (x) at boosting round r , the optimal

coefficient αr for the ensemble classifier Hr(x) = Hr−1(x) +

αr · hr (x) is the one which can lead to the minimum cost:

αr = arg min
α

(Loss(Hr−1(x) + αhr (x))). (6)

According to the optimization algorithm [29], let εr be the

weighted training classification error:

εr =

Nt
∑

i=1

wr
i · [hr (xi ) �= yi ], (7)

the resultant αr and updated wi are computed as:

αr =
1

2
log(

1 − εr

εr
) (8)

wr+1
i = wr

i · exp(−yiαr hr (xi )). (9)

In this framework, the updated weights for hard-to-classify

examples are increased, meanwhile these weights will also

determine the probability of the examples being selected for

subsequent component classifier. For instance, if a training

sample is classified correctly, the chance of its being selected

again for the subsequent component classifier is reduced.

Otherwise, its chance will be increased. Accordingly, the

training error of the ensemble classifier shall decrease as long

as the training error of the component classifier is less than 0.5.

In this framework, the individual classifiers are built in parallel

and independent of each other. As formulated in Eq. (4), it

will generate a strong classifier by linearly combining these

component classifiers weighted by their confidence through a

sequence of optimization iterations [19].

III. THE PROPOSED APPROACH TO LIP-PASSWORD BASED

SPEAKER VERIFICATION

This section will present a multi-boosted HMMs learning

approach to solving lip-password based speaker verification

problem. Before describing the proposed approach in Sub-

section III-C, we need to deal with two issues first: (1) Visual

Feature Extraction, and (2) Lip Motion Segmentation. The

former presents the extracted representative visual features,

while the latter aims to separate the visibly distinguishable

unit of each password element. We shall address these two

issues in Sub-section III-A and III-B, respectively.

A. Visual Feature Extraction

It is well known that the visual cues of lip movement

not only reveal important speech relevant information, but

also characterize the significantly behavioral biometrics of

the speaker, which can be utilized for speaker verification.

Hence, the suitable visual features extracted from the recorded

lip image sequences should contain crucial information for

password content and behavioral biometric analysis, whereby

the different lip-passwords can be well identified. In the last

decade, various visual features have been proposed [9], which

can be roughly categorized into three branches: contour-based,

appearance-based and motion-based features. For the contour-

based features, the geometric shape parameters such as mouth

area, perimeter, height and width derived form the binary

mouth image, can be chosen as the visual features [14].

Their temporal variations can be further utilized to model

the lip motion activities. Kaynak et al. [9] have conducted a

comprehensive investigation about such features for lip motion

analysis. For the appearance-based features, as the teeth and

tongue are always appearing during the speaking process,

the transforming coefficients such as Principal Component

Analysis (PCA), Independent Components Analysis (ICA) and

two dimensional Discrete Cosine Transform (2D-DCT) have

shown their effectiveness [14], [30], [31]. Differing from the

above-mentioned features that are extracted from a single

frame level, the motion based features are able to reveal

the temporal characteristics of lip movements [7], [13]. For

example, Faraj et al. [13] modeled the sequential lip images

by moving line patterns and calculated 2D velocity vectors of

normal optical flows for person verification.
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Fig. 2. Visual feature extraction for lip-password based speaker verification.

Nevertheless, it is quite difficult to determine which kind of

feature vector has more discrimination power than the others.

In general, the motion-based features are quite sensitive to

the illumination changes and head movement. As reported

in [14], a combination of contour-based and appearance-

based features generally yields the acceptable performance

for visual speaker identification. Hence, the integration of

multiple kinds of features is desired. As shown in Fig. 2, we

initially crop the mouth regions of interest (ROI) from the

recorded lip sequences and extract the lip contours [32] frame

by frame. Then, we employ a 16-point lip model proposed by

Wang et al. [33] to compute nine geometric shape parameters,

i.e. maximum horizontal distance, seven vertical distances and

mouth area, denoted as L1, L2, L3, L4, L5, L6, L7, L8, Ac,

respectively, to model the contour-based feature vector Fc f .

These geometric shape parameters are generally normalized

with respect to the corresponding values of the first lip frame.

Next, the previous cropped raw ROIs are convert to gray

level case and illumination equalization method proposed by

Liew et al. [34] is adopted to reduce the effects of uneven

illuminations. Meanwhile, all the pixel values of incoming

lip ROIs are normalized to have a similar distribution and

mean subtraction is performed for each pixels to remove the

basis effect of unwanted constant variations [35]. Accordingly,

the principal components of top Npca numbers are chosen as

PCA features Fpca , while the first M coefficients along the

Zig-zag scan order are selected as the 2D-DCT features,

denoted as Fdct [23]. Often, a size of Nm × Nm triangular

mask is utilized to extract such 2D-DCT coefficients of M =
Nm (Nm+1)

2
length for each lip frame. Consequently, the feature

vector F = {Fc f , Fpca , Fdct } is obtained to characterize the

contour-based and appearance-based features jointly.

B. Lip Motion Segmentation

Lip motion segmentation aiming to detect the starting and

ending frames of the subunit utterance plays an important

role for the lip-password based speaker verification. In the

past, a few techniques have been developed to achieve

speech segmentation using lip motion solely. For instance,

Mak et al. [36] attempted to locate the boundaries of syllable

by utilizing the lip velocity that is estimated by a combination

of morphological image processing and block matching tech-

niques. Yau et al. [37] computed the motion history images

(MHIs) and utilized the Zernike moment features to segment

the isolated utterances, in which the magnitude of Zernike

moments corresponding to the frames that contain utterances

is much greater than the one of the frames within the period of

“pause” or “silence”. Talea et al. [38] first obtained the mouth

areas of the consecutive frames and then made a series of

mouth area subtractions associated with a smoothing filtering

for syllable separation. Recently, Shaikh et al. [39] have

utilized an ad hoc method for temporal viseme segmentation

(i.e. 14 different mouth activities) based on the pair-wise

pixel comparison of consecutive images. In general, the MHIs,

lip velocity and pair-wise pixel comparison are required to

compute the pixel intensity variations frame by frame, whose

computations are somewhat laborious. By a rule of thumb, the

mouth areas of digital lip-password utterance always change

significantly over time, where the position with minimum

mouth area point always represents the status of mouth closing

or intersection point between subunit utterances. Inspired by

this finding, we employ the previously extracted mouth area

Ac to achieve subunit segmentation as follows:

First, we obtain the signal Ac in terms of the mouth area

variations via lip tracking [32]. Next, we utilize the forward-

backward filtering [40] to process the input area signal Ac

in both the forward and backward directions. Specifically,

the resultant signal A
f
c has precisely zero phase distortion

and magnitude while the other filters such as Gaussian filter

may change the position of peak or valley point slightly.

Accordingly, we can easily obtain the positions of peak points

and valley points, where the peak points always represent

the mouth opening widely while valley points often denote

the mouth closing status. We take such valley points into

consideration because these points always represent the con-

nection position between the neighboring subunits. In general,

speakers usually keep almost the same speaking pace during

the entire utterance such that the frame length of each subunit

differs not quite much from the others. Often, the frame length

of the whole password sequence and the number of password

elements are recorded to be known. Thereupon, the position

of the starting frame corresponding to the current subunit, i.e.

the ending frame of the previous subunit, can be computed by

setting a pre-defined threshold �T as follows:

{

Tle f t ≤ P1
e ≤ Tright

P i−1
e + Tle f t ≤ P i

e ≤ P i−1
e + Tright

(10)

where Tle f t =
N f rame

Nelement
−�T and Tright =

N f rame

Nelement
+�T denote

the left and right range, respectively. For consecutive digit

motion separation, �T is often assigned to the values within

the interval [1, 1
3

·
N f rame

Nelement
].

We have carefully adjusted the parameters of methods

[37]–[39] and selected the best results from three runs to

make a comparison. Various digital lip-password sequences
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Fig. 3. Lip motion segmentation of the lip-password “6-5-8-7”, in which
the solid line denotes the original signal of mouth area variations, while the
dotted line represents the filtered signal via forward-backward filtering.

TABLE I

THE SUBUNIT SEGMENTATION RESULTS, WHERE EACH CELL SHOWS THE

SUBUNIT INTERVAL, THE TOTAL FRAMES AND SEGMENTATION ERROR

have been tested and a typical example is shown in Fig. 3.

It can be observed that the solid curve representing the area

variations of the lip-password “ 6-5-8-7” has many peak or

valley points, while the dotted curve describing the processed

signal only has some major peak or valley points. Accordingly,

the proposed valley point searching scheme can successfully

find intersection points between the neighboring subunits and

simultaneously remove the irrelevant one. As a result, the

lip motion corresponding to each subunit can be successfully

separated. The segmentation results and manual annotation

(i.e. ground truth) of this example are shown in Table I, where

the segmentation error is defined as the sum of error or missing

frames between the segmentation result and ground truth to the

frame number of ground truth. It can be found that the result

obtained by the proposed approach is close to the ground

truth and the segmentation errors are small. Apparently, the

proposed approach outperforms the method [38] and is even

promisingly comparable to the Method [37] and [39]. Impor-

tantly, the proposed approach just utilizes the extracted mouth

area and does not compute the intensity change of every pixel

frame by frame. Therefore, the extra computation cost is not

needed any more.

To achieve a more robust and realistic solution, the facial

expressions generally tend to appear smoothly during the

natural speaking process. Under such circumstance, a bit minor

segmentation error (i.e. differ within 3 frames) will not degrade

the lip motion analysis dramatically. The reason lies that the

frames locating around the intersection points always represent

the mouth closing status or transition frames, which are of less

importance to the motion investigation. Moreover, the subunit

motion differing a bit from the motion of the single digit

utterance, would not impact the verification result significantly

because the primary motions are preserved.

Algorithm 1 Random Subspace Ensemble Method.

C. The Proposed Multi-Boosted HMMs Learning Approach

Let the positive value denote the target example and the

negative value represent an imposter. According to Eq. (2) and

Eq. (3), the decision stump for each weak learner in boosted

HMMs can be formulated as:

h(Os) =

{

+1, i f L L R(Os ) or N L L(Os ) ≥ τ

−1, otherwi se.
(11)

As introduced in Section III-B, the lip motions within

the lip-password utterances are usually comprised of several

distinguishable units, which can be well separated using the

proposed lip motion segmentation algorithm. Specifically, the

frame length of each subunit motion can be easily aligned to

be the same by using cubic interpolation method. Hence, by

integrating the superiority of segmental scheme and boosting

learning ability, the whole lip-password sequence can be

verified via multi-boosted HMMs, whereby its discrimination

power is stronger than a single HMM classifier acted on the

whole sequence significantly.

Note that the design for the lip-password protected verifica-

tion system should be able to reveal the password information

and identity characteristics simultaneously. Nevertheless, the

motion models learned from the fixed feature vector are

incompetent for both of the verification tasks. In addition, the

simple utilization of the whole feature vector may not achieve

a satisfactory classification performance due to the feature

redundant or overfitting problem [22]. As investigated in [41],

the random subspace method (RSM) has been successfully

utilized in ensemble approaches and demonstrated to perform

well when there is a certain redundancy in the collection of

feature vectors. The basic random subspace ensemble method

is given in Algorithm 1. This ensemble operates by taking

the majority vote of a predefined number of classifiers, each

of which is built based on a different feature subset sampled

randomly and uniformly from the original feature set. This

type of approach will enhance the diversity of the base

classifiers and often improve the overall classification accuracy

within the ensemble approaches. Inspired by these findings, as

shown in Fig. 4, we employ RSM to select different feature

subsets so that various kinds of subunit motion models can be
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Fig. 4. The diagram of the boosted HMM learning for subunit verification.

learned discriminatively. As for the combined feature vector F ,

the feature components of different categories always share the

distinct power for lip motion analysis. In general, the contour-

based features are effective in verifying the different password

elements while the appearance-based features would be useful

in characterizing the identity information. In RSM, if one

feature category is not included in the random subspace, the

current base classifier may degrade the accuracy in verifying

the lip-password information. Therefore, the selected feature

subset should cover different kinds of feature components to

characterize both of the password and identify information

sufficiently. Therefore, Algorithm 2 is particularly utilized for

the feature subset selection.

Moreover, as reported in [22], boosting method is especially

utilized for large training sample size while the RSM is

susceptible to the inadequate training samples. Nevertheless,

a small number of training samples are usually available for

learning because it is unamiable to ask the speakers to repeat

their password phrases many times. Under the circumstances,

we employ the data sharing scheme (DSS) proposed by

Wang et al. [42] to form a novel train data set in pairs,

which can generate more examples to reduce the impact of

small sample size problem. Specifically, suppose there are a

set of positive examples A = {xa
1 , xa

2 , . . . , xa
Na

} of the target

speaker and a set of negative examples B = {xb
1 , xb

2 , . . . , xb
Nb

}

of imposter excluding the target speaker. From A and B , we

construct a new training set, where the positive examples are

the pairs of the ones that are both from A, i.e. {(xa
i , xa

j )}, and

negative examples {(xa
i , xb

j )} are the pairs of examples that

are from A and B , respectively.

As introduced in Section II-B, the verification problem can

be grouped into close-set and open-set cases. For the close-set

case, the imposter model can be learned through the training

data and the verification problem is performed based on the

LLR. Nevertheless, as the imposters may have many different

categories, it is very difficult to utilize one single model to

represent all imposter modalities. Hence, we prefer to utilize

the open-set case in our proposed approach. That is, each test

sequence can generate an acceptance or rejection result via

Eq. (3) by setting a decision threshold τ . Let λ be an HMM

trained via data set A of the target speaker, it can be concluded

that the NLL of the target speaker conditioned on λ should

be larger than the NLL of the imposter conditioned on λ.

Thereupon, we define a similarity score h(xa
i , x, λ) between

xa
i and the testing sample x as follows:

h(xa
i , x, λ) =

∣

∣N L L(xa
i , λ) − N L L(x, λ)

∣

∣ . (12)

Therefore, the similarity between the testing example x and

the whole positive data set A can be measured as:

ĥmin = min
xa

i ∈A
h(xa

i , x, λ), (13)

where x belongs to the target speaker if ĥmin ≤ τ , and

imposter otherwise. In other words, we compare the testing

example with all the examples of the positive data set A

and take the highest score (i.e. minimum value) to make the

decision. Since a number of HMMs are trained individually

in ensemble learning approaches, the reduction of the com-

putational load per HMM is also an important issue to be

considered. Therefore, the Baum-Welch algorithm is selected

to estimate the HMM parameters due to its less computations.

As investigated in [27], the hard-to-classify samples should

be treated differently for optimal parameter estimation. There-

fore, the biased Baum-Welch method is adopted. Given an

N-state-M-symbol HMM λ = (π, A, B), we denote the

training set consisting of K observations as

O = {O1,O2, . . . ,OK } (14)

where Ok = {ok
1, ok

2, . . . , ok
lk
} is the kth sequence with lk

observation frames and each observation is independent of

each other. The Baum-Welch algorithm aiming at adjusting

the parameters of the model λ is to maximize:

P(O |λi ) =

K
∏

k=1

P(Ok |λ) =

K
∏

k=1

Pk . (15)

As shown in [28], we define the forward variables αk
t (i) =

P(ok
1, ok

2, . . . ok
t , st = Si |λ) and backward variables βk

t (i) =

P (ok
t+1, ok

t+2, . . . ok
lk

|st = Si , λ ) for observation Ok . The

parameters of HMM are estimated as follows:

āi, j =

K
∑

k=1

1
Pk

lk−1
∑

t=1

αk
t (i)ai, j b j (O

k
t+1)β

k
t+1( j)

K
∑

k=1

1
Pk

lk−1
∑

t=1

αk
t (i)βk

t ( j)

(16)

b̄ j (ℓ) =

K
∑

k=1

1
Pk

lk−1
∑

t=1
s.t . Ot =vℓ

αk
t (i)βk

t ( j)

K
∑

k=1

1
Pk

lk−1
∑

t=1

αk
t (i)βk

t ( j)

(17)

where vℓ is the ℓth(1 ≤ ℓ ≤ M) symbol output. In this strategy,

all the samples are treated equally. As for the biased Baum-

Welch estimation [27], the sample weights obtained from the

boosting learning framework are employed.
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Fig. 5. The schematic view of the proposed multi-boosted HMMs learning approach to digital lip-password based speaker verification.

Algorithm 2 Subset Selection via RSM for combined features

In our proposed framework, the training samples are formu-

lated in pairs. For the target speaker incorporates K samples,

the number of positive training data set is equal to
K (K−1)

2
.

Let wT
i, j (1 ≤ i < j ≤ K ) denote the weight of the coupled

training sample {Oi ,O j }, the normalized weight for original

target sample Ok(1 ≤ k ≤ K ) is computed as:

ωk =

∑

i=k or j=k wT
i, j

2 ·
∑

i, j wT
i, j

. (18)

By assigning this weight to the sample Ok , the re-estimated

parameters can be computed as:

âi, j =

K
∑

k=1

ωk

Pk

lk−1
∑

t=1

αk
t (i)ai, j b j (Ok

t+1)β
k
t+1( j)

K
∑

k=1

ωk

Pk

lk−1
∑

t=1

αk
t (i)βk

t ( j)

(19)

b̂ j (ℓ) =

K
∑

k=1

ωk

Pk

lk−1
∑

t=1
s.t . Ot =vℓ

αk
t (i)βk

t ( j)

K
∑

k=1

ωk

Pk

lk−1
∑

t=1

αk
t (i)βk

t ( j)

. (20)

These estimated parameters are able to discriminatively

model the lip motions such that some hard-to-classify samples

can be verified. Therefore, as shown in Fig. 5, we integrate the

HMMs with boosting learning framework associated with the

RSM and DSS to precisely formulate a decision boundary for

each subunit verification. Finally, the whole utterance whether

spoken by the target speaker or not is verified according

to all subunit verification results learned from multi-boosted

HMMs. As summarized in Algorithm 3, if all subunit motions

meet the accepted condition, the testing lip-password will

be considered as the target-speaker saying the pre-registered

password; otherwise, it will be an imposter.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In the visual speech domain, existing publicly available

digital databases such as XM2VTS [8] and MVGL [14],

have been widely utilized for multi-modal speech recognition

and speaker identification. However, these databases are more

or less incompetent for the evaluation of the lip-password

based speaker verification problem. Therefore, a database

consisting of digital password phrase uttered by 46 speakers

(i.e. 28 males, 18 females) has been established. All the speak-

ers were asked to phonically repeat the English phrase three-

one-seven-five (3175) for twenty times (Dp) and randomly

say another ten different phrases (Dr ) of 4-digit length, which

covered all “0”-“9” elements. All the utterances were captured

by a high-quality digital video camera at 30 frames per second

(fps) and recorded with almost the same speaking pace in a

natural way. Specifically, as shown in Fig. 6, the recording was

done in an office environment with almost uniform lighting

conditions. The starting (ending) point of an utterance can be

easily assigned to the earliest (latest) frame that has significant

changes with respect to the first (last) frame in the feature

sequence. The located and resized ROIs of lip images are of

frontal view with a resolution of 112 × 76 pixels.

In the experiments, �T was empirically set at 5 for lip

motion segmentation and the frame length of each subunit

motion was aligned at 30. The boosting round R was set at

30. The selected dimensionality of the PCA feature vector was

fixed to be 80 and a 13 × 13 triangular mask was utilized to

extract 2D-DCT coefficients of 91 dimensionality. The equal

error rate (EER) [13] was utilized for performance evaluation

and the value of τ in Algorithm 3 was deterred by the

achievement of EER (i.e. the proportion of false acceptances

was equal to the proportion of false rejections). To make a

comparative evaluation, the configurations of GMM [12] and

HMM [15] approaches were utilized for lip motion analysis.

Meanwhile, these approaches associated with the proposed

segmental scheme were denoted as “S-GMM” and “S-HMM”,

respectively. In addition, with the half of the data collections

for training and testing, we followed the procedures of boosted

GMM [25] and boosted HMM [27] to handle the speaker

verification as well. Heuristically, we utilized a left to right

HMM to train each subunit motion model and tested various
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Algorithm 3 Learning multi-boosted HMMs for lip-password

based speaker verification

number of hidden states (i.e. 3-6 ) and Gaussian mixture

components (i.e. 1-5) in the experiments. Due to the limited

subunit motion frames, experimental results showed that the

left to right HMM with three states, two continuous density

Fig. 6. The simulative circumstance for database construction.

Gaussian mixtures with diagonal covariance matrix output

delivers the best performance. Specifically, this kind of HMM

parameter setting is selected for analysis. With the same col-

lections of the target speaker saying the registered password,

we shall concentrate on verifying the following three types

of imposters: (1) The target speaker saying the incorrect

passwords; (2) The imposter saying the correct password;

(3) The imposter saying the incorrect passwords.

A. The Target Speaker Saying the Incorrect Passwords

In this case, the lip-passwords differing from the registered

one (i.e. 3175) are considered as the imposters. The database

Dp is divided into two disjoint data sets: Dp1 and Dp2 , each

of which has ten repetitions of the same utterance from each

speaker. The subset Dp1 is utilized for training, while Dp2

and Dr are utilized for testing. The model of the target speaker

saying the registered password can be trained through the data

set Dp1 . Since the utterances of different lip-passwords are

selected to be imposters, the imposter category cannot be well

determined due to its arbitrariness. Fortunately, the proposed

lip motion segmentation scheme has the ability to make each

subunit imposter category determined (i.e. the digits only from

“0” to “9”), while the whole utterance fails. We employed

the leave-one-out scheme [14] to generate imposters, where

each segmental unit not belonging to the current subunit was

selected as an imposter. For instance, all the subunit motions

differing from the target subunit “3” are considered to be

the imposters, i.e. the segmental motions of digits “0-2, 4-9”.

Under such circumstances, the number of imposter category

for each subunit was equal to 9. We randomly selected one

segmental motion of each digit “0-9” from Dp1 and Dr to form

the imposter data. The RSM sampling proportion ρ was fixed

to 0.7 and the DSS was employed to form the training data

set in pairs. For each speaker, the total numbers for positive

training examples and negative training examples were equal

to 45 and 90, respectively.

The experimental results are shown in Table II. It can

be observed that the performance of S-GMM and S-HMM

methods each outperforms the non-segmental approaches, i.e.

single GMM [12] and HMM [15]. The EER value obtained



242 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 2, FEBRUARY 2014

TABLE II

THE VERIFICATION RESULTS OF THE TARGET SPEAKER SAYING THE INCORRECT PASSWORDS

by S-HMM method associated with the Fc f + Fdct was

less than 10%. The reason lies that the segmental scheme

is capable of providing more detailed information that is

not easily revealed in the whole lip-password sequence. For

example, the incorrect password “3178” just has one dif-

ferent element which is so similar to the registered one

such that this utterance may fail to be distinguished under

non-segmental methods. Meanwhile, some imposter motion

uttered by the same speaker often differs slightly from the

registered one. For example, some imposter subunit motions

of “0” and “8” were somewhat similar to the motions of

“7” and “5”, respectively, uttered by some speakers, which

often failed to be verified under the segmental scheme. Under

such circumstances, the boosted learning framework aiming at

paying more attention on hard-to-classify samples would hold

the promise of verifying these similar examples. However,

the boosted GMM [25] and boosted HMM [27] approaches

taking the whole utterance as the basic processing unit may

not always deliver a better result than non-boosted methods.

For example, the imposter utterances, e.g. “3715”, “3157”

of some speaker, often failed to be verified along this way.

The main reason lies that these similar utterance associated

with the fixed feature vector cannot be verified within the

very limited training samples. In contrast, the proposed multi-

boosted HMMs learning approach was able to detect these

imposters, meanwhile boosting the performance. The main

reasons are two-fold: (1) The segmental scheme has a ability

to make each imposter category determined; (2) The utilization

of RSM and DSS can solve the feature overfitting and small

training sample size problem. As a result, the EER values

incorporating the different kinds of feature vectors were all

less than 10%.

To reveal the ambiguity between different digital motions,

we extracted 10 subunit motions of all “0”-“9” digits and

selected half size of the collected samples for training and

testing. For each digit uttered by the same speaker, the DSS

was employed to construct the training samples in pairs.

The total number for the testing samples was equal to 230.

Under the segmental scheme, we utilized the fixed HMM

parameter settings with the whole extracted features and

extended the booted HMM [27] with the utilization of DSS

and RSM to classify each digital lip motion (simply called

boosted S-HMM hereinafter), in which the one generating

the maximum probability was chosen as the identification

Fig. 7. Confusion Matrix on segmental digits classification. (a) The classifi-
cation results obtained by S-GMM; (b) the classification results obtained by
S-HMM; (c) the classification results obtained by boosted S-HMM.

result. The classification results in terms of the Confusion

Matrix are shown in Fig. 7, in which the entry in the i th

row and j th column is the number of digit from class i that is

misidentified as class j . It can be found that the S-GMM and

S-HMM approaches often failed to well identify some digital

lip motions due to their limited discrimination power. The

reason lies that some segmental utterances corresponding to

different digits often produce ambiguous lip motions visually,

which often make it difficult to be recognized via a single

classifier. In contrast, the boosted S-HMM has achieved better

classification performance. For example, the segmental lip

motion corresponding to digit “0” was just misclassified as

digit “7” for only once, which was greatly decreased in

comparison with S-GMM (i.e. six times) and S-HMM (i.e.

five times) approaches. That is, the boosted learning strategy

incorporating more discrimination power is able to verify most

of the ambiguous samples, which can be utilized to verify the

wrong password information effectively within the proposed

lip-password protected speaker verification system.

B. The Imposter Saying the Correct Password

In this case, the subset Dp1 was utilized for training while

Dp2 was adopted for testing. We followed the leave-one-out

scheme to generate the imposter samples, i.e. each speaker

became an imposter datum of the remaining speakers. Note

that each testing sample can be applied as an imposter for

different target speakers simultaneously. Given a pre-defined

target speaker within the data set Dp2 , the resultant number

of the imposter data excluding the target speaker for the true

rejection was 450. We randomly selected two examples of

each speaker excluding the target speaker from subset Dp1 to
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TABLE III

THE VERIFICATION RESULTS OF THE IMPOSTER SAYING THE CORRECT PASSWORD

TABLE IV

THE VERIFICATION RESULTS OF THE IMPOSTER SAYING THE INCORRECT PASSWORDS

construct the imposter training data. For each target speaker,

the total numbers for positive training examples and negative

training examples were equal to 45 and 900, respectively.

The experimental results are listed in Table III. For the same

utterance, the motion modeling approaches through the whole

utterance were able to characterize the temporal pattern over

the segments, which were expected to obtain a better per-

formance. Nevertheless, the EER values obtained by a single

GMM or HMM based approaches were all greater than 15%,

which always failed to verify most samples within the large

imposter categories due to their limited discrimination power.

In contrast, the S-GMM and S-HMM methods can improve

the verification performance to a certain degree. The reason

lies that the segmental scheme would obtain more detailed

information within a short period of motions to verify some

similar speakers. Although the boosted learning methods have

been demonstrated to be successful in increasing the robust-

ness of the verification performance, the boosted GMMs [25]

and boosted HMMs [27] taking the whole utterance as the

basic processing unit also degraded their performance due

to the very limited training samples. Subsequently, the EER

values were all higher than 10%. Comparatively speaking, the

proposed multi-boosted HMMs learning approach integrating

the advantages of the segmental scheme and boosted learning

ability was able to formulate a precise decision boundary

discriminatively so that some hard-to-classify speakers can

be verified. Although the proposed approach does not model

the temporal pattern over the segments, the concatenation of

each segmental motion modeling was able to characterize the

significant information as well within the whole sequence for

speaker verification. Accordingly, the promising verification

results with all EER values less than 10% were obtained. In

particular, the feature vector Fc f + Fpca + Fdct with 70%

subspaces has yielded much better performance, with the EER

value equal to 4.06% only, in comparison with the other kinds

of feature vectors.

C. The Imposter Saying the Incorrect Passwords

In this case, the subset Dp1 was utilized for training while

Dp2 and Dr were adopted for testing. The imposter model

cannot be determined due to its diversity and arbitrariness.

Fortunately, the segmental scheme can make the imposter cat-

egories of subunit element determined, i.e. the imposters with

all subunit sequences can be selected as the imposter datum.

Therefore, the maximum number of the imposter categories for

each subunit was equal to 450. According to the collections in

the previous two experiments, we randomly selected two target

speakers and one subunit sample of each imposter category to

form the negative training examples. Accordingly, the resultant

numbers for positive training samples and negative training

samples were equal to 45 and 900, respectively.

The experimental results are listed in Table IV. It can be

found that the majority of the EER values obtained by different

kinds of methods are less than 10%. The reason lies that

the lip-password sequences differing from the registered one

and uttered by the different speakers are significantly distinct

from the sequence of the target speaker saying the registered

password. That is, the imposters saying the incorrect pass-

words always encode the significantly valuable information to

be easily identified. In this case, the approaches associated

with the segmental scheme, i.e. S-GMM, S-HMM, may not
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Fig. 8. The verification performance of the target speaker saying the incorrect
passwords via different subspace dimensions.

Fig. 9. The verification performance of the imposter saying the correct
password via different subspace dimensions.

always deliver the better results than non-segmental methods.

Within the limited training samples, the boosted GMM [25]

and boosted HMM [27] approaches also failed to achieve a

significant improvement of verification performance by taking

the whole lip-password sequence as the basic processing unit.

In contrast, the proposed approach kept achieving a better

verification result in terms of the lower EER values. The

reasons are two-fold: (1) The segmental scheme is capable

of making each imposter category of subunit determined so

that the establishment of the negative training samples can be

succeeded; (2) The utilization of boosting learning framework

associated with the RSM and DSS, can not only solve the

feature overfitting and small training sample size problem, but

also significantly increase the discrimination power to verify

some hard-to-classify examples, e.g. some failed examples

during the training phase.

Next, the EER values performed on different feature com-

binations with various subspace dimensions are shown in

Figs. 8–10, respectively. For the first case, it can be found

that the contour-based features Fc f associated with Fpca or

Fdct feature vector generally yield better performance than the

feature vector Fpca+Fdct in terms of EER values. This implies

that the contour-based features are of crucial importance to the

Fig. 10. The verification performance of the imposter saying the incorrect
passwords via different subspace dimensions.

verification of different password subunits because the lip con-

tours always have significantly different moving trajectories

between different password elements. Comparatively speak-

ing, the texture features serve as an important discrimination

information especially in identifying the imposters saying the

correct password. The main reason lies that the appearances

of teeth and tongue are always diverse between the different

speakers such that the utilization of texture biometrics of lip

motions can well verify the imposter speakers. Moreover, it

can be seen that the subspace dimension with 65-75% of

original feature vectors always reports the lower EER values

while the direct utilization of all the extracted feature vectors

may not always generate the best performance. The reason

lies that the utilization of RSM resampling the feature vector

into different kinds of low dimensional subsets not only has a

strong ability to solve the feature overfitting problem, but also

would increase the discrimination power to improve the veri-

fication performance. Meanwhile, it would not obtain a good

verification result when the size of subspace dimensionality

is too small because the weaker learners in boosting learning

framework are not able to learn well when the data feature

vectors are too uninformative, e.g. the subspace dimensionality

with 40-50% of the original feature vectors have delivered

the unsatisfied results. As discussed in paper [43], diversity

has been recognized as an important factor to the success of

classifier ensemble approaches. Within the proposed learning

framework, the sampling distribution is generally employed

to resample the training data sets for subsequent component

classifier learning. As a result, the likelihood for those samples

which have been misclassified by the previous component

classifier is increased so that the classifier ensemble becomes

progressively diverse. In addition, the feature subset obtained

by RSM is also capable of making each training motion model

diverse synchronously. That is, the predictions obtained from

each component classifier are not equal such that the learned

ensemble classifier would become diverse as well.

Further, we maintained the segmental scheme and conducted

the above experiments on the unpaired training samples. That

is, the DSS was not employed. The EER values performed

on two training patterns are listed in Table V, in which only
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TABLE V

THE VERIFICATION RESULTS WITHIN THE

DIFFERENT TRAINING PATTERNS

the feature set Fc f +Fpca+Fdct associated with RSM (70%)

was employed. It can be found that the EER values obtained

through the unpaired training samples (i.e. Non-DSS + RSM)

were all larger than the results generated by the proposed

framework (i.e. DSS + RSM). A plausible reason lies that

overfitting is inevitable when the limited training sets are

available for each component classifier learning. To avoid the

variability caused by the small training sets, the size of the

positive and negative training sets should be relatively large.

Under such circumstances, the DSS aiming to train a generic

classifier that determines any two examples coming from the

same target or not, would construct more training samples for

learning. Accordingly, the proposed boosted HMMs learning

framework can effectively reduce the chance of the over-

fitting occurrence. As a result, the satisfactory verification

performance is achieved. To the best of our knowledge, the

proposed multi-boosted HMM learning framework is the first

one that inherently incorporates the RSM and DSS to over-

come potential overfitting issues due to the features redundant

and the lack of training samples. The experimental results

have demonstrated the efficacy of the proposed approach in

comparison with the state-of-the-art methods.

V. CONCLUDING REMARKS

In this paper, we have proposed the concept of lip-password,

which has provided a double security to the speaker verifica-

tion system. That is, a speaker will be verified by both of

the password embedded in the lip motion and the underly-

ing behavioral biometrics of lip motions simultaneously. To

this end, we have presented a multi-boosted HMMs learning

approach to solving such lip-password based speaker verifica-

tion problem. Within the presented approach, an effective lip

motion segmentation approach is addressed to segment the lip-

password sequence into a small set of distinguishable subunits

so that the more detailed motion information can be obtained.

Further, the utilization of RSM can not only circumvent the

occurrence of feature overfitting problem, but be also capable

of making each component classifier diverse and increasing the

discrimination power of the learning framework. Moreover,

the adoption of DSS reorganizing the training samples in

pairs, is able to solve the small training sample size problem.

The experiments have shown the efficiency of the proposed

approach in comparison with the existing counterparts.

Along the line of the present work, there still exist some

open problems for further studies. For example, how to adap-

tively learn the optimal parameters for lip motion analysis and

how to effectively verify the non-digital lip-password have yet

to be studied. Further, from a practical viewpoint, it would

also be useful to extend the algorithm to the less constrained

conditions, especially for the large variations in speaking pace,

facial expressions and illumination conditions. We shall leave

them somewhere in our future work.
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