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ABSTRACT Crowd counting is a task that aims to estimate the number of people in an image. Recent 

crowd counting methods make significant progress by employing convolutional neural networks to regress 

crowd density maps. One of the most challenging problems in this task is the drastic scale variation of the 

region of interest in images. In this paper, a Feature Fusion Attention Network (FFANet) is proposed for 

crowd counting. Firstly, the VGG16 network is adapted as the backbone of the FFANet to extract the 

features of crowd images. Then, the extracted features are fused by the subsequent two stages. Specifically, 

the information enhancement operations on the multi-levels features are conducted by Feature Fusion 

Attention Module (FFAM), which are further refined by the Residual Block (RB). Finally, the features are 

processed by the Compression Module (CM) to generate a density map. To demonstrate the effectiveness, 

the proposed algorithm is verified on three benchmark datasets. Evaluation of the algorithm performances 

in comparison with other state-of-the-art methods indicates the proposed FFANet outperforms the existing 

methods. 

INDEX TERMS Crowd Counting, Scale Variation, Feature Fusion Attention. 

I. INTRODUCTION 

Crowd counting is one of the promising applications in 

computer vision. It is a task that aims to estimate people’s 

numbers in an image. The predicted results can be used in a 

wide range of fields, such as intelligent transportation [1], 

public security [2], agriculture monitoring [3], video 

surveillance [4] and so on. However, crowd counting is also 

a highly challenging task because of occlusion, low image 

resolution, perspective distortion, scale variation of objects, 

etc [5]. To obtain accurate results, researchers have paid lots 

of attention to study the above issues. 

Early methods for crowd counting are based on manual 

features extraction of the human body and various regression 

functions [6]. These methods usually don’t perform well in 

dense crowd scenes where pedestrians are severely occluded 

or overlapped. With the development of deep learning 

technology in computer vision, the algorithms based on CNN 

have made great progress by conquering the scales variation. 

These methods typically design different sized filters 

architectures to extract multi-scale features [7]. However, 

human scales change continuously in the entire image and 

current models can only concern some discrete scales. It  

brings a major problem that these methods ignore a larger 

number of crowds in an image. 

Some researchers [8]-[10] discover that CNN’s shallower 

layers focus on low-level texture and spatial information 

which can help the model determine the location of the target. 

The deeper layers focus on high-level contextual and 

semantic information which can help the model to identify 

the type of targets. Inspired by the above research, we 

reasoned that the fusion of these multi-level features can 

effectively solve the crowd scales variation. There are two 

ways to realize feature fusion, one is to merge the features on 

its channel axis and the other is to conduct element-wise 

summation. The defect of these two methods is that they can't 

utilize the information contained in the feature effectively, 

which results in the waste of calculation. In this paper, we 

introduce the FFAM to realize the information enhancement 

of the multi-level features. First, the FFAM utilizes the 

contextual and semantic information contained in the high-

level features to enhance channel-wise information in the 

low-level features. Second, the spatial information of the 

processed low-level features would be extracted by the 

FFAM to enhance the high-level features. Third, the features  
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FIGURE 1.  Density estimation results. Top left: input image. Top right: 
ground truth. Bottom left: SANet [9]. Bottom right: our FFANet. 

processed in the first two steps are concatenated in the 

channel axis. The experiment shows that FFAM significantly 

improves the accuracy of crowd counting tasks. 

Fig. 1 shows a crowd image and the estimated density 

maps by the proposed FFANet and the SANet [11]. 

Compared with SANet, our result deviate less from the 

ground truth. By observing the spatial distribution of the 

density maps, SANet could not solve the drastic scale 

variation of the region of interest in crowd images (as shown 

in the red box). On the contrary, the proposed FFANet solves 

the scale variation problem well and the spatial distribution 

of the estimated density map is very similar to the ground 

truth. In conclusion, compared with SANet, the FFANet 

proposed in this paper has a significant improvement in 

solving the problem of the drastic scale variation in crowd 

image and improving the accuracy of crowd counting. 

In summary, the contributions of this paper are as follows: 

1) A new end-to-end multi-level feature fusion network is 

proposed to enhance the network robustness to scale 

variations of crowd images. 

2) The proposed FFAM is utilized to enhance the spatial 

and semantic information between multi-level features 

in the FFANet. 

The remainder of the paper is organized as follows. After 

the related work discussion in Section II, we cover the details 

of our proposed method in Section III. Section IV introduces 

experimental designs and discusses the results. We conclude 

with a short discussion in Section V. 

II. RELATED WORK 

A. CROWD COUNTING 

In recent years, crowd counting methods have made great 

progress by employing convolutional neural networks to 

regress crowd density maps. Researchers have designed a 

variety of efficient convolution neural networks to solve 

scale variation [5]. The remainder part of this section 

describes the multi-column models and the single-column 

models according to the network structure. 

Multi-column models: Zhang et al. [7] proposed a 

Multi-column Convolutional Neural Network (MCNN) to 

overcome the scale variation in images. Each column is 

composed of different filters to get features with various 

scales. Inspired by MCNN, Onoro et al. [12] designed a 

scale-aware counting model that can predict crowd 

distribution and the number of the crowd without 

perspective information, by extracting features from the 

image with different resolutions to overcome the 

perspective distortion. Switch-CNN which trains a classifier 

to choose the optimal branch from the multi-column 

network for crowd image patches is proposed by Sam et al. 

[13]. SANet designed by Cao et al. [11] uses scale 

aggregation modules to solve scale variation and extracts 

these features to generate high-resolution density maps. 

Guo et al. [14] explored a scale-aware attention fusion with 

various dilation rates to capture different visual 

granularities of crowd regions of interest and utilizes 

deformable convolutions to generate a high-quality density 

map. Recently, Gao et al. [15] proposed a Perspective 

Crowd Counting via Spatial Convolutional Network (PCC 

Net) to solve high appearance similarity, perspective 

changes and severe congestion. 

Single-column models: CSRNet [16] used dilated 

convolution layers to expand the receptive field and replace 

pooling operations. By taking advantage of these designs, 

CSRNet can easily generate high-quality density maps. Shi 

et al. [17] proposed a Perspective Aware Convolutional 

Neural Network (PACNN), which can add perspective 

information based on crowd estimation and effectively 

solve the scale variation. ADCrowdNet [18] consists of two 

CNN networks. An attention aware network firstly detects 

the crowd regions in the image and calculates the 

congestion degree of these areas. Based on the detected 

crowd area, a multi-scale deformable network is used to 

generate high-quality density maps. More recently, Jiang et 

al. [19] proposed an effective Multi-Level Convolutional 

Neural Network (MLCNN) architecture that first adaptively 

learns multi-level density maps and then fuses them to 

predict the final output. 

B. ATTENTION MODELS 

Attention models are first applied in the field of machine 

translation and then developed into many deep learning 

fields such as object detection [20], image classification 

[21], image segmentation [22] and face recognition [23]. 

Hu et al. [24] proposed a lightweight attention mechanism 

named SENet which could automatically obtain the 

importance of each feature channel-wise information to 

enhance the useful features. Jon. et al. combined the 

channel attention mechanism and the spatial attention 

mechanism to propose CBAM [25] and BAM [26]. Li et al. 

[27] proposed a dynamic selection mechanism that allows  
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FIGURE 2.  Overview of the proposed FFANet. The image is fed to the first five convolutional blocks of VGG16 for extracting features. The output from 
the conv_5 is upsampled and fused with the output from conv_4 to achieve one-stage feature fusion. Then the fused feature maps and the output of 
the conv_4 are further upsampled and fused with the feature maps from conv_3 to achieve two-stage feature fusion. Finally, the final fused features 
are processed by the CM to generate a density map. 

each neuron to select a different receptive field for the size 

of the target. Cao et al. [28] combined the advantages of 

Non-local [29] and SENet and proposed a new global 

context module, achieving significant results on computer 

vision tasks. 

Multi-column models typically design different sized 

filters architectures to extract multi-scale features. 

However, human scales change continuously in the entire 

image and current models can only concern some discrete 

scales. It brings a major problem that these methods ignore 

a larger number of crowds in an image. Single-column 

models need to rely on other information or auxiliary 

network to solve the scale variation, for example, PACNN 

needs to generate perspective maps and train the 

corresponding network branches. This has led to additional 

work and increased difficulty in model training. Therefore, 

combined with the above works, we design a simple and 

effective network based on multi-level feature fusion to 

solve the problem of scale variation in crowd counting. 

III. METHOD 

In this section, we firstly introduce the structure of the 

proposed FFANet. Then, we introduce the associated 

modules and the loss function. Fig. 2 shows the details of the 

network structure. Table I describes the configuration of 

convolutional layers in the proposed FFANet. [(3,3)-64-BN-

ReLU] means that the convolutional block contains 3×3 

kernel size convolutional operation, 64 output channels, a 

BN [30] layer and a ReLU activation layer. (FFAM+RB) 

represents the cascade structure composed of the FFAM and 

the RB. 

 

TABLE I.  Configuration of convolution layers in the proposed FFANet. 

FFANet 

Backbone 

Conv-1: [(3,3) - 64 - BN - ReLU] × 2 
Max pooling 

Conv-2: [(3,3) - 128 - BN - ReLU] × 2 

Max pooling 
Conv-3: [(3,3) - 256 - BN - ReLU] × 3 

Max pooling 

Conv-4: [(3,3) - 512 - BN - ReLU] × 3 
Max pooling 

Conv-5: [(3,3) - 512 - BN - ReLU] × 3 

Max pooling 

Stage 1: (FFAM+ RB) × 1 

Upsample 5 level Features 
FFAM × 1 

RB: [(1,1) - 256 - ReLU] × 1 

       [(3,3) - 256 - BN – ReLU] × 1 
       [(3,3) - 256 - ReLU] × 1 

Stage 2: (FFAM+ RB) × 2 

Upsample 4 level Features 

FFAM × 1 
RB:  [(1,1) - 128 - ReLU] × 1 

[(3,3) - 128 - BN - ReLU] × 1 

        [(3,3) - 128 - ReLU] × 1 

Compression Module  

Conv-1 : [(3,3) - 32 - ReLU] × 1 

Conv-2 : [(1,1) - 1 - ReLU] × 1 
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FIGURE 3.  The architecture of the proposed FFAM. This i
F  indicates the feature maps output from the i-th convolutional block. The concatenate 

means to concatenate the feature maps in the channel axis. (H1, W1, C1) represents the shape of the feature. 

A. OVERVIEW 

The FFANet consists of a backbone network, feature fusion 

attention modules, residual blocks and a compression 

module.  

Backbone the backbone network is a pre-trained VGG16 

[31] network with the fully connected layers removed. A 

BN layer is added at the back of all convolutional layers in 

the VGG16 network. The backbone network contains 13 

convolutional layers which are divided into 5 convolutional 

blocks. We take the output of convolution blocks from the 

third to the fifth as the objects of feature fusion. 

FFAM the proposed FFAM fuses multi-level features of 

the backbone and utilizes this information diversity to 

enhance channel-wise information in the low-level feature 

and spatial-wise information in the high-level feature. 

RB & CM the RB is a residual block composed of a 1×1 

kernel size convolutional layer and two 3×3 convolutional 

layers to refine the features of FFAM output. The 

compression module (CM) compresses the feature map into 

a single-channel crowd density map. 

B. FEATURE FUSION ATTENTION MODULE 

Fig. 3 displays the architecture of the FFAM. The input is the 

features of two adjacent levels in the backbone network. The 

FFAM upsamples the high-level feature 1iF +  and 

concatenates it with the low-level feature iF in the channel 

axis. The channel attention module uses the concatenated 

features to output vectors cw to enhance channel-wise 

information in iF . Fig. 4 (a) describes the structure of the 

channel attention module. It is formulated as 

 1([ , ( )])c i iw F U Fφ +=  (1) 

where ( )U ⋅  denotes the upsampling layer, [ ]⋅ denotes the 

concatenation layer, ( )φ ⋅ denotes the channel attention 

module. Channel-wise enhanced F ′ is obtained by element-

wise multiplying vector cw  and iF . It is formulated as 

 c iF w F′ = ⊗  (2) 

The spatial attention module calculates F ′  to obtain the 

spatial weight to enhance the high-level feature. Fig. 4 (b) 

represents the structure of the spatial attention module. We 

define this operation as 

 ( )sw Fϕ ′=  (3) 

where ( )ϕ ⋅  denotes the spatial attention module, sw denotes 

the spatial weight. Spatial-wise enhanced F ′′ is obtained by 

element-wise multiplying sw and 1( )iU F + . It is formulated 

as 

 1( )s iF w U F +′′ = ⊗  (4) 

Finally, the two enhanced features would be concatenated in 

the channel axis. It is formulated as 

 [ ]ˆ ,F F F′ ′′=  (5) 

C. LOSS FUNCTION 

We define a joint loss function which consists of Mean 

Squared Error (MSE) loss and Structural Similarity Index 

(SSIM) loss. MSE loss is used to minimize the Euclidean 

distance between the ground truth and the estimated density 

map. Ref. [11] reveals the fact that MSE loss employed by 

many previous methods is dependent on the pixel 

independence hypothesis and doesn’t consider the local 

correlation of the density map. Therefore, we utilize the 

SSIM loss as part of the loss function to improve the result. 

The joint loss function is defined as follows 
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FIGURE 4.  Structure of the Channel Attention module and Spatial 
Attention module. Dense-(N)-Sigmoid means that the dense layer 
contains N neurons and the Sigmoid activation function. The N of the 
dense layer is set to {128, 256} in stages 1, 2 in sequence. Conv-(3, 3)-1-

Sigmoid means that the convolutional layer contains a 3×3 kernel size 
convolutional operation, 1 output channels and the Sigmoid activation 
function. 
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where N is the number of training batch size, G
iD is the 

ground truth of density map, P
iD is the predicted density map, 

M is the number of the pixels in the density map, λ  is the 

parameters which are used to balance MSEL and SSIML . 

Means ( , )i iP Gµ µ  and standard deviation ( , , )i i i iP G P Gσ σ σ  

in SSIM loss are calculated with a Gaussian kernel that 

configures a standard deviation of 1.5 within an 11×11 

region at each position j .  

IV. EXPERIMENT 

In this section, we validate the effectiveness of our method 

on three public crowd counting datasets: ShanghaiTech [7], 

UCF_CC_50 [32], UCSD [33]. Then we conduct the 

ablation studies about the hyperparameter λ , the density 

map generation and the structure of the network. 

A. DATASETS AND TRAINING DETAILS 

 ShanghaiTech. The ShanghaiTech dataset includes 

1198 images with 330,165 annotated heads. It consists 

of two parts: Part A and Part B. Specifically, Part A 

consists of 482 images, which are randomly selected 

from the Internet and Part B is selected from the 

surveillance on the streets of Shanghai. These two parts 

are further divided into training and evaluation sets. 300 

and 182 images from Part A are selected for training 

and testing respectively, while 400 and 316 images 

from Part B are also chosen. 

 UCF_CC_50. The UCF_CC_50 dataset contains 50 

images with different resolutions and each image has an 

average of 1280 people. In the whole dataset, the 

number of individuals in each image ranges from 94 to 

4543, which indicates that there is a large count 

variance between images. Considering the small size of 

the dataset, we use a cross-validation protocol for 

training and testing our methods following the approach 

from ref. [7]. 

 UCSD. The dataset consists of 2000 frames from a 

surveillance video camera on the UCSD campus. The 

resolution of each frame is 158 × 238. The average 

number of people in each frame is 25. The dataset 

provides the region of interest to ignore the background. 

Following ref. [11], frames #601 to #1400 are used for 

training and the rest for testing. To satisfy the 

constraints of the backbone on the shape of the input 

tensor, we resize the resolution of the image to 400×

608. This operation can not only meet the input 

restrictions but also ensure that the image content is not 

distorted. 

If the image in the dataset has the various resolution, the 

original image will be cropped into 400 × 400 patches. We 

convert the label to a density map by a fixed-size Gaussian 

kernel ( 4)Gσ σ = . We use the delta function ( )ix xδ − to 

represent the head position. The ground truth of density 

map Y is generated by convolving the Gaussian kernels 

with each delta function. 

 ( )iY x x Gσδ= − ∗  (7) 

The parameters of the network are randomly initialized 

by the Gaussian distribution with mean zero and standard 

deviation of 0.01 except for the backbone network. We use 

Adam with a learning rate of 1e-4 and a batch size of 16 to 

train the network. 

B. EVALUATION METRICS 

The performance of the model is evaluated by two metrics, 

the Mean Absolute Error (MAE) and Mean Square Error 

(MSE). MAE reflects the accuracy of the results predicted 

by the model and MSE indicates the robustness of the 

model. They are defined as follows: 

 
1

1 N
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i i

i

MAE C C
N =

= −∑  (8) 

 
2

1

1 N
GT

i i

i

MSE C C
N =

= −∑  (9) 

where N  is the number of the test dataset, i  is the index of 

the image, iC  is the estimated number of the image i  and  
GT
iC  is the ground truth. 
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C. EXPERIMENTAL RESULTS 

In Table II~IV, we compare the performance of our method 

with several advanced works on ShanghaiTech [7], 

UCF_CC_50 [32] and UCSD [33]. These tables 

demonstrate that our method achieves the best MAE and 

MSE on these three benchmark datasets. Compared with 

the most advanced PACNN, the MAE and MSE of our 

FFANet on Shanghai Tech Part A decreased from 66.3 to 

62.4 and RMSE from 106.4 to 102.6, which reveals that the 

accuracy and robustness of our method are competitive. On 

the challenging UCF_CC_50, our FFANet outperforms 

PACNN by 6.2% in MAE, which states that our method is 

equally effective on a dataset with a small sample size 

where the number of people changes dramatically. Table IV 

shows that our FFANet also achieved the best performance 

in sparse scenarios. The above results prove that our 

FFANet has the advantages of accuracy and robustness in 

both dense and sparse scenes. 

 

TABLE II.  Results on the ShanghaiTech Dataset. 

Methods ShanghaiTech _A ShanghaiTech _B 

MAE MSE MAE MSE 

Switch-CNN [13] 90.4 135.0 21.6 33.4 

CP-CNN [34] 73.6 106.4 20.1 30.1 

IG-CNN [35] 72.5 118.2 13.6 21.1 

ic-CNN [36] 69.8 117.3 10.7 16.0 

CSRNet [16] 68.2 115.0 10.6 16.0 

PCC Net [15] 73.5 124.0 11.0 19.0 

PACNN [17] 66.3 106.4 8.9 13.5 

FFANet 62.4 102.6 8.3 11.1 

 

TABLE III.  Results on the UCF_CC_50 Dataset. 

Methods MAE MSE 

Switch-CNN [13] 318.1 439.2 

CP-CNN [34] 295.8 320.9 

IG-CNN [35] 291.4 349.4 

ic-CNN [36] 260.9 365.5 

CSRNet [16] 266.1 397.5 

PCC Net [15] 240.0 315.5 

PACNN [17] 241.7 320.7 

FFANet 226.8 316.4 

 

TABLE IV.  Results on the UCSD Dataset. 

Methods MAE MSE 

MCNN [7] 1.60 3.31 

Onoro et al. [12] 1.51 - 

Switch-CNN [13] 1.62 2.10 

Huang et.al [37] 1.00 1.40 

CSRNet [16] 1.16 1.47 

SPN [38] 1.03 1.32 

FFANet 0.97 1.30 

 

To comprehensively evaluate the performance of 

FFANet and other models, we further verify the results of 

the proposed FFANet on ShanghaiTech Part A dataset in 

terms of model parameters, runtime and whether to load the 

pre-training model. The results on other measures are 

shown in Table V. Compared to PACNN with the second-

best MAE as shown in Table V, FFANet achieves higher 

accuracy with fewer parameters. However, there is still a 

certain gap between FFANet and the best model [15] in 

terms of parameters and runtime. In future work, our 

research direction is to use lightweight technology to 

reduce the amount of FFANet network parameters and 

maintain the inference accuracy. 

 

TABLE V.  Results on other measures on the ShanghaiTech Part A. 

Methods Parameters(M) Runtime(ms) Pre-train 

Switch-CNN [13] 15.1 153 √ 

CP-CNN [34] 68.4 5113 √ 

CSRNet [16] 16.3 64 √ 

PCC Net [15] 0.55 89 × 

PACNN [17] 24.1 230 √ 

FFANet 17.6 92 √ 

 

Fig. 5 describes the comparison of some high-quality 

results of FFANet on ShanghaiTech Part A with CSRNet. 

Compared with CSRNet, FFANet can capture the spatial 

distribution of the crowd and generate a clearer density 

map. Fig. 6 shows some high-quality results of FFANet on 

three datasets. 

D. ABLATION STUDIES 

We present the ablation studies about the hyperparameter λ , 

density map generation, different combinations of CBAM 

and network and the structure of the network. 

1) ABLATION EXPERIMENTS ON LAMBDA 
λ  is a hyperparameter that is used to balance the MSE loss 

and SSIM loss. To analyze the impact of the SSIM loss 

function on the results, we set different λ  values to 

observe the performance of the FFANet on  ShanghaiTech 

Part A. Fig. 7 shows that when =100λ the FFANet 

achieves the best results. 

 

 

FIGURE 7.  Results by varying the weight of parameter λ in the loss 
function. 
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FIGURE 5.  Qualitative results on the ShanghaiTech Part A dataset. Column #1: the images from ShanghaiTech Part A; Column #2: the ground truth 
density maps; Column #3: estimated density maps by CSRNet; Column #4: estimated density maps by our method. 

 

 
FIGURE 6.  Estimated density maps from left to right: Column #1 ShanghaiTech Part A; Column #2 ShanghaiTech Part B; Column #3 UCF_CC_50; 
Column #4 UCSD. 
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TABLE VI.  Results of density map generation on the ShanghaiTech. 

Values Part _A Part _B 

MAE MSE MAE MSE 

Adaptive-kernel [7] 66.1 110.5 8.6 11.7 

Fixed-kernel (σ = 16) 68.8 106.3 9.0 11.9 

Fixed-kernel (σ = 4) 62.4 102.6 8.3 11.1 

 

TABLE VII.  Results of different combinations of CBAM and network on the ShanghaiTech Part A. 

Method MAE MSE Parameters(M) Runtimes(ms) 

FFANet (Vanilla) 64.5 107.9 16.9 86 

FFANet (Full) 63.8 109.5 17.9 101 

FFANet 62.4 102.6 17.6 92 

 

TABLE VIII.  Results of different structures on the ShanghaiTech Part A. 

Method MAE MSE Parameters(M) Runtimes(ms) 

I. VGG16 + CM 73.6 120.9 14.9 71 

II. VGG16 + stage 1 + CM (w/o FFAM) 69.1 113.8 16.2 75 

III. VGG16 + stage 1, 2 + CM (w/o FFAM) 65.9 113.2 17.0 87 

IV. VGG16 + stage 1 + CM (w FFAM) 66.5 105.6 16.6 76 

V. FFANet (VGG16 + stage 1, 2 + CM (w FFAM)) 62.4 102.6 17.6 92 

 

2) ABLATION EXPERIMENTS ON DENSITY MAP 
GENERATION 
In this experiment, we compare the effects of three values 

of Gaussian kernel which are commonly used to generate 

density maps in crowd counting tasks on counting results. 

Table VI shows that when σ = 4, the performance of the 

FFANet is the best. 

3) ABLATION EXPERIMENTS ON CBAM ATTENTION 
MODULE 

This part of the study is to discuss the impact of CBAM [25] 

on the networks. Table VII shows the performance of 

different combinations of CBAM and network on the 

ShanghaiTech Part A. FFANet (Vanilla) indicates FFANet 

without CBAM, FFANet (Full) means FFANet with 

CBAM inserted in the backbone network and FFAM. 

FFANet indicates that the network structure proposed in 

this article only inserts CBAM in FFAM. Compared with 

FFANet (Vanilla), the MAE and MSE of FFANet 

decreased from 64.5 to 62.4 and MSE from 107.9 to 102.6. 

Furthermore, the network parameters and runtime of 

FFANet increased by 0.7M and 6ms compared with 

FFANet (Vanilla). Compared with FFANet (Full), FFANet 

has achieved a comprehensive lead in all measures. After 

considering the performance of crowd estimation accuracy 

and computational cost, this paper chooses FFANet as the 

optimal network. 

4) ABLATION EXPERIMENTS ON NETWORK 
STRUCTURE 

We study the effects of fusing different levels of features 

on the accuracy of crowd counting. Table VIII represents 

the performance of networks with different structures on 

the ShanghaiTech Part A. Method I means to connect the  

 

 

last layer of VGG16 to the compression module to generate 

a crowd density map. Method II means that the features 

extracted from VGG16 are fused in one stage without 

FFAM and the fused features are connected with the 

compression module to generate density maps. Method III 

is similar to Method II, but the extracted features need two-

stage feature fusion. Compared with Method I, the MAE 

and MSE of Method II decreased from 73.6 to 69.1 and 

MSE from 120.9 to 113.8, which indicates that feature 

fusion can effectively improve the counting accuracy. 

Moreover, the network parameters and runtime of method 

II are increased by 8.7% and 5.6% compared with Method I. 

Compared with Method II, the MAE and MSE of Method 

III reduced from 69.1 to 65.9 and MSE from 113.8 to 113.2. 

The results show that the performance gain is due to the 

increase of parameters caused by the stacking of the feature 

fusion stage, which strengthens the expression ability of the 

network. However, simply increasing the network 

parameters will also increase the training difficulty and 

weaken the robustness of the network. Compared with 

Method II, the network parameters and runtime of method 

III are greatly increased, but the MSE of Method III is only 

decreased by 0.6. The proposed FFAM can be a nice 

tradeoff between crowd estimation performance and 

computational cost. 

To evaluate the performance of the FFAM, we added 

FFAM to Method II and III in the feature fusion stage, 

resulting in Method IV and V. Compared with Method II, 

the MAE and MSE of Method IV decreased from 69.1 to 

66.5 and MSE from 113.8 to 105.6. Moreover, in terms of 

network parameters and runtime, Method IV only increases 

0.6M and 1ms compared to Method I. In comparison with 

Method III, the MAE and MSE of Method V decreased 
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from 65.9 to 62.4 and MSE from 113.2 to 102.6. The 

decrease of MAE indicates that FFAM can solve the scale 

variation in an image. Meanwhile, the significant reduction 

in RMSE indicates that FFAM can well solve the scale 

changes in the dataset. The above experimental results 

show that FFAM is effective in dealing with scale changes 

in crowd counting. For the computational costs, Method V 

brings an increase of parameters with 0.6M and 5ms for 

runtime. In conclusion, FFAM can greatly improve the 

counting accuracy and enhance the robustness of the 

network under the premise of adding limited parameters. 

V. CONCLUSION 

In this paper, we proposed a Feature Fusion Attention 

Network (FFANet) to accurately estimate the number of 

people in the images. On one hand, the Feature Fusion 

Attention Module (FFAM) is proposed to realize the 

information enhancement of the multi-level features which 

are extracted by the VGG16 network. On the other hand, 

the enhanced features are processed by the Compression 

Module (CM) to generate a density map. Evaluation of the 

algorithm performances in comparison with other state-of-

the-art methods indicates that the proposed FFANet is 

effective for crowd counting. 

In near future, we plan to verify the adaptability of our 

method on other feature extractors. In addition, the 

performance of FFANet on UCF_CC_50 is still not perfect. 

This will be another research content we improve. Finally, 

we also plan to use model lightweight technology to reduce 

the time complexity of FFANet. 
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