
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Learning multi-party adversarial
encryption and its application to secret
sharing
ISHAK MERAOUCHE1, (Member, IEEE), SABYASACHI DUTTA 2, SRABAN KUMAR
MOHANTY 3, ISAAC AGUDO 4 , KOUICHI SAKURAI5
1Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan (e-mail: ishak.meraouche@gmail.com)
2Department of Computer Science, University of Calgary, Canada (e-mail: saby.math@gmail.com)
3IIITDM Jabalpur, Jabalpur, India (e-mail: sraban@iiitdmj.ac.in)
4NICS Lab, University of Malaga, Spain (e-mail: isaac@lcc.uma.es)
5Department of Information Science and Electrical Engineering, Kyushu University, Japan (e-mail: sakurai@inf.kyushu-u.ac.jp)

Corresponding author: Ishak MERAOUCHE (e-mail: ishak.meraouche@gmail.com).

Ishak Meraouche is financially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for his studies at
Kyushu University.
Sabyasachi Dutta is financially supported by Mitacs, Canada.
This research is supported by the Telecommunications Advancement Foundation of Japan and also operating as a part of the India-Japan
Cooperative Science Programme (IJSCP) by DST and JSPS.

ABSTRACT Neural networks based cryptography has seen a significant growth since the introduction of
adversarial cryptography which makes use of Generative Adversarial Networks (GANs) to build neural
networks that can learn encryption. The encryption has been proven weak at first but many follow up
works have shown that the neural networks can be made to learn the One Time Pad (OTP) and produce
perfectly secure ciphertexts. To the best of our knowledge, existing works only considered communications
between two or three parties. In this paper, we show how multiple neural networks in an adversarial setup can
remotely synchronize and establish a perfectly secure communication in the presence of different attackers
eavesdropping their communication. As an application, we show how to build Secret Sharing Scheme based
on this perfectly secure multi-party communication. The results show that it takes around 45, 000 training
steps for 4 neural networks to synchronize and reach equilibria. When reaching equilibria, all the neural
networks are able to communicate between each other and the attackers are not able to break the ciphertexts
exchanged between them.

INDEX TERMS Cryptography, Encryption, Generative Adversarial Networks, Neural Networks, Secret
Sharing

I. INTRODUCTION

Artificial Intelligence and Cryptography have been sepa-
rate disciplines in the past due to the difficulty to build
models that can learn different cryptography primitives and
techniques. However, with the advances in deep learning
especially with the introduction of Generative Adversarial
Networks (GANs) [1], things are starting to take another
turn. GANs are neural networks (usually a generator and a
discriminator) that compete against each other in order to
learn a specific task or get better at it. Abadi and Andersen
[2] have shown in 2016 that GANs can be used to learn sym-
metric encryption. In their model, two parties (namely Alice
and Bob) compete against a third neural network (namely

Eve) in order to protect their communication and prevent Eve
from reading the messages exchanged between them. Alice
and Bob had a common secret key and were able to use it
to encrypt and decrypt messages. However, Zhou et al. [3]
showed that the ciphertexts generated by the neural networks
in this model are not secure as they failed multiple standard
statistical tests such as the NIST Statistical test. Multiple fol-
low up researches [4, 5] have shown that, with a modification
to the neural network structure and the training process, the
neural networks can learn perfectly secure encryption. More
precisely, training results of the models proposed by Li et al.
[4], Coutinho et al. [5] show that the ciphertexts are obtained
as the exclusive or (XOR) of the plaintext and secret key i.e.,

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

an encryption of a bit of the plaintext is the result of the
XOR operation with a unique bit of the key. The results in
the work given by Li et al. [4] learns protection against more
adversaries and has more chances of learning the OTP after a
training session compared to the results of the work given by
Coutinho et al. [5].

Our Contribution. In this paper, we use the model proposed
by Li et al. [4] to build a perfectly secure multi-party ad-
versarial encryption scheme. All the existing works except
the contribution by Meraouche et al. [6] studied the problem
in a two party setting. Our work is a continuation of the
work given by Meraouche et al. [6] which establishes a
communication between 3 parties and gives insights on how a
multi-party communication can be established. As the model
given by Meraouche et al. [6] has been implemented with
the same neural network structure proposed in the model
Abadi and Andersen [2], it is unable to provide strong se-
curity guarantees as shown by Zhou et al. [3]. By using the
neural network structure and training model proposed by Li
et al. [4], we can bypass the problem and claim that neural
networks learn a secure scheme. We choose to use the model
proposed by Li et al. [4] instead of the one proposed by
Coutinho et al. [5] because the neural networks have more
chances of learning the OTP at the end of training in the
model given by Li et al. [4]. Additionally, the neural networks
learn to secure the ciphertexts against stronger attack models
which are detailed in Section III. Lastly, as an application of
our new multi-party adversarial encryption model we show
how to build an (information theoretic) implementation of
secret sharing scheme for any general access structure.

This paper is structured as follows: In section II, we define
the related works necessary to understand the paper. Namely:
Adversarial Encryption [2], 3-Party Adversarial Encryption
[6], Perfectly secure adversarial encryption [4, 5] and Se-
cret Sharing. Then, we define our multi party adversarial
encryption model in Section III and our Secret Sharing model
in section IV. Lastly, we show and discuss results such
as training time and decryption accuracy in section V. We
conclude the paper in section VI.

II. BACKGROUND

In this section we describe the relevant details on the back-
ground that are required for this paper: Adversarial encryp-
tion and key exchange. However, neural networks have also
been applied to Steganography [7, 8, 9, 10] where Alice
learns to hide a message in an image that Bob can extract and
Eve cannot differentiate an image that has a hidden message
and one that doesn’t. A key exchange scheme has also been
proposed by Kanter et al. [11], however, it has been proven
to be weak against multiple attacks by Klimov et al. [12]
and despite some improvements such as the ones given by
Salguero et al. [13], this scheme is still considered as weak
and vulnerable against many attacks.

A. ADVERSARIAL ENCRYPTION
Adversarial Encryption has been first introduced by Abadi
and Andersen [2]. The authors have shown that two neural
networks (Alice and Bob) with the same structure are able
to remotely synchronize and learn to encrypt and decrypt
messages in the presence of an eavesdropper Eve and prevent
Eve from decrypting the messages. All three neural networks
share the same neural network structure but Alice and Bob
have a common secret key that Eve does not have access
to. During training, Alice trains to generate ciphertexts that
can be easily decrypted by Bob and cannot be decrypted by
Eve without the key. Bob learns to reconstruct the plaintext
from the ciphertext using the secret key and get a decryption
accuracy as close to 100% as possible. Eve tries to decrypt
the ciphertexts transiting between Alice and Bob without the
secret key and get as close as possible to 100% accuracy.
Alice is therefore competing against Eve and trying to gener-
ate ciphertexts that are difficult to decrypt without the secret
key and Eve is competing against Alice by trying to decrypt
these ciphertexts. If Eve is successful in its decryption, its
high accuracy will push Alice to generate ciphertexts that are
more complicated in order to prevent Eve from decrypting
the ciphertexts. This "game" goes on until the three neural
networks have reached equilibria and either Alice and Bob or
Eve have won.

1) Neural Networks Structure used
The neural network structure used by Alice, Bob and Eve is
described in Table 1 below. The neural networks need to have
the same structure in order to be able to synchronize their
weights and obtain the same weights matrix after training.
If they used a different structure, they would have a weights
matrix that is different in size and shape and therefore would
not be able to synchronize. Synchronizing neural networks
with different structures is a challenging issue that will be
considered in a future contribution.

TABLE 1. Summary of the neural network structure proposed by Abadi and
Andersen [2] for Alice, Bob and Eve

Layer #
FC
Layer
Type

Activation Filters Kernel
Size Strides Padding

1
FC
Layer
(Dense)

Relu - - - -

2 Conv1D Sigmoid 2 4 1 same

3 Conv1D Sigmoid 4 2 2

Valid for
Alice and
Bob. Same
for Eve.

4 Conv1D Sigmoid 4 1 1 same
5 Conv1D Tanh 1 1 1 same

We can see that the neural network starts with a relu-
activated fully connected layer to read and mix the input
(Which is the plaintext and key for Alice, ciphertext and
key for Bob and the ciphertext only for Eve). The plaintext,
ciphertext and secret key all have the same size N . Alice and

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Bob receive an input of size 2N (plaintext and key) and Eve
receives an input of size N (the ciphertext). The output of
the fully connected layer is then followed by three sigmoid-
activated convolutions with different number of filters, kernel
sizes and strides. The second convolution has valid padding
for Alice and Bob in order to reduce the data size from 2N
to N . However as Eve already receives an N size input, there
is no need for halving the data and therefore same padding is
used. The last convolution is activated with the tanh function
in order to produce an output in the interval [−1, 1].

This structure is based on the mix and transform principle
as explained by [2]. The fully connected layer at the begin-
ning of the structure will read and mix the bits of the input
together before forwarding to the next layers. The next layers,
which are convolutions will transform their input.

The decryption accuracy of Bob and Eve is assessed
through the following loss functions which are described by
the following annotations:

• WA denotes the weights of the neural network A.
• A(WAlice, P,K) denotes Alice’s output on input P,K.
• B(WBob, C,K) denotes Bob’s output on input C,K.
• E(Weve, C) denotes Eve’s output on input C.
• d(x, y) denotes the L1 distance between x and y.
The loss function for Bob is defined below in Equation 1.

LBob(WBob, P,K) = d(P,B(WB , C,K)) (1)

Intuitively, the loss function LB determines how wrong
Bob is in his decryption.

Similarly, we define the loss function for Eve in Equation
2 below.

LEve(WEve, P) = d(P,E(WE , C)) (2)

Intuitively, LEve determines how wrong Eve is when
decrypting the ciphertext.

Alice’s loss is related to Eve’s loss and Bob’s so that Alice
is penalized when Bob’s loss is too low or Eve’s accuracy is
too high. Alice’s loss function is defined in Equation 3

LAlice = LBob + (1− L2
Eve) (3)

B. PERFECTLY SECURE ADVERSARIAL ENCRYPTION
The model described before has been shown to produce ci-
phertexts that contain information about the plaintext and/or
the secret key [3]. Therefore, Li et al. [4] modified the neural
network structure and the training process with the aim to
produce ciphertexts that are secure and do not leak informa-
tion about the plaintext and/or the key. The key modifications
shown by Li et al. [4] to improve the security are described
below.

In addition to Eve, a neural network modeling the threat
that an attacker could decrypt the ciphertexts without the
secret key, two more neural networks have been introduced.
The first one corresponds to an attacker that receives the
ciphertext and the secret key and therefore can easily decrypt

the ciphertexts generated by Alice. Alice’s neural network
in return will be forced to generate more complicated ci-
phertexts that do not entirely rely on the secret key but also
the neural network structure of Alice and Bob. The authors
conclude that adding an aggressive attacker that has access
to leaked secret keys pushes Alice to learn a mapping that
does not entirely rely on the secret key but also on the
parameters of their neural networks and therefore produce
stronger ciphertexts. We could then assume that the neural
network parameters contribute to the mapping from plaintext
to ciphertext and vice versa. The other additional threats
refers to an attacker that tries to tell fake and real ciphertexts
apart. This neural network receives a plaintext, its corre-
sponding ciphertext and a randomly generated ciphertext and
tries to tell which ciphertext corresponds to the plaintext. This
pushes Alice to generate ciphertexts that are indistinguish-
able from randomly generated ones and therefore makes sure
that no information can be extracted from these ciphertexts
that are related to the plaintext and/or the secret key.

Apart from more aggressive attackers which seem to be
pushing Alice to generate better ciphetexts as shown by Zhou
et al. [3], Li et al. [4], Li et al. [4] also modified the structure
of each neural network. The new neural network structure
they used is shown in Table 2

TABLE 2. Neural network structure proposed by Li et al. [4]. The Resblocks
[14] in their model contain two identical convolutional layers.

Layer# Layer Type Activation Filters Kernel Size Strides

1 FC Layer
(Dense) ReLU - - -

2 Resblock* Sigmoid 2 2 1
3 Conv1D Sigmoid 4 4 2
4 Resblock* Sigmoid 4 4 1
5 Conv1D Tanh 1 1 1

The ciphertexts generated by the neural networks are in-
formation theoretic secure as they are shown by Li et al. [4]
to be the result of the XOR operation between the plaintext
and the secret key. Equation 4 taken from [4] shows a sample
XOR operation between the plaintext P and the secret key K
performed by the neural network (NN). Both the plaintext
and ciphertext have a size of 42 bits. In their example, we
can see that the first bit p1 from the plaintext has been XOR-
ed with the second bit of the secret key k2, the second bit of
the plaintext with the seventh bit of the key, etc.

NN
(
P,K

)
=

p1 ⊕ k2
p2 ⊕ k7
p3 ⊕ k9
p4 ⊕ k14
p5 ⊕ k25
p6 ⊕ k21
p7 ⊕ k19
· · ·

p41 ⊕ k39
p42 ⊕ k11

(4)

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Coutinho et al. [5] took a different approach by removing
all the attackers and keeping only one Attacker that receives
two plaintexts and one ciphertexts in order to differentiate
between the two plaintexts and tell which one has been
encrypted to the given ciphertexts. While their method has
been shown to be effective at learning the OTP, the results of
the model given by Li et al. [4] are better and therefore we
will use this model to implement the multi-party adversarial
encryption model in Section III.

C. 3-PARTY ADVERSARIAL ENCRYPTION
In the 3-party adversarial encryption scheme given by
Meraouche et al. [6], a setup similar to the one given by
Abadi and Andersen [2] is used in order to build a 3-party
encrypted communication with neural networks. The model
setup is organized as follows: in addition to Alice and Bob, a
third neural network wants to join their communication and
discuss with them. Naturally, Charlie needs to have access
to the secret key and also have the same neural network
structure as Alice and Bob.

There are different communication scenarios, as shown in
Figure 1, depending on the role of the third party, Charlie. In
the first scenario, Charlie joins the existing communication
channel and there is no secrecy between the 3 parties: any
party can communicate with another party or intercept and
read the messages sent to any another party. In the second
scenario, Charlie joins the communication by creating a new
channel with Alice, that way communication between Alice
and Bob remain privy to Charlie but Charlie and Bob cannot
communicate directly and need to use Alice as a bridge if
they need to communicate. In the third scenario, Charlie
creates a channel with Bob, and alice will have to use Charlie
as a bridge to communicate with Bob. The parameters are
unique per link and cannot be shared with other parties.

Alice

Charlie

BobAlice

Charlie

BobAlice

Charlie

Bob

a) b) c)

FIGURE 1. Different communication scenarios

Assuming the second scenario, the training setup and
procedure is the same as the one by Abadi and Andersen [2]
with the difference that Alice now also needs to take into
consideration Charlie’s output when generating ciphertexts.
This has been done by adding Charlie’s loss to Alice’s loss
function so that it becomes as defined in Equation 5.

LAlice = LBob + LCharlie + (1− L2
Eve) (5)

Charlie’s Loss is the same as Bob’s loss and is defined in
Equation 6.

LCharlie(WCharlie, P,K) = d(P,Charlie(WCharlie, C,K))
(6)

Charlie(WCharlie, C,K) is Charlie’s output on the ci-
phertext C and the secret key K and WCharlie are Charlie’s
neural network parameters.

The reason Meraouche et al. [6] considered experimenting
on training with more than two parties was that because the
2-party designs [2] did not allow more than two parties to
communicate. Abadi and Andersen [2] did not define any
explicit way how more than two parties can synchronize
and communicate together. Meraouche et al. [6] took initial
steps in that direction by showing how more than two parties
can train together and learn the same encryption/decryption
pattern. In this paper, we follow these steps by showing
how a communication can be established with any number
of parties, not limited to 2 parties as shown by Abadi and
Andersen [2] or 3 parties as shown by Meraouche et al. [6].

D. SECRET SHARING
In a secret sharing system, a secret is distributed among a user
set U such that authorized subsets of users can reconstruct the
secret, and unauthorized set will not learn anything. Let Γ be
a subset of the power set, 2U , that specifies the subsets of
users that form an authorized set; i.e., the set of their shares
can recover the secret. A subset F ⊂ U which is not in Γ,
i.e. F /∈ Γ, is called an unauthorized set and the set of shares
(Su)u∈F will be independent of secret S. The collection of
unauthorized sets is denoted by F . Note that, in our model
Γ ∩ F = ∅ and Γ ∪ F = 2U . A formal definition of secret
sharing [15] is as follows.

Definition 1 (Secret Sharing Scheme). Let U be a set of n
users labeled by [n] = {1, 2, . . . , n}. Let (Γ,F) denote an
access structure on these n users with F = 2U\Γ. A secret
sharing scheme Π for an access structure (Γ,F) consists of a
pair of algorithms (Share,Rec). Share is a randomized al-
gorithm that gets as input a secret S (from a domain of secrets
S with at least two elements), Γ and the number of parties n,
and generates n shares (S1, . . . , Sn) ←− Share(S). Rec is
a deterministic algorithm that gets as input the shares of a
subset B of parties and outputs a string. The requirements
for defining a secret sharing scheme are as follows:

• Correctness: If {Su}u ← Share(S) for some se-
cret S ∈ S, then for any B ∈ Γ, we always have
Pr[Rec({Su}u∈B) = S] = 1.

• Secrecy: Let {Su}u = Share(S). For F ∈ F , let
SF = {Su}u∈F . Then, for any s0, s1 ∈ S and for any
distinguisher D with output in {0, 1}, it must hold that
|Pr[D(Share(s0)F) = 1]− Pr[D(Share(s1)F) =

1]|≤ ϵ.

First information theoretic secret sharing for threshold
access structures was proposed by Shamir [16] and Blakley
[17]. Later, threshold secret sharing was extended to the case
of general access structure by Ito et al. [18] and also to

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

different types of important access structures like hierarchical
[19, 20, 21], compartmented [19] etc.. It is well known that
for information theoretic secret sharing the share size is at
least the secret size. Krawczyk [22] proposed a computa-
tionally secure secret sharing to reduce the share size. Secret
sharing for image data was introduced by Naor and Shamir
[23].

Zheng et al. [24] modeled the secret sharing problem as a
classification problem and built GANs based secret sharing
scheme. Their model contains a Generator and a Discrimi-
nator that compete against each other. The Generator takes
as input a secret S and outputs m shares. The discriminator
is fed m real shares and m fake random shares and has to
tell which ones are real and which ones are not. The training
continues until the generator is producing shares that are
indistinguishable from random ones and the discriminator is
not able to differentiate between them.

A very recent work by Wang et al. [25] addresses the
construction of progressive secret sharing. Their technique
assigns multiple weights to model parameters for progressive
recovery. Actually, they encode their model parameters using
polynomial based threshold secret sharing such that a hierar-
chy is achieved among the set of shareholders. The sum of the
weights needs to be higher than a threshold value to recover
the secret.

It is worth pointing out that our secret sharing does not
require anything else than training of NNs. In other words,
our construction is not hybrid - it is purely dependent on
synchronization of neural networks and does not use any
external primitive(s) like Shamir secret sharing to achieve the
goal.

The focus of this paper is on secret sharing. Based on the
perfectly secure adversarial encryption model proposed by
Li et al. [4], we extend the 3-party adversarial cryptography
model [6] to an information theoretic secure multi-party
encryption model and use it to obtain a secret sharing scheme.

III. MULTI-PARTY PERFECTLY SECURE ADVERSARIAL
ENCRYPTION MODEL
With the outstanding progress that neural networks based
encryption has seen especially with the possibility of learning
the one time pad as shown by Li et al. [4], Coutinho et al. [5],
a concrete definition of how to communicate and train among
multiple parties is deemed necessary.

In a multi-party communication secured through GANs
and adversarial training scenarios [2, 4, 5, 6], we have mul-
tiple neural networks all aiming to communicate together
in a secure way that prevents attackers from decrypting the
ciphertexts exchanged between them.

In the first scenario of the 3-party adversarial encryption
model [6], Alice wants to communicate securely with Bob
but also Charlie. As Alice, Bob and Charlie all share the same
neural network structure, they were trained all together in
the presence of Eve just like the model shown by Abadi and
Andersen [2]. However, this training method with only one
attacker has proven to be insecure [3] and training against

more aggressive attackers has been shown by multiple au-
thors [4, 5] to push Alice to generate ciphertexts that are
perfectly secure and do not contain any information about
the plaintext or the key.

Therefore, in our multi-party communication, we do not
use the model and training process proposed by Abadi and
Andersen [2] but the one proposed by Li et al. [4] as it
provides neural networks that are able to generate perfectly
secure ciphertexts.

Therefore, Alice trains with a total of N neural networks
(or parties) that have the same structure as Alice. Each neural
network’s loss function LNN is defined in Equation 7.

LNN (WNN , P,K) = d(P,NN(WNN , C,K)) (7)

Where P is the plaintext, K is the secret key, C is the ci-
phertext, WNN are the neural network parameters of the neu-
ral network NN, d is the L1 distance and NN(WNN , C,K)
is the neural network’s output on input C and K using the
parameters WNN .

Alice has to take into consideration every neural network
in the setup and therefore Alice’s loss function is going to be
the sum of the losses of all the neural networks in the setup.
Alice’s loss function is shown in Equation 8.

LAlice =

N∑
i=1

LNNi
(8)

Equation 8 contains the sum of the losses of every neural
network in the setup and allows Alice to generate cipher-
texts that can be decrypted by them at the end of train-
ing. However, without any attacker to compete against, the
plaintext-ciphertext mapping is going to be weak as shown
by Coutinho et al. [5] despite the communication being
successfully established. Adding only one attacker (Eve) has
also been shown to produce ciphertexts that are weak against
many attacks as shown by Zhou et al. [3]. For instance, Zhou
et al. [3] show that the ciphertexts produced when using only
one Attacker (Eve) did not pass many statistical tests such as
the X2 test and the NIST statistical test. Therefore, we take
the same approach done by Li et al. [4], Coutinho et al. [5]
and add more attackers in the setup. These attackers are going
to push Alice to generate perfectly secure ciphertexts.

Alice now has to train against a total of four attackers
inspired from the models given by Li et al. [4] and Coutinho
et al. [5] to learn protection against different types of attacks.
The four attackers and the types of attacks that they are going
to do are described as follows:

• Attacker 1: Has access to the ciphertext only and tries
to decrypt without the key as proposed by Abadi and
Andersen [2]. This is the most basic attacker which
pushes Alice to generate ciphertexts that rely on the
secret key and prevent Alice from learning a plaintext-
to-ciphertext mapping that is too simple.

• Attacker 2: Has access to the ciphertext and the secret
key and learns to decrypt with the key. This attacker

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

pushes Alice to generate ciphertexts that rely not only
the secret key but also the neural network parameters as
shown by Li et al. [4].

• Attacker 3: Receives a plaintext P , its corresponding
ciphertext C and a random ciphertext C ′ and has to
determine which ciphertext belongs to P . This attacker
outputs two probabilities: π1, the probability that C is
a ciphertext for P and π2 the probability that C ′ is a
ciphertext for P . This attacker pushes Alice to generate
ciphertexts that are indistinguishable from randomly
generated ones as shown by Li et al. [4].

• Attacker 4: This attacker receives two plaintexts P1, P2

and a ciphertext C and has to tell which plaintext has
been encrypted to C as proposed by Coutinho et al.
[5]. This attacker outputs two probabilities: π1, the
probability that P1 is the plaintext that corresponds to
C and π2, the probability that P2 corresponds to C.
This Attacker pushes Alice to generate ciphertexts that
are secure against chosen plaintext attacks as shown by
Coutinho et al. [5].

As these attackers are neural networks, they are trained to
perform a unique attack. So even if one Attacker might look
stronger than another one, it can only perform the attack it
has been trained for. As a result, we use different attackers so
that Alice can learn to produce ciphertexts that are resistant
to multiple Attacks. Figure 2 below shows the overall multi
party model including the four attackers.

Alice

…

P+K

CK

Attacker 2 Attacker 3 Attacker 4Attacker 1

FIGURE 2. The overall architecture of the multi-party adversarial encryption
model. Alice receives as input a plaintext P and the secret key K and outputs
C, the ciphertext. All the neural networks that are communicating with Alice
(NN1 · · ·NNN) receive as input the ciphertext C and the key K and
produce their decrypted text PNN1

· · ·PNNN
. Attacker 1 receives the

ciphertext and tries to decrypt it and output PA1. Attacker 2 receives C,K and
tries to decrypt with the key outputting PA2. Attacker 3 receives a plaintext P ,
its corresponding ciphertext C and a random ciphertext C′ and output two
probabilities: π1 the probability that C is a ciphertext for P and π2 the
probability that C′ is a ciphertext for P . Lastly, Attacker 4 receives a ciphertext
C its corresponding plaintext P1 and a random plaintext P2 and outputs two
probabilities: π1 the probability that P1 is the plaintext that was encrypted to C
and π2 the probability that P2 is the plaintext that was encrypted to C.

Attacker1’s loss function is defined in Equation 9 and
similarly to the other neural networks, it is the L1 distance
between the plaintext and Attacker1’s output.

LA1(WA1, P) = d(P,A1(WA1, C)) (9)

TABLE 3. Neural network structure used for Attacker3 and Attacker4 in
order to produce probabilities.

Layer# Layer Type Activation Filters Kernel Size Strides

1 FC Layer
(Dense) ReLU - - -

2 Resblock Sigmoid 2 2 1
3 Conv1D Sigmoid 4 4 2
4 Resblock Sigmoid 4 4 1
5 Conv1D ReLU 1 1 1

6 FC Layer
(Dense) Softmax - - -

Attacker2’s loss function is defined in Equation 10 and
similarly to the other neural networks, it is the L1 distance
between the plaintext and Attacker2’s output. The difference
from Attacker1 is that Attacker2 has also access to the
secret key that we suppose that it was leaked to him.

LA2(WA2, P) = d(P,A2(WA2, C,K)) (10)

As for Attacker3 and Attacker4, these two neural net-
works are making classifications and therefore needs to have
some changes in their neural network structure in order
to output probabilities. Basically, we keep the same neural
network structure as Alice but add an additional softmax-
activated fully connected layer as a last layer in order to
output probabilities instead of a bistream. The new neural
network structure for Attacker3 and Attacker4 is shown in
Table 3.

We notice that the only change is an additional softmax-
activated fully connected layer at the end of the neural
network structure.

As for the loss function for Attacker3, it is the binary
cross-entropy. Given N plaintexts

[
P(0), P(1), ...P(N−1)

]
,

and two sets of N ciphertexts
[
C1

(0), C
1
(1), · · ·C

1
(N−1)

]
,[

C2
(0), C

2
(1), · · ·C

2
(N−1)

]
we define the loss function LA3 for

Attacker2 in Equation 11 below.

LA3 = − 1

N

N−1∑
i=0

2∑
j=1

yj(i) log
(
πj
(i)

)
(11)

Where yj(i) = 1 if P(i) is the plaintext of Cj
(i) and 0

otherwise. Intuitively, πj
(i) is the probability that Cj

(i) is the
ciphertext corresponding to the plaintext P(i). Therefore,
Attacker3 learns by minimizing LA3.

The loss function of Attacker4 is similar to the one of
Attacker3 i.e. the binary cross-entropy.

Given N ciphertexts
[
C(0), C(1), . . . , C(N−1)

]
, and two sets

of N plaintexts
[
P 1
(0), P

1
(1), · · ·P

1
(N−1)

]
,
[
P 2
(0), P

2
(1), · · ·P

2
(N−1)

]
we define the loss function LA4 for Attacker4 in Equation
12 below.

LA4 = − 1

N

N−1∑
i=0

2∑
j=1

yj(i) log
(
πj
(i)

)
(12)

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Where yj(i) = 1 if C(i) is the ciphertext of P j
(i) and 0

otherwise. Intuitively, πj
(i) is the probability that P j

(i) is the
plaintext corresponding to the ciphertext C(i).

Therefore, Attacker4 learns by minimizing LA4.
Alice’s loss function defined in 8 needs to be modified in

order to take into consideration the four attackers that we
added to the setup. Alice’s new loss function is defined in
Equation 13.

LAlice =

N∑
i=1

LNNi
+ (1− L2

A1
) + (1− L2

A2
)

−min(LA3, 0.5)−min(LA4, 0.5)

(13)

We use min(LA3, 0.5) and min(LA4, 0.5) in Alice’s loss
function in order to prevent Alice from maximising the loss
of Attacker3 and Attacker4. Ideally, we want their loss to
be equal to 0.5 which, in probabilities, corresponds to making
assumptions that are random.

The results shown in Section V show that indeed all the
neural networks are able to communicate with Alice while
preventing the attackers from reaching their goals.

A. COMMUNICATION SCENARIOS
We consider the following two scenarios for our multi-party
communication setup:

1) First Scenario
The first scenario is identical to the first scenario that was
proposed by Meraouche et al. [6]: All the communicating
parties are synchronized with Alice and therefore encrypted
messages sent to/from any party can be decrypted and read
by the others.

2) Second Scenario
In the second scenario, the encrypted messages communi-
cated between any subset of parties and Alice remains hidden
from the rest of the parties. In such a case, this subset of
parties needs to train again with Alice with another set of
parameters in order to be able to exchange messages with
Alice while keeping privacy of the messages intact from the
other parties in the set.

IV. APPLICATION: SECRET SHARING BASED ON
MULTI-PARTY ADVERSARIAL ENCRYPTION
Our proposed secret sharing scheme is based on the multi
party adversarial encryption model proposed in Section III
and uses the second scenario where it is possible to achieve
secrecy of the messages exchanged between one or more
parties with Alice.

In our secret sharing scheme, we have a Dealer D that has
a master secret MS to be divided into N shares st1, · · · , stN
and distributed among N shareholders SH1, · · · , SHN such
that all the N shareholders are required to reconstruct the
master secret MS. That is, we first propose an N -out-of-
N secret sharing scheme. Using this construction, we later

generalize to propose secret sharing schemes for any general
access structure.

The Dealer and the shareholders are all neural networks
with the same structure shown in Table 1. The Dealer plays
the same role of Alice in the proposed multi-party adversarial
encryption model and synchronizes with the shareholders as
described in the second scenario (see Section III). For N
shareholders to synchronize with, the Dealer has N sets of
parameters W = {W1, . . . ,WN}. Dealer uses one unique set
of parameters Wi to synchronize with a unique shareholder
SHi. The Dealer can also be viewed as a server containing
N neural networks each synchronizing with one unique
shareholder.

Once the synchronization is complete, the Dealer gener-
ates N secret keys K1, . . . ,KN that are going to be used to
encrypt/decrypt the data with the N shareholders. We assume
that the Dealer has a secure tunnel with every shareholder in
order to deliver the secret key to them. The overall setup has
the following variables:

• The master secret MS.
• W1, . . . ,WN denote the parameters which the Dealer

has used to synchronize with the N shareholders
SH1, . . . , SHN . Every Wi was used to synchronize
with the shareholder SHi (i ∈ [1, N]).

• We denote the parameters (of the neural network) of the
ith shareholder by WSHi

. WSHi
are the result of the

synchronization process of the ith shareholder with the
Dealer. We note that this WSHi is equal to Wi after the
training.

• WSHi
will be stored by the ith shareholder and Wi will

be stored by the dealer.
• K1 · · ·KN , the secret keys that the Dealer has dis-

tributed to the N shareholders
SH1, . . . , SHN . Every Ki is sent to SHi with i ∈
[1, N].

Additionally, we define the following functions that we use
in the process of creating the shares and the reconstruction of
the master secret:

• The function Enc(Wi,M,Ki) denotes the encryption
by the Dealer with plaintext input M , key Ki and using
the parameters Wi.

• The encryption process consists of passing the message
M , the key Ki through the Dealer’s neural network and
calculating the output of its neural network using the
parameters Wi. The output is the encrypted result.

• Dec(WSHi
, C,Ki) denotes the decryption of the input

C by the ith shareholder using the key Ki and the
parameters WSHi

.
• The decryption process consists of passing the en-

crypted message C, the key Ki through the ith share-
holder’s neural network and calculating the output of its
neural network using the parameters WSHi

. The output
is the decrypted result.

Shares Construction.

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

In the Setup we have a Dealer (neural network) with
parameters W1, . . . ,WN in synchronization (as described
in the second scenario of Section III) with N parties
SH1, . . . , SHN . The Dealer with input master secret MS
constructs N shares st1, . . . , stN in the following manner.

1) The Dealer generates N random keys K1, . . . ,KN .
Each key Ki is shared with the shareholder SHi using
a secure tunnel.

2) In the first step, the Dealer encrypts MS using W1,K1

and computes S1 = Enc(W1,MS,K1). Dealer now
proceeds as follows:
Computes Si = Enc(Wi, Si−1,Ki) for all i =
2, . . . , N .

3) The dealer sends SN to SHN through a secure tunnel
and deletes all the information from its own storage.

4) The resulting shares are sti = (WSHi
,Ki) for 1 ≤ i ≤

N − 1 and stN = (WSHN
,KN , SN).

Master Secret reconstruction.
The reconstruction procedure is as follows. When all the

N shareholders agree to recover the master secret they take
the following steps.

The shares construction process is illustrated in Figure 3

DEALER MS

FIGURE 3. The shares construction process

Recall, only the last encryption SN has been distributed to
the shareholder SHN using the secure tunnel that we assume
the Dealer has with all shareholders. The other shareholders
have only kept their corresponding neural network parame-
ters and secret keys. The reconstruction of the master secret
is done by decrypting SN in the reverse order:

1) SHN calculates SN−1 by decrypting SN with his
parameters WSHN

and key KN i.e., SN−1 =
Dec(WSHN

, SN ,KN). Then, SHN forwards SN−1 to
SHN−1.

2) The process is repeated N − 1 times where in each
step, shareholder SHi calculates Si−1 and forwards it
to SHi−1 until the first shareholder SH1 receives S1

and decrypts it to the master secret MS.
The master secret reconstruction process is illustrated in

Figure 4

MS

FIGURE 4. The master secret reconstruction process

The correctness of the recovery of master secret follows
immediately from the correctness of synchronization pro-
cess (i.e., WSHi

= Wi for all i) and the correctness of

the decryption algorithms Dec(WSHi
, Si,Ki) for all i. The

security property of the above (N,N) scheme follows from
the security of the encryptions Enc(WSH1

,MS,K1) and
Enc(WSHi , Si−1,Ki) for all i = 2, . . . , N . We emphasize
that the encryption algorithms are in fact one time pads as
described in Section III. Therefore, the N-out-of-N secret
sharing scheme we achieve is perfectly secure.

A. SECRET SHARING SCHEMES FOR GENERAL
ACCESS STRUCTURES
We have presented a construction to realize N -out-of-N
secret sharing scheme for any value of N . Using this basic
construction, we can achieve secret sharing schemes for any
general access structure (GAS). Suppose Γ = {B1, . . . , Br}
is a general access structure on a set U of users. The dealer
runs a |Bi|-out-of-|Bi| secret sharing as described above for
every set Bi, 1 ≤ i ≤ r. The master secret MS remains
the same but the parameters W ’s and the keys K’s are
independently chosen for each Bi’s. The correctness and
secrecy of this construction is evident from the respective
properties of the underlying |Bi|-out-of-|Bi| schemes.

V. RESULTS AND DISCUSSION
As a proof of concept, we implement our proposed multi-
party perfectly secure encryption model described in Section
III.

In the implementation, Alice wants to communicate with
three neural networks NN1, NN2 and NN3 in the presence
of the four attackers shown in Figure 2. We implement the
model using Tensorflow and Keras.

The following are the hyperparameters used to train our
neural network.

• Datasize: 64 bits for the plaintexts, keys and ciphertexts.
• Batch Size: 256.
• Number of epochs: Up to 200 but the training might

stop earlier if the receiver has reached 100% accuracy
and the prediction accuracy of attackers is close to
random guesses.

• Training steps per epoch: 300.
• Learning Rate: 0.0008.
• Optimizer: Adam’s optimizer.

Alice and the three neural networks NN1, NN2 and NN3

as well as Attacker1, Attacker2 have the neural network
structure shown in Table 1. Attacker3 and Attacker4 have
the neural network structure shown in Table 3.

We train the neural networks until NN1, NN2 and NN3

are able to decrypt the ciphertexts sent by Alice and
Attacker1, Attacker2 have a decryption accuracy of around
50% which is equivalent to a random decryption where the
attacker does not know which bit is correct and which one is
not. If we trained them to reach 100% accuracy, they would
be able to become 100% right just by flipping all their bits.
Therefore having 50% accuracy when decrypting is the worst
case scenario from the point of the of an attacker making
random guesses.

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Figure 5 shows the decryption accuracy of the three neural
networks NN1, NN2 and NN3 as well as the decryption
accuracy of the two attackers Attacker1, Attacker2 after
155 epochs.

FIGURE 5. Decryption accuracy of the three neural networks NN1, NN2

and NN3 and the two attackers Attacker1, Attacker2 during training. 0%
Bits error means that the neural network produced a plaintext with 100% of the
bits correct and 1.0 Bits error means that the neural network produced a
plaintext with 0% of the bits correct.

We can see that the neural networks start with random
decryption accuracy at the beginning of training. After 50
epochs, the three neural networks communicating with Alice
start getting better at their decryption with around 20% error
in their decryption. The two other attackers have a decryption
error ranging between 40 and 60%. It is only after 140
epochs that the neural networks finally reach a stable state
where the parties communicating with Alice have perfect
accuracy while the two attackers Attacker1, Attacker2 have
approximately 50% accuracy which is the training goal for
them so that their output is close to random and they cannot
tell which bit is wrong and which one isn’t.

As for Attacker3 and Attacker4, they were not able to
produce correct probabilities from the beginning to the end
of training. Figure 6 shows the probabilities produced by
Attacker3 on real and fake ciphertexts and Figure 7 shows
the probabilities produced by Attacker4 on real and fake
plaintexts. Both of the neural networks are producing 50%
probability on real and fake inputs meaning that they are not
able to tell which one is real and which one is not.

The experimental results show that the ciphertexts gener-
ated by Alice are secure against all these attackers as cannot
be decrypted without the key and the weights of the neural
networks that trained with Alice. Additionally, Figures 6 and
7 show that the ciphertexts cannot be differentiated from
randomly generated ones and contain no information about
the plaintexts as Attacker4 has not been able to link the real
plaintext to the given ciphertext.

Therefore, we are achieving the same results as the results
of the work proposed by Li et al. [4] while allowing more
than one party to communicate with Alice. This means that
the encryption done by Alice or the Dealer when performing
secret sharing will produce outputs that are secure against

FIGURE 6. Probabilities produced by Attacker3 on real and fake
ciphertexts. The attacker is producing probabilities that are close to 0.5 for
each of the two inputs meaning that this attacker is not able to distinguish
between real and fake ciphertexts to tell which one the original message P
has been encrypted to.

FIGURE 7. Probabilities produced by Attacker4 on real and fake plaintexts.
The attacker is producing probabilities that are close to 0.5 for each of the two
inputs meaning that this attacker is not able to distinguish between real and
fake plaintexts to tell which one has been encrypted to the real ciphertext C.

the aforementioned cryptographic attacks and attackers. The
security and limitations of the proposed encryption method
and by transition the secret sharing scheme are the same
as the limitations of the models proposed by Li et al.
[4], Coutinho et al. [5] and purely rely on the strength of the
generated encrypted results. As long as the encrypted outputs
are secure, the shares in secret sharing will also be secure.

A. ROBUSTNESS OF THE ENCRYPTION IN SECRET
SHARING
The robustness of the encryption is the same as in the model
proposed by Li et al. [4] (OTP encryption) because we use
the same model as them. The results show that the encrypted
outputs are resistant to different cryptographic attacks such
as chosen plaintext attacks, chosen ciphertext attacks and
cannot be decrypted without the key by a neural network that
has the same neural network structure as Alice. As for the
secret sharing scheme, all shares except for one consist of
a random key and synchronized random parameters, which
convey no information about the secret. The last share is the
iterative encryption of the secret, using N − 1 random keys

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and parameters, therefore the security of this construction is
equivalent to the security of the encryption itself.

B. TIME COMPLEXITY
The time complexity for encryption and decryption opera-
tions depends on the data size. We used a size of 64 bits
for the plaintext, ciphertext and secret keys in our example.
The Big-O time complexity for encryption/decryption can
be calculated as follows: The neural network will receive a
128 bits input (64 bits key and 64 bits plaintext or ciphertext
depending if it’s an encryption or decryption). Let n = 128
in our example be the input size of the neural network.

• The first fully connected layer has an input size of n
and its operations consist of multiplying the input by the
weights matrix. Therefore it has a complexity of O(n2).

• The following resblock contains 2 convolutional layers
with 2 filters, a kernel size of 2 and a stride of 1. Having
a stride of 1, we will slide the kernel n times over the
input. Every convolution with the 2x1 kernel will result
in 2 multiplications and 1 addition operations for a total
of 3 operations. The 3 operations will repeat n times for
each convolutional layer because we have a stride of 1.
Therefore, the Resblock’s overall complexity is O(2 ∗
(3 ∗ n)) = O(n).

• The next convolutional layer has a kernel size of 4 and
a stride of 2 which means this kernel will be slid over
the input n/2 times over the input. Every convolution
with the 4x1 kernel will result in 4 multiplications
and 3 additions for a total of 7 operations which will
repeat n/2 times. Therefore, This convolutional layer’s
complexity is O(7 ∗ n/2) = O(n).

• The following Resblock has a stride of 1 and a kernel
size of 4. The kernel will be slide over the input n
times. Every convolution with the kernel of size 4x1 will
result in 4 multiplications and 3 additions for a total of
7 operations which will repeat n times. Therefore, the
complexity for this layer is O(7 ∗ n) = O(n).

• The last layer, a convolutional layer with a kernel size
of 1 and a stride of 1. The kernel of size 1x1 will be slid
over the input n times. Each time we slide the kernel
over the input, we have only 1 multiplication operation
and therefore this layer’s complexity is O(n).

• Therefore, the overall complexity for an encryption or
decryption operation is O(n2+n+n+n+n) = O(n2).

• The activation functions are composed of a single non-
iterative instruction and therefore have a complexity of
O(n). The complexity will remain O(n2) even when
taking them into consideration.

We note that this is the time complexity of the model when
using simple matrix multiplications without any acceleration
library. This only applies to simple forward pass propagation
in order to perform an encryption or decryption operation.

C. SPACE COMPLEXITY
As for space complexity, our model built using Keras and
Tensorlfow has a total of 16705 trainable parameters. These

parameters are stored as 4 bytes floating numbers. This
means that our model parameters will occupy a total of
16705 · 4 = 66820 bytes of memory. This is approximately
65.25 megabytes of memory.

VI. CONCLUSION
We proposed a multi-party adversarial encryption model
based on the works of Li et al. [4], Coutinho et al. [5] and
forwarding the work of Meraouche et al. [6] from 3-party
to multi-party. This work differs from [6] in the sense that
a new neural network structure and training model is used
to generate ciphertexts that are more secure against different
types of attacks. Also, the works proposed by Li et al.
[4], Coutinho et al. [5] were for two party communication
while ours is for multi-party communications. We obtain an
encryption technique which learns the One Time Pad among
several neural networks and against stronger adversaries than
the one Meraouche et al. [6] has considered earlier. Our
methodology can be a candidate for providing post-quantum
security when multiple servers/NNs learn to communicate
among themselves. As an application, we show how to build
an information theoretic secure secret sharing scheme for
General Access Structures. In the proposed secret sharing
scheme, the Dealer trains and synchronizes with multiple
shareholders and then splits a secret into N shares and
distributes it among them.

As future work, it would be interesting to experiment on
synchronizing neural networks that do not have the same
neural network structure.

.

ACKNOWLEDGMENT
Ishak Meraouche is financially supported by the Ministry of
Education, Culture, Sports, Science and Technology (MEXT)
for his studies at Kyushu University.
Sabyasachi Dutta is financially supported by Mitacs, Canada.
This research is supported by the Telecommunications Ad-
vancement Foundation of Japan and also operating as a part
of the India-Japan Cooperative Science Programme (IJSCP)
by DST and JSPS.

REFERENCES
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, “Generative adversarial nets,” Advances in neural
information processing systems, vol. 27, 2014.

[2] M. Abadi and D. G. Andersen, “Learning to protect
communications with adversarial neural cryptography,”
CoRR, vol. abs/1610.06918, 2016.

[3] L. Zhou, J. Chen, Y. Zhang, C. Su, and M. A. James,
“Security analysis and new models on the intelligent
symmetric key encryption,” Computers & Security,
vol. 80, pp. 14 – 24, 2019.

[4] Z. Li, X. Yang, K. Shen, R. Zhu, and J. Jiang, “In-
formation encryption communication system based on

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the adversarial networks foundation,” Neurocomputing,
vol. 415, pp. 347–357, 2020.

[5] M. Coutinho, R. de Oliveira Albuquerque, F. Borges,
L. J. García-Villalba, and T. Kim, “Learning per-
fectly secure cryptography to protect communications
with adversarial neural cryptography,” Sensors, vol. 18,
no. 5, p. 1306, 2018.

[6] I. Meraouche, S. Dutta, and K. Sakurai, “3-party adver-
sarial cryptography,” in Advances in Internet, Data and
Web Technologies, L. Barolli, Y. Okada, and F. Amato,
Eds. Cham: Springer International Publishing, 2020,
pp. 247–258.

[7] J. Hayes and G. Danezis, “Generating steganographic
images via adversarial training,” Advances in Neural
Information Processing Systems, vol. 30, pp. 1954–
1963, 2017.

[8] M. Yedroudj, F. Comby, and M. Chaumont, “Steganog-
raphy using a 3-player game,” Journal of Visual Com-
munication and Image Representation, vol. 72, p.
102910, 2020.

[9] Y. Ke, M. Zhang, J. Liu, and T. Su, “Genera-
tive steganography with kerckhoffs’ principle based
on generative adversarial networks,” CoRR, vol.
abs/1711.04916, 2017.

[10] I. Meraouche, S. Dutta, and K. Sakurai, “3-party adver-
sarial steganography,” in International Conference on
Information Security Applications. Springer, 2020, pp.
89–100.

[11] I. Kanter, W. Kinzel, and E. Kanter, “Secure exchange
of information by synchronization of neural networks,”
EPL (Europhysics Letters), vol. 57, 02 2002.

[12] A. Klimov, A. Mityagin, and A. Shamir, “Analysis
of neural cryptography,” in Advances in Cryptology
- ASIACRYPT 2002, 8th International Conference
on the Theory and Application of Cryptology and
Information Security, Queenstown, New Zealand,
December 1-5, 2002, Proceedings, ser. Lecture Notes
in Computer Science, Y. Zheng, Ed., vol. 2501.
Springer, 2002, pp. 288–298. [Online]. Available:
https://doi.org/10.1007/3-540-36178-2_18

[13] E. Salguero, W. Fuertes, and J. Lascano, “On the devel-
opment of an optimal structure of tree parity machine
for the establishment of a cryptographic key,” Security
and Communication Networks, vol. 2019, pp. 1–10, 03
2019.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[15] A. Beimel, “Secret-sharing schemes: A survey,” in Cod-
ing and Cryptology. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 11–46.

[16] A. Shamir, “How to share a secret,” Commun. ACM,
vol. 22, no. 11, pp. 612–613, 1979. [Online]. Available:
http://doi.acm.org/10.1145/359168.359176

[17] G. R. Blakley, “Safeguarding cryptographic keys,” in

AFIPS 1979, 1997, pp. 313–317.
[18] M. Ito, A. Saito, and T. Nishizeki, “Multiple

assignment scheme for sharing secret,” J. Cryptology,
vol. 6, no. 1, pp. 15–20, 1993. [Online]. Available:
https://doi.org/10.1007/BF02620229

[19] E. F. Brickell, “Some ideal secret sharing schemes,” in
Workshop on the Theory and Application of of Crypto-
graphic Techniques. Springer, 1989, pp. 468–475.

[20] M. Nojoumian and D. R. Stinson, “Sequential secret
sharing as a new hierarchical access structure,” J. Inter-
net Serv. Inf. Secur., vol. 5, no. 2, pp. 24–32, 2015. [On-
line]. Available: http://isyou.info/jisis/vol5/no2/jisis-
2015-vol5-no2-02.pdf

[21] T. Tassa, “Hierarchical threshold secret sharing,” Jour-
nal of cryptology, vol. 20, no. 2, pp. 237–264, 2007.

[22] H. Krawczyk, “Secret sharing made short,” in Annual
international cryptology conference. Springer, 1993,
pp. 136–146.

[23] M. Naor and A. Shamir, “Visual cryptography,” in
Workshop on the Theory and Application of of Cryp-
tographic Techniques. Springer, 1994, pp. 1–12.

[24] W. Zheng, K. Wang, and F.-Y. Wang, “Gan-based key
secret-sharing scheme in blockchain,” IEEE Transac-
tions on Cybernetics, vol. 51, no. 1, pp. 393–404, 2021.

[25] X. Wang, H. Shan, X. Yan, L. Yu, and Y. Yu, “A
neural network model secret-sharing scheme with mul-
tiple weights for progressive recovery,” Mathematics,
vol. 10, no. 13, p. 2231, 2022.

ISHAK MERAOUCHE (M’94) received the B.S.
degree in computer science from University of
Batna 2, Batna, Algeria in 2016 and the M.S.
degree in cryptography and security from Univer-
sity of Batna 2, Batna, Algeria in 2018. He is
currently pursuing the Ph.D. degree in informatics
at Kyushu University, Fukuoka, Japan.

From 2019 to 2020, he was a research student at
Sakurai Laboratory, Kyushu University, Fukuoka
Japan and started his Ph.D. program afterwards.

His research interests are centered on building cryptography protocol espe-
cially the ones based on deep learning.

Mr Meraouche received a scholarship after his master degree to pursue his
Ph.D studies in japan.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Ishak MERAOUCHE et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SABYASACHI DUTTA received his B.Sc., M.Sc.
and Ph.D. degrees in Mathematics from Univer-
sity of Calcutta, Kolkata, India. He is currently
a postdoctoral fellow at University of Calgary,
Canada.

He spent 2017-18 as a visiting scientist at Indian
Statistical Institute, Kolkata, India. In 2018, he re-
ceived a prestigious fellowship from National In-
stitute of Information and Communications Tech-
nology (NICT), Japan and subsequently spent one

year (2018-19) at Kyushu University, Fukuoka, Japan as a guest researcher.
His primary research interests are in information theoretic cryptography and
in building quantum-safe cryptographic protocols.

SRABAN KUMAR MOHANTY received his
Ph.D. degree in computer science and engineering
from the Indian Institute of Technology Guwahati,
India in 2010. He is currently working as a faculty
in the computer science and engineering discipline
of the Indian Institute of Information Technology,
Design, and Manufacturing, Jabalpur, MP, India.
His research interests are graph-based clustering
techniques, gene expression analysis, and large
matrix computations and their applications. He has

authored a number of research papers published in reputed international
journals and conferences.

ISAAC AGUDO received his Ph.D. degree in
computer science from the University of Málaga,
Spain in 2008. He also holds a M.S. degree in
Mathematics and a B.S. degree in computer sci-
ence. He is currently Associate Professor at the
Computer Science Department of the University
of Malaga. He has been involved in several re-
search projects since 2002 and has been very ac-
tive in technology transfer with international com-
panies. His main research interests are related with

security and privacy in areas such as Blockchain, Smart devices and Internet
of Things. In particular, he is currently working on privacy preserving access
control and information sharing.

KOUICHI SAKURAI received the B.S. degree in
Mathematics from the Faculty of Science, Kyushu
University in 1986. He received the M.S. degree
in Applied Science in 1988, and the Doctorate in
engineering in 1993 from the Faculty of Engineer-
ing, Kyushu University.

He was engaged in research and development
on cryptography and information security at the
Computer and Information Systems Laboratory
at Mitsubishi Electric Corporation from 1988 to

1994. From 1994, he worked for the Dept. of Computer Science of Kyushu
University in the capacity of associate professor, and became a full professor
there in 2002. He is concurrently working also with the Institute of Systems
& Information Technologies and Nanotechnologies, as the chief of Infor-
mation Security laboratory, for promoting research cooperations among the
industry, university and government under the theme "Enhancing IT-security
in social systems". He has been successful in generating such co-operation
between Japan, China and Korea for security technologies as the leader
of a Cooperative International Research Project supported by the National
Institute of Information and Communications Technology (NICT) during
2005-2006. Moreover, in March 2006, he established research cooperations
under a Memorandum of Understanding in the field of information security
with Professor Bimal Kumar Roy, the first time Japan has partnered with The
Cryptology Research Society of India (CRSI).

Professor Sakurai has published more than 400 academic papers around
cryptography and information security.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223430

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

