
Linköping Studies in Science and Technology. Dissertations

No. 531

Learning Multidimensional Signal
Processing

Magnus Borga

Department of Electrical Engineering

Linköping University, S-581 83 Linköping, Sweden

Linköping 1998

Learning Multidimensional Signal Processing

c 1998 Magnus Borga

Department of Electrical Engineering

Linköping University

S-581 83 Linköping

Sweden

ISBN 91-7219-202-X ISSN 0345-7524

iii

Abstract

The subject of this dissertation is to show how learning can be used for multi-

dimensional signal processing, in particular computer vision. Learning is a wide

concept, but it can generally be defined as a system’s change of behaviour in order

to improve its performance in some sense.

Learning systems can be divided into three classes: supervised learning, re-

inforcement learning and unsupervised learning. Supervised learning requires a

set of training data with correct answers and can be seen as a kind of function

approximation. A reinforcement learning system does not require a set of an-

swers. It learns by maximizing a scalar feedback signal indicating the system’s

performance. Unsupervised learning can be seen as a way of finding a good rep-

resentation of the input signals according to a given criterion.

In learning and signal processing, the choice of signal representation is a cen-

tral issue. For high-dimensional signals, dimensionality reduction is often nec-

essary. It is then important not to discard useful information. For this reason,

learning methods based on maximizing mutual information are particularly inter-

esting.

A properly chosen data representation allows local linear models to be used in

learning systems. Such models have the advantage of having a small number of

parameters and can for this reason be estimated by using relatively few samples.

An interesting method that can be used to estimate local linear models is canon-

ical correlation analysis (CCA). CCA is strongly related to mutual information.

The relation between CCA and three other linear methods is discussed. These

methods are principal component analysis (PCA), partial least squares (PLS) and

multivariate linear regression (MLR). An iterative method for CCA, PCA, PLS

and MLR, in particular low-rank versions of these methods, is presented.

A novel method for learning filters for multidimensional signal processing

using CCA is presented. By showing the system signals in pairs, the filters can be

adapted to detect certain features and to be invariant to others. A new method for

local orientation estimation has been developed using this principle. This method

is significantly less sensitive to noise than previously used methods.

Finally, a novel stereo algorithm is presented. This algorithm uses CCA and

phase analysis to detect the disparity in stereo images. The algorithm adapts filters

in each local neighbourhood of the image in a way which maximizes the corre-

lation between the filtered images. The adapted filters are then analysed to find

the disparity. This is done by a simple phase analysis of the scalar product of

the filters. The algorithm can even handle cases where the images have differ-

ent scales. The algorithm can also handle depth discontinuities and give multiple

depth estimates for semi-transparent images.

iv

To Maria

v

Acknowledgements

This thesis is the result of many years work and it would never have been possible

for me to accomplish this without the help, support and encouragements from a

lot of people.

First of all, I would like to thank my supervisor, associate professor Hans Knutsson.

His enthusiastic engagement in my research and his never ending stream of ideas

has been absolutely essential for the results presented here. I am very grateful that

he has spent so much time with me discussing different problems ranging from

philosophical issues down to minute technical details.

I would also like to thank professor Gösta Granlund for giving me the opportunity

to work in his research group and for managing a laboratory it is a pleasure to

work in.

Many thanks to present and past members of the Computer Vision Laboratory for

being good friends as well as helpful colleagues.

In particular, I would like to thank Dr. Tomas Landelius with whom I have been

working very close in most of the research presented here as well as in the (not

yet finished) systematic search for the optimum malt whisky. His comments on

large parts of the early versions of the manuscript have been very valuable.

I would also like to thank Morgan Ulvklo and Dr. Mats Andersson for construc-

tive comments on parts of the manuscript. Dr. Mats Anderson’s help with a lot of

technical details ranging from the design of quadrature filters to welding is also

very appreciated.

Finally, I would like to thank my wife Maria for her love, support and patience.

Maria should also have great credit for proof-reading my manuscript and helping

me with the English. All remaining errors are to be blamed on me, due to final

changes.

The research presented in this thesis was sponsored by NUTEK (Swedish Na-

tional Board for Industrial and Technical Development) and TFR (Swedish Re-

search Council for Engineering Sciences), which is gratefully acknowledged.

vi

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Outline . 3

1.3 Notation . 4

I Learning 5

2 Learning systems 7

2.1 Learning . 7

2.2 Machine learning . 8

2.3 Supervised learning . 9

2.3.1 Gradient search . 10

2.3.2 Adaptability . 11

2.4 Reinforcement learning . 12

2.4.1 Searching for higher rewards 14

2.4.2 Generating the reinforcement signal 20

2.4.3 Learning in an evolutionary perspective 22

2.5 Unsupervised learning . 23

2.5.1 Hebbian learning . 24

2.5.2 Competitive learning . 26

2.5.3 Mutual information based learning 28

2.6 Comparisons between the three learning methods 32

2.7 Two important problems . 33

2.7.1 Perceptual aliasing . 33

2.7.2 Credit assignment . 35

3 Information representation 37

3.1 The channel representation . 39

3.2 Neural networks . 44

viii Contents

3.3 Linear models . 46

3.3.1 The prediction matrix memory 46

3.4 Local linear models . 51

3.5 Adaptive model distribution . 52

3.6 Experiments . 53

3.6.1 Q-learning with the prediction matrix memory 54

3.6.2 TD-learning with local linear models 54

3.6.3 Discussion . 57

4 Low-dimensional linear models 59

4.1 The generalized eigenproblem 61

4.2 Principal component analysis . 64

4.3 Partial least squares . 66

4.4 Canonical correlation analysis 67

4.4.1 Relation to mutual information and ICA 70

4.4.2 Relation to SNR . 70

4.5 Multivariate linear regression . 73

4.6 Comparisons between PCA, PLS, CCA and MLR 75

4.7 Gradient search on the Rayleigh quotient 78

4.7.1 PCA . 82

4.7.2 PLS . 83

4.7.3 CCA . 84

4.7.4 MLR . 85

4.8 Experiments . 87

4.8.1 Comparisons to optimal solutions 87

4.8.2 Performance in high-dimensional signal spaces 92

II Applications in computer vision 97

5 Computer vision 99

5.1 Feature hierarchies . 99

5.2 Phase and quadrature filters . 100

5.3 Orientation . 101

5.4 Frequency . 103

5.5 Disparity . 103

6 Learning feature descriptors 107

6.1 Experiments . 110

6.1.1 Learning quadrature filters 110

6.1.2 Combining products of filter outputs 115

Contents ix

6.2 Discussion . 119

7 Disparity estimation using CCA 121

7.1 The canonical correlation analysis part 122

7.2 The phase analysis part . 123

7.2.1 The signal model . 125

7.2.2 Multiple disparities . 127

7.2.3 Images with different scales 128

7.3 Experiments . 129

7.3.1 Discontinuities . 129

7.3.2 Scaling . 131

7.3.3 Semi-transparent images 132

7.3.4 An artificial scene . 134

7.3.5 Real images . 134

7.4 Discussion . 138

8 Epilogue 145

8.1 Summary and discussion . 145

8.2 Future research . 147

A Definitions 151

A.1 The vec function . 151

A.2 The mtx function . 151

A.3 Correlation for complex variables 152

B Proofs 153

B.1 Proofs for chapter 2 . 153

B.1.1 The differential entropy of a multidimensional Gaussian

variable . 153

B.2 Proofs for chapter 3 . 154

B.2.1 The constant norm of the channel set 154

B.2.2 The constant norm of the channel derivatives 155

B.2.3 Derivation of the update rule for the prediction matrix

memory . 156

B.2.4 One frequency spans a 2-D plane 156

B.3 Proofs for chapter 4 . 157

B.3.1 Orthogonality in the metrics A and B 157

B.3.2 Linear independence . 158

B.3.3 The range of r . 158

B.3.4 The second derivative of r 159

B.3.5 Positive eigenvalues of the Hessian 159

x Contents

B.3.6 The partial derivatives of the covariance 160

B.3.7 The partial derivatives of the correlation 160

B.3.8 Invariance with respect to linear transformations 161

B.3.9 Relationship between mutual information and canonical

correlation . 162

B.3.10 The partial derivatives of the MLR-quotient 163

B.3.11 The successive eigenvalues 164

B.4 Proofs for chapter 7 . 165

B.4.1 Real-valued canonical correlations 165

B.4.2 Hermitian matrices . 165

Chapter 1

Introduction

This thesis deals with two research areas: learning and multidimensional signal

processing. A typical example of a multidimensional signal is an image. An im-

age is usually described in terms of pixel1 values. A monochrome TV image has

a resolution of approximately 700�500 pixels, which means that it is a 350,000-

dimensional signal. In computer vision, we try to instruct a computer how to ex-

tract the relevant information from this huge signal in order to solve a certain task.

This is not an easy problem! The information is extracted by estimating certain

local features in the image. What is “relevant information” depends, of course,

on the task. To describe what features to estimate and how to estimate them are

possible only for highly specific tasks, which, for a human, seem to be trivial in

most cases. For more general tasks, we can only define these feature detectors on

a very low level, such as line and edge detectors. It is commonly accepted that

it is difficult to design higher-level feature detectors. In fact, the difficulty arises

already when trying to define what features are important to estimate.

Nature has solved this problem by making the visual system adaptive. In

other words, we learn how to see. We know that many of the low-level feature

detectors used in computer vision are similar to those found in the mammalian

visual system (Pollen and Ronner, 1983). Since we generally do not know how to

handle multidimensional signals on a high level and since our solutions on a low

level are similar to those of nature, it seems rational also on a higher level to use

nature’s solution: learning.

Learning in artificial systems is often associated with artificial neural net-

works. Note, however, that the term “neural network” refers to a specific type

of architecture. In this work we are more interested in the learning capabilities

than the hardware implementation. What we mean by “learning systems” is dis-

cussed in the next chapter.

1Pixel is an abbreviation for Picture Element.

2 Introduction

The learning process can be seen as a way of finding adaptive models to rep-

resent relevant parts of the signal. We believe that local low-dimensional linear

models are sufficient and efficient for representation in many systems. The reason

for this is that most real-world signals are (at least piecewise) continuous due to

the dynamic of the world that generates them. Therefore it can be justified to look

at some criteria for choosing low-dimensional linear models.

In the field of signal processing there seems to be a growing interest in meth-

ods related to independent component analysis. In the learning and neural network

society, methods based on maximizing mutual information are receiving more at-

tention. These two methods are related to each other and they are also related to a

statistical method called canonical correlation analysis, which can be seen as a lin-

ear special case of maximum mutual information. Canonical correlation analysis

is also related to principal component analysis, partial least squares and multivari-

ate linear regression. These four analysis methods can be seen as different choices

of linear models based on different optimization criteria.

Canonical correlation turns out to be a useful tool in several computer vision

problems as a new way of constructing and combining filters. Some examples of

this are presented in this thesis. We believe that this approach provides a basis

for new efficient methods in multidimensional signal processing in general and in

computer vision in particular.

1.1 Contributions

The main contributions in this thesis are presented in chapters 3, 4, 6 and 7. Chap-

ters 2 and 5 should be seen as introductions to learning systems and computer

vision respectively. The most important individual contributions are:

� A unified framework for principal component analysis (PCA), partial least

squares (PLS), canonical correlation analysis (CCA) and multiple linear

regression (MRL) (chapter 4).

� An iterative gradient search algorithm that successively finds the eigenval-

ues and the corresponding eigenvectors to the generalized eigenproblem.

The algorithm can be used for the special cases PCA, PLS, CCA and MLR

(chapter 4).

� A method for using canonical correlation for learning feature detectors in

high-dimensional signals (chapter 6). By this method, the system can also

learn how to combine estimates in a way that is less sensitive to noise than

the previously used vector averaging method.

� A stereo algorithm based on canonical correlation and phase analysis that

1.2 Outline 3

can find correlation between differently scaled images. The algorithm can

handle depth discontinuities and estimate multiple depths in semi-transparent

images (chapter 7).

The TD-algorithm presented in section 3.6.2 was presented at ICANN’93 in

Amsterdam (Borga, 1993). Most of the contents in chapter 4 have been submitted

for publication in Information Sciences (Borga et al., 1997b, revised for second

review). The canonical correlation algorithm in section 4.7.3 and most of the

contents in chapter 6 were presented at SCIA’97 in Lappeenranta, Finland (Borga

et al., 1997a). Finally, the stereo algorithm in chapter 7 has been submitted to

ICIPS’98 (Borga and Knutsson, 1998).

Large parts of chapter 2 except the section on unsupervised learning (2.5),

most of chapter 3 and some of the theory of canonical correlation in chapter 4 were

presented in “Reinforcement Learning Using Local Adaptive Models” (Borga,

1995, licentiate thesis) .

1.2 Outline

The thesis is divided into two parts. Part I deals with learning theory. Part II

describes how the theory discussed in part I can be applied in computer vision.

In chapter 2, learning systems are discussed. Chapter 2 can be seen as an

introduction and overview of this subject. Three important principles for learn-

ing are described: reinforcement learning, unsupervised learning and supervised

learning.

In chapter 3, issues concerning information representation are treated. Linear

models and, in particular, local linear models are discussed and two examples are

presented that use linear models for reinforcement learning.

Four low-dimensional linear models are discussed in chapter 4. They are low-

rank versions of principal component analysis, partial least squares, canonical

correlation and multivariate linear regression. All these four methods are related

to the generalized eigenproblem and the solutions can be found by maximizing a

Rayleigh quotient. An iterative algorithm for solving the generalized eigenprob-

lem in general and these four methods in particular is presented.

Chapter 5 is a short introduction to computer vision. It treats the concepts in

computer vision relevant for the remaining chapters.

In chapter 6 is shown how canonical correlation can be used for learning mod-

els that represent local features in images. Experiments show how this method can

be used for finding filter combinations that decrease the noise-sensitivity com-

pared to vector averaging while maintaining spatial resolution.

In chapter 7, a novel stereo algorithm based on the method from chapter 6 is

presented. Canonical correlation analysis is used to adapt filters in a local image

4 Introduction

neighbourhood. The adapted filters are then analysed with respect to phase to get

the disparity estimate. The algorithm can handle differently scaled image pairs

and depth discontinuities. It can also estimate multiple depths in semi-transparent

images.

Chapter 8 is a summary of the thesis and also contains some thoughts on future

research.

Finally there are two appendices. Appendix A contains definitions. In ap-

pendix B, most of the proofs have been placed. In this way, the text is hopefully

easier to follow for the reader who does not want to get too deep into mathematical

details. This also makes it possible to give the proofs space enough to be followed

without too much effort and to include proofs that initiated readers may consider

unnecessary without disrupting the text.

1.3 Notation

Lowercase letters in italics (x) are used for scalars, lowercase letters in boldface

(x) are used for vectors and uppercase letters in boldface (X) are used for matrices.

The transpose of a real valued vector or a matrix is denoted xT . The conjugate

transpose is denoted x�. The norm kvk of a vector v is defined by

kvk �
p

v�v

and a “hat” (v̂) indicates a vector with unit length, i.e.

v̂ � v

kvk :

E[�] means expectation value of a stochastic variable.

Part I

Learning

Chapter 2

Learning systems

Learning systems is a central concept in this dissertation and in this chapter, three

different principles of learning are described. Some standard techniques are de-

scribed and some important issues related to machine learning are discussed. But

first, what is learning?

2.1 Learning

According to Oxford Advanced Learner’s Dictionary (Hornby, 1989), learning is

to

“gain knowledge or skill by study, experience or being taught.”

Knowledge may be considered as a set of rules determining how to act. Hence,

knowledge can be said to define a behaviour which, according to the same dictio-

nary, is a “way of acting or functioning.” Narendra and Thathachar (1974), two

learning automata theorists, make the following definition of learning:

“Learning is defined as any relatively permanent change in behaviour

resulting from past experience, and a learning system is character-

ized by its ability to improve its behaviour with time, in some sense

towards an ultimate goal.”

Learning has been a field of study since the end of the nineteenth century.

Thorndike (1898) presented a theory in which an association between a stimulus

and a response is established and this association is strengthened or weakened

depending on the outcome of the response. This type of learning is called op-

erant conditioning. The theory of classical conditioning (Pavlov, 1955) is con-

cerned with the case when a natural reflex to a certain stimulus becomes a re-

sponse of a second stimulus that has preceded the original stimulus several times.

8 Learning systems

In the 1930s, Skinner developed Thorndike’s ideas but claimed, as opposed to

Thorndike, that learning was more ”trial and success” than ”trial and error” (Skin-

ner, 1938). These ideas belong to the psychological position called behaviourism.

Since the 1950s, rationalism has gained more interest. In this view, intentions

and abstract reasoning play an important role in learning. In this thesis, however,

there is a more behaviouristic view. The aim is not to model biological systems

or mental processes. The goal is rather to make a machine that produces the de-

sired results. As will be seen, the learning principle called reinforcement learning

discussed in section 2.4 has much in common with Thorndike’s and Skinner’s op-

erant conditioning. Learning theories have been thoroughly described for example

by Bower and Hilgard (1981).

There are reasons to believe that ”learning by doing” is the only way of learn-

ing to produce responses or, as stated by Brooks (1986):

“These two processes of learning and doing are inevitably intertwined;

we learn as we do and we do as well as we have learned.”

An example of ”learning by doing” is illustrated in an experiment (Held and

Bossom, 1961; Mikaelian and Held, 1964) where people wearing goggles that

rotated or displaced their fields of view were either walking around for an hour

or wheeled around the same path in a wheel-chair for the same amount of time.

The adaptation to the distortion was then tested. The subjects that had been walk-

ing had adapted while the other subjects had not. A similar situation occurs for

instance when you are going somewhere by car. If you have driven to a certain

destination before, instead of being a passenger, you probably will find your way

easier the next time.

2.2 Machine learning

We are used to seeing humans and animals learn, but how does a machine learn?

The answer depends on how knowledge or behaviour is represented in the ma-

chine.

Let us consider knowledge to be a rule for how to generate responses to cer-

tain stimuli. One way of representing knowledge is to have a table with all stim-

uli and corresponding responses. Learning would then take place if the system,

through experience, filled in or changed the responses in the table. Another way

of representing knowledge is by using a parameterized model, where the output is

obtained as a given function of the input x and a parameter vector w:

y = f (x;w): (2.1)

Learning would then be to change the model parameters in order to improve the

performance. This is the learning method used for example in neural networks.

2.3 Supervised learning 9

Another way of representing knowledge is to consider the input space and out-

put space together. Examples of this approach are an algorithm by Munro (1987)

and the Q-learning algorithm (Watkins, 1989). Another example is the predic-

tion matrix memory described in section 3.3.1. The combined space of input and

output can be called the decision space, since this is the space in which the com-

binations of input and output (i.e. stimuli and responses) that constitute decisions

exist. The decision space could be treated as a table in which suitable decisions

are marked. Learning would then be to make or change these markings. Or the

knowledge could be represented in the decision space as distributions describing

suitable combinations of stimuli and responses (Landelius, 1993, 1997):

p(y;x;w) (2.2)

where, again, y is the response, x is the input signal and w contains the parameters

of a given distribution function. Learning would then be to change the parameters

of these distributions through experience in order to improve some measure of

performance. Responses can then be generated from the conditional probability

function

p(y j x;w): (2.3)

The issue of representing knowledge is further discussed in chapter 3.

Obviously a machine can learn through experience by changing some param-

eters in a model or data in a table. But what is the experience and what measure of

performance is the system trying to improve? In other words, what is the system

learning? The answers to these questions depend on what kind of learning we are

talking about. Machine learning can be divided into three classes that differ in the

external feedback to the system during learning:

� Supervised learning

� Reinforcement learning

� Unsupervised learning

The three different principles are illustrated in figure 2.1.

In the following three sections, these three principles of learning are discussed

in more detail. In section 2.6, the relations between the three methods are dis-

cussed and it is shown that the differences are not as great as they may seem at

first.

2.3 Supervised learning

In supervised learning there is a teacher who shows the system the desired re-

sponses for a representative set of stimuli (see figure 2.1). Here, the experience

10 Learning systems

- - - - - -

? ?

yx

(b)

y x y x

(c)(a)

rd

Figure 2.1: The three different principles of learning: Supervised learning

(a), Reinforcement learning (b) and Unsupervised learning (c).

is pairs of stimuli and desired responses and improving performance means min-

imizing some error measure, for example the mean squared distance between the

system’s output and the desired output.

Supervised learning can be described as function approximation. The teacher

delivers samples of the function and the algorithm tries, by adjusting the parame-

ters w in equation 2.1 or equation 2.2, to minimize some cost function

E = E[ε]; (2.4)

where E[ε] stands for the expectation of costs ε over the distribution of data. The

instantaneous cost ε depends on the difference between the output of the algo-

rithm and the samples of the function. In this sense, regression techniques can

be seen as supervised learning. In general, the cost function also includes a regu-

larization term. The regularization term prevents the system from what is called

over-fitting. This is important for the generalization capabilities of the system,

i.e. the performance of the system for new data not used for training. In effect,

the regularization term can be compared to the polynomial degree in polynomial

regression.

2.3.1 Gradient search

Most supervised learning algorithms are based on gradient search on the cost

function. Gradient search means that the parameters wi are changed a small step

in the opposite direction of the gradient of the cost function E for each iteration

of the process, i.e.

wi(t +1) = wi(t)�α
∂E

∂wi

; (2.5)

where the update factor α is used to control the step length. In general, the neg-

ative gradient does of course not point exactly towards the minimum of the cost

2.3 Supervised learning 11

function. Hence, a gradient search will in general not find the shortest way to the

optimum.

There are several methods to improve the search by using the second-order

partial derivatives (Battiti, 1992). Two well-known methods are Newton’s method

(see for example Luenberger, 1969) and the conjugate-gradient method (Fletcher

and Reeves, 1964). Newton’s method is optimal for quadratic cost functions in the

sense that it, given the Hessian (i.e. the matrix of second order partial derivatives),

can find the optimum in one step. The problem is the need for calculation and

storage of the Hessian and its inverse. The calculation of the inverse requires the

Hessian to be non-singular which is not always the case. Furthermore, the size of

the Hessian grows quadratically with the number of parameters. The conjugate-

gradient method is also a second-order technique but avoids explicit calculation of

the second-order partial derivatives. For an n-dimensional quadratic cost function

it reaches the optimum in n steps, but here each step includes a line search which

increases the computational complexity in each step. A line search can of course

also be performed in first-order gradient search. Such a method is called steepest

descent. In steepest descent, however, the profit from the line search is not so

big. The reason for this is that two successive steps in steepest descent are always

perpendicular and, hence, the parameter vector will in general move in a zigzag

path.

In practice, the true gradient of the cost function is, in most cases, not known

since the expected cost E is unknown. In these cases, an instantaneous sample

ε(t) of the cost function can be used and the parameters are changed according to

wi(t+1) = wi(t)�α
∂ε(t)
∂wi(t)

: (2.6)

This method is called stochastic gradient search since the gradient estimate varies

with the (stochastic) data and the estimate improves on average with an increasing

number of samples (see for example Haykin, 1994).

2.3.2 Adaptability

The use of instantaneous estimates of the cost function is not necessarily a dis-

advantage. On the contrary, it allows for system adaptability. Instantaneous esti-

mates permit the system to handle non-stationary processes, i.e. the cost function

is changing over time.

The choice of the update factor α is crucial for the performance of stochastic

gradient search. If the factor is too large, the algorithm will start oscillating and

never converge and if the factor is too small, the convergence time will be far

too long. In the literature, the factor is often a decaying function of time. The

intuitive reason for this is that the more samples the algorithm has used, the closer

12 Learning systems

the parameter vector should be to the optimum and the smaller the steps should

be. But, in most cases, the real reason for using a time-decaying update factor is

probably that it makes it easier to prove convergence.

In practice, however, choosing α as a function of time only is not a very good

idea. One reason is that the optimal rate of decay depends on the problem, i.e.

the shape of the cost function, and is therefore impossible to determine before-

hand. Another important reason is adaptability. A system with an update factor

that decays as a function of time only cannot adapt to new situations. Once the

parameters have converged, the system is fixed. In general, a better solution is to

use an adaptive update factor that enables the parameters to change in large steps

when consistently moving towards the optimum and to decrease the steps when

the parameter vector is oscillating around the optimum. One example of such

methods is the Delta-Bar-Delta rule (Jacobs, 1988). This algorithm has a separate

adaptive update factor αi for each parameter.

Another fundamental reason for adaptive update factors, not often mentioned

in the literature, is that the step length in equation 2.6 is proportional to the norm

of the gradient. It is, however, only the direction of the gradient that is relevant,

not the norm. Consider, for example, finding the maximum of a Gaussian by

moving proportional to its gradient. Except for a region around the optimum, the

step length gets smaller the further we get from the optimum. A method that deals

with this problem is the RPROP algorithm (Riedmiller and Braum, 1993) which

adapts the actual step lengths of the parameters and not just the factors αi.

2.4 Reinforcement learning

In reinforcement learning there is a teacher too, but this teacher does not give

the desired responses. Only a scalar reward or punishment (reinforcement signal)

according to the quality of the system’s overall performance is fed back to the

system, as illustrated in figure 2.1 on page 10. In this case, each experience is a

triplet of stimulus, response and corresponding reinforcement. The performance

to improve is simply the received reinforcement. What is meant by received re-

inforcement depends on whether or not the system acts in a closed loop, i.e. the

input to the system or the system state is dependent on previous output. If there

is a closed loop, an accumulated reward over time is probably more important

than each instant reward. If there is no closed loop, there is no conflict between

maximizing instantaneous reward and accumulated rewards.

The feedback to a reinforcement learning system is evaluative rather than in-

structive, as in supervised learning. The reinforcement signal is in most cases

easier to obtain than a set of correct responses. Consider, for example, the situ-

ation when a child learns to bicycle. It is not possible for the parents to explain

2.4 Reinforcement learning 13

to the child how it should behave, but it is quite easy to observe the trials and

conclude how good the child manages. There is also a clear (though negative) re-

inforcement signal when the child fails. The simple feedback is perhaps the main

reason for the great interest in reinforcement learning in the fields of autonomous

systems and robotics. The teacher does not have to know how the system should

solve a task but only be able to decide if (and perhaps how good) it solves it.

Hence, a reinforcement learning system requires feedback to be able to learn, but

it is a very simple form of feedback compared to what is required for a supervised

learning system. In some cases, the teacher’s task may even become so simple

that it can be built into the system. For example, consider a system that is only to

learn to avoid heat. Here, the teacher may consist only of a set of heat sensors.

In such a case, the reinforcement learning system is more like an unsupervised

learning system than a supervised one. For this reason, reinforcement learning is

often referred to as a class of learning systems that lies in between supervised and

unsupervised learning systems.

A reinforcement, or reinforcing stimulus, is defined as a stimulus that strength-

ens the behaviour that produced it. As an example, consider the procedure of

training an animal. In general, there is no point in trying to explain to the animal

how it should behave. The only way is simply to reward the animal when it does

the right thing. If an animal is given a piece of food each time it presses a button

when a light is flashed, it will (in most cases) learn to press the button when the

light signal appears. We say that the animal’s behaviour has been reinforced. We

use the food as a reward to train the animal. One could, in this case, say that it is

the food itself that reinforces the behaviour. In general, there is some mechanism

in the animal that generates an internal reinforcement signal when the animal gets

food (at least if it is hungry) and when it experiences other things that are good for

it i.e. that increase the probability of the reproduction of its genes. A biochemical

process involving dopamine is believed to play a central role in the distribution of

the reward signal (Bloom and Lazerson, 1985; Schultz et al., 1997). In the 1950s,

experiments were made (Olds and Milner, 1954) where the internal reward system

was artificially stimulated instead of giving an external reward. In this case, the

animal was even able to learn self destructive behaviour.

In the example above, the reward (piece of food) was used merely to trigger

the reinforcement signal. In the following discussion of artificial systems, how-

ever, the two terms have the same meaning. In other words, we will use only one

kind of reward, namely the reinforcement signal itself, which we in the case of an

artificial system can allow us to have direct access to without any ethical consider-

ations. In case of a large system, one would of course want the system to be able

to solve different routine tasks besides the main task (or tasks). For instance, sup-

pose we want the system to learn to charge its batteries. Such a behaviour should

14 Learning systems

then be reinforced in some way. Whether we put a box into the system that rein-

forces the battery-charging behaviour or we let the charging device or a teacher

deliver the reinforcement signal is a technical question rather than a philosophical

one. If, however, the box is built into the system, we can reinforce behaviour by

charging the system’s batteries.

Reinforcement learning is strongly associated with learning among animals

(including humans) and some people find it hard to see how a machine could learn

by a “trial-and-error” method. To show that machines can indeed learn in this way,

a simple example was created by Donald Michie in the 1960s. A pile of match-

boxes that learns to play noughts and crosses illustrates that even a very simple

machine can learn by trial and error. The machine is called MENACE (Match-box

Educable Noughts And Crosses Engine) and consists of 288 match-boxes, one for

each possible state of the game. Each box is filled with a random set of coloured

beans. The colours represent different moves. Each move is determined by the

colour of a randomly selected bean from the box representing the current state

of the game. If the system wins the game, new beans with the same colours as

those selected during the game are added to the respective boxes. If the system

loses, the beans that were selected are removed. In this way, after each game, the

possibility of making good moves increases and the risk of making bad moves

decreases. Ultimately, each box will only contain beans representing moves that

have led to success.

There are some notable advantages with reinforcement learning compared to

supervised learning, besides the obvious fact that reinforcement learning can be

used in some situations where supervised learning is impossible (e.g. the child

learning to bicycle and the animal learning examples above). The ability to learn

by receiving rewards makes it possible for a reinforcement learning system to

become more skilful than its teacher. It can even improve its behaviour by training

itself, as in the backgammon program by Tesauro (1990).

2.4.1 Searching for higher rewards

In reinforcement learning, the feedback to the system contains no gradient in-

formation, i.e. the system does not know in what direction to search for a better

solution. For this reason, most reinforcement learning systems are designed to

have a stochastic behaviour. A stochastic behaviour can be obtained by adding

noise to the output of a deterministic input-output function or by generating the

output from a probability distribution. In both cases, the output can be seen as

consisting of two parts: one deterministic and one stochastic. It is easy to see

that both these parts are necessary in order for the system to be able to improve

its behaviour. The deterministic part is the optimum response given the current

knowledge. Without the deterministic part, the system would make no sensible

2.4 Reinforcement learning 15

decisions at all. However, if the deterministic part was the only one, the system

would easily get trapped in a non-optimal behaviour. As soon as the received

rewards are consistent with current knowledge, the system will be satisfied and

never change its behaviour. Such a system will only maximize the reward pre-

dicted by the internal model but not the external reward actually received. The

stochastic part of the response provides the system with information from points

in the decision space that would never be sampled otherwise. So, the deterministic

part of the output is necessary for generating good responses with respect to the

current knowledge and the stochastic part is necessary for gaining more knowl-

edge. The stochastic behaviour can also help the system avoid getting trapped in

local maxima.

The conflict between the need for exploration and the need for precision is typ-

ical of reinforcement learning. The conflict is usually referred to as the explora-

tion-exploitation dilemma. This dilemma does not normally occur in supervised

learning.

At the beginning when the system has poor knowledge of the problem to be

solved, the deterministic part of the response is very unreliable and the stochas-

tic part should preferably dominate in order to avoid a misleading bias in the

search for correct responses. Later on, however, when the system has gained more

knowledge, the deterministic part should have more influence so that the system

makes at least reasonable guesses. Eventually, when the system has gained a lot

of experience, the stochastic part should be very small in order not to disturb the

generation of correct responses. A constant relation between the influence of the

deterministic and stochastic parts is a compromise which will give a poor search

behaviour (i.e. slow convergence) at the beginning and bad precision after con-

vergence. Therefore, many reinforcement learning systems have noise levels that

decays with time. There is, however, a problem with such an approach too. The

decay rate of the noise level must be chosen to fit the problem. A difficult problem

takes longer time to solve and if the noise level is decreased too fast, the system

may never reach an optimal solution. Conversely, if the noise level decreases too

slowly, the convergence will be slower than necessary. Another problem arises

in a dynamic environment where the task may change after some time. If the

noise level at that time is too low, the system will not be able to adapt to the new

situation. For these reasons, an adaptive noise level is to prefer.

The basic idea of an adaptive noise level is that when the system has a poor

knowledge of the problem, the noise level should be high and when the system has

reached a good solution, the noise level should be low. This requires an internal

quality measure that indicates the average performance of the system. It could of

course be accomplished by accumulating the rewards delivered to the system, for

16 Learning systems

instance by an iterative method, i.e.

p(t+1) = αp(t)+(1�α)r(t); (2.7)

where p is the performance measure, r is the reward and α is the update factor,

0 < α < 1. Equation 2.7 gives an exponentially decaying average of the rewards

given to the system, where the most recent rewards will be the most significant

ones.

A solution, involving a variance that depends on the predicted reinforcement,

has been suggested by Gullapalli (1990). The advantage with such an approach

is that the system might expect different rewards in different situations for the

simple reason that the system may have learned some situations better than others.

The system should then have a very deterministic behaviour in situations where it

predicts high rewards and a more exploratory behaviour in situations where it is

more uncertain. Such a system will have a noise level that depends on the local

skill rather than the average performance.

Another way of controlling the noise level, or rather the standard deviation

σ of a stochastic output unit, is found in the REINFORCE algorithm (Williams,

1988). Let µ be the mean of the output distribution and y the actual output. When

the output y gives a higher reward than the recent average, the variance will de-

crease if jy� µj < σ and increase if jy� µj > σ. When the reward is less than

average, the opposite changes are made. This leads to a more narrow search be-

haviour if good solutions are found close to the current solution or bad solutions

are found outside the standard deviation and a wider search behaviour if good

solutions are found far away or bad solutions are found close to the mean.

Another strategy for a reinforcement learning system to improve its behaviour

is to differentiate a model of the reward with respect to the system parameters

in order to estimate the gradient of the reward in the system’s parameter space.

The model can be known a priori and built into the system, or it can be learned

and refined during the training of the system. To know the gradient of the reward

means to know in which direction in the parameter space to search for a better

performance. One way to use this strategy is described by Munro (1987) where

the model is a secondary network that is trained to predict the reward. This can

be done with back-propagation, using the difference between the reward and the

prediction as an error measure. Then back-propagation can be used to modify

the weights in the primary network, but here with the aim of maximizing the

prediction done by secondary network. A similar approach was used to train a

pole-balancing system (Barto et al., 1983). Other examples of similar strategies

are described by Williams (1988).

2.4 Reinforcement learning 17

Adaptive critics

When the learning system operates in a dynamic environment, the system may

have to carry out a sequence of actions to get a reward. In other words, the feed-

back to such a system may be infrequent and delayed and the system faces what is

known as the temporal credit assignment problem (see section 2.7.2 on page 35).

Assume that the environment or process to be controlled is a Markov process. A

Markov process consists of a set S of states si where the conditional probability of

a state transition only depends on a finite number of previous states. The defini-

tion of the states can be reformulated so that the state transition probabilities only

depend on the current state, i.e.

P(sk+1 j sk;sk�1; : : : ;s1) = P(s0k+1 j s0k); (2.8)

which is a first order Markov process. Derin and Kelly (1989) present a systematic

classification of different types of Markov models.

Suppose one or several of the states in a Markov process are associated with

a reward. Now, the goal for the learning system can be defined as maximizing

the total accumulated reward for all future time steps. One way to accomplish

this task for a discrete Markov process is, like in the MENACE example above,

to store all states and actions until the final state is reached and to update the state

transition probabilities afterwards. This method is referred to as batch learning.

An obvious disadvantage with batch learning is the need for storage which will

become infeasible for large dimensionalities of the input and output vectors as

well as for long sequences.

A problem occurring when only the final outcome is considered is illustrated

in figure 2.2. Consider a game where a certain position has resulted in a loss in

90% of the cases and a win in 10% of the cases. This position is classified as a

bad position. Now, suppose that a player reaches a novel state (i.e. a state that has

not been visited before) that inevitably leads to the bad state and finally happens

to lead to a win. If the player waits until the end of the game and only looks at the

result, he would label the novel state as a good state since it led to a win. This is,

however, not true. The novel state is a bad state since it probably leads to a loss.

Adaptive critics (Barto, 1992) is a class of methods designed to handle the

problem illustrated in figure 2.2. Let us, for simplicity, assume that the input

vector xk uniquely defines the state sk
1. Suppose that for each state xk there is

a value Vg(xk) that is an estimate of the expected future result (e.g. a weighted

sum of the accumulated reinforcement) when following a policy g, i.e. generating

the output as y = g(x). In adaptive critics, the value Vg(xk) depends on the value

1This assumption is of course not always true. When it does not hold, the system faces the

perceptual aliasing problem which is discussed in section 2.7.1 on page 33.

18 Learning systems

loss

win

badnovel

90 %

10 %

Figure 2.2: An example to illustrate the advantage of adaptive critics. A

state that is likely to lead to a loss is classified as a bad state. A novel state

that leads to the bad state but then happens to lead to a win is classified

as a good state if only the final outcome is considered. In adaptive critics,

the novel state is recognized as a bad state since it most likely leads to a

loss.

Vg(xk+1) and not only on the final result:

Vg(xk) = r(xk;g(xk))+γVg(xk+1); (2.9)

where r(xk;g(xk)) is the reward for being in the state xk and generating the re-

sponse yk = g(xk). This means that

Vg(xk) =
N

∑
i=k

γi�kr(xk;g(xk)); (2.10)

i.e. the value of a state is a weighted sum of all future rewards. The weight

γ2 [0;1] can be used to make rewards that are close in time more valuable than

rewards further away. Equation 2.9 makes it possible for adaptive critics to im-

prove their predictions during a process without always having to wait for the final

result.

Suppose that the environment can be described by the function f so that

xk+1 = f (xk;yk). Now equation 2.9 can be written as

Vg(xk) = r(xk;g(xk))+γVg (f (xk;g(xk))) : (2.11)

The optimal response y� is the response given by the optimal policy g�:

y� = g�(x) = arg max
y
fr(x;y)+V�(f (x;y))g; (2.12)

where V� is the value of the optimal policy (Bellman, 1957).

2.4 Reinforcement learning 19

In the methods of temporal differences (TD) described by Sutton (1988), the

value function V is estimated using the difference between the values of two con-

secutive states as an internal reward signal. Another well known method for adap-

tive critics is Q-learning (Watkins, 1989). In Q-learning, the system is trying to

estimate the Q-function

Qg(x;y) = r(x;y)+Vg(f (x;y)) (2.13)

rather than the value function V itself. Using the Q-function, the optimal response

is

y� = g�(x) = arg max
y

fQ�(x;y)g: (2.14)

This means that a model of the environment f is not required in Q-learning in

order to find the optimal response.

In control theory, an optimization algorithm called dynamic programming is a

well-known method for maximizing the expected total accumulated reward. The

relationship between TD-methods and dynamic programming has been discussed

for example by Barto (1992), Werbos (1990) and Whitehead et al. (1990). It

should be noted, however, that maximizing the expected accumulated reward is

not always the best criterion, as discussed by Heger (1994). He notes that this

criterion of choice of action

� is based upon long-run consideration where the decision process is repeated

a sufficiently large number of times. It is not necessarily a valid criterion in

the short run or one-shot case, especially when the possible consequences

or their probabilities have extreme values.

� assumes the subjective values of possible outcomes to be proportional to

their objective values, which is not necessarily the case, especially when

the values involved are large.

As an illustrative example, many people occasionally play on lotteries in spite

of the fact that the expected outcome is negative. Another example is that most

people do not invest all their money in stocks although such a strategy would give

a larger expected payoff than putting some of it in the bank.

The first well-known use of adaptive critics was in a checkers playing program

(Samuel, 1959). In that system, the value of a state (board position) was updated

according to the values of future states likely to appear. The prediction of future

states requires a model of the environment (game). This is, however, not the

case in TD-methods like the adaptive heuristic critic algorithm (Sutton, 1984)

where the feedback comes from actual future states and, hence, prediction is not

necessary.

20 Learning systems

Sutton (1988) has proved a convergence theorem for one TD-method2 that

states that the prediction for each state asymptotically converges to the maximum-

likelihood prediction of the final outcome for states generated in a Markov pro-

cess. Other proofs concerning adaptive critics in finite state systems have been

presented, for example by Watkins (1989), Jaakkola et al. (1994) and Baird (1995).

Proofs for continuous state spaces have been presented by Werbos (1990), Bradtke

(1993) and Landelius (1997).

Other methods for handling delayed rewards are for example heuristic dy-

namic programming (Werbos, 1990) and back-propagation of utility (Werbos,

1992).

Recent physiological findings indicate that the output of dopaminergic neu-

rons indicate errors in the predicted reward function, i.e. the internal reward used

in TD-learning (Schultz et al., 1997).

2.4.2 Generating the reinforcement signal

Werbos (1990) defines a reinforcement learning system as

“any system that through interaction with its environment improves

its performance by receiving feedback in the form of a scalar reward

(or penalty) that is commensurate with the appropriateness of the re-

sponse.”

The goal for a reinforcement learning system is simply to maximize the reward,

for example the accumulated value of the reinforcement signal r. Hence, r can be

said to define the problem to be solved and therefore the choice of reward function

is very important. The reward, or reinforcement, must be capable of evaluating the

overall performance of the system and be informative enough to allow learning.

In some cases, how to choose the reinforcement signal is obvious. For exam-

ple, in the pole balancing problem (Barto et al., 1983), the reinforcement signal

is chosen as a negative value upon failure and as zero otherwise. Many times,

however, how to measure the performance is not evident and the choice of rein-

forcement signal will affect the learning capabilities of the system.

The reinforcement signal should contain as much information as possible

about the problem. The learning performance of a system can be improved con-

siderably if a pedagogical reinforcement is used. One should not sit and wait for

the system to attain a perfect performance, but use the reward to guide the sys-

tem to a better performance. This is obvious in the case of training animals and

2In this TD-method, called TD(0), the value Vk only depends on the following value Vk+1 and

not on later predictions. Other TD-methods can take into account later predictions with a function

that decreases exponentially with time.

2.4 Reinforcement learning 21

humans, but it also applies to the case of training artificial systems with reinforce-

ment learning. Consider, for instance, an example where a system is to learn a

simple function y = f (x). If a binary reward is used, i.e.

r =

(
1 i f jỹ� yj< ε
0 else

; (2.15)

where ỹ is the output of the system and y is the correct response, the system will

receive no information at all3 as long as the responses are outside the interval

defined by ε. If, on the other hand, the reward is chosen inversely proportional to

the error, i.e.

r =
1

jỹ� yj (2.16)

a relative improvement will yield the same relative increase in reward for all out-

put. In practice, of course, the reward function in equation 2.16 could cause nu-

merical problems, but it serves as an illustrative example of a well-shaped reward

function. In general, a smooth and continuous function is preferable. Also, the

derivative should not be too small, at least not in regions where the system should

not get stuck, i.e. in regions of bad performance. It should be noted, however, that

sometimes there is no obvious way of defining a continuous reward function. In

the case of pole balancing (Barto et al., 1983), for example, the pole either falls or

not.

A perhaps more interesting example where a pedagogical reward is used can

be found in a paper by Gullapalli (1990), which presents a “reinforcement learning

system for learning real-valued functions”. This system was supplied with two

input variables and one output variable. In one case, the system was trained on

an XOR-task. Each input was 0:1 or 0:9 and the output was any real number

between 0 and 1. The optimal output values were 0:1 and 0:9 according to the

logical XOR-rule. At first, the reinforcement signal was calculated as

r = 1�j+ εj; (2.17)

where ε is the difference between the output and the optimal output. The sys-

tem sometimes converged to wrong results, and in several training runs it did not

converge at all. A new reinforcement signal was calculated as

r0 =
r+ rtask

2
: (2.18)

3Well, almost none in any case, and as the number of possible solutions which give output

outside the interval approaches infinity (which it does in a continuous system), the information

approaches zero.

22 Learning systems

The term rtask was set to 0.5 if the latest output for similar input was less than the

latest output for dissimilar input and to -0.5 otherwise. With the reinforcement

signal in equation 2.18, the system began by trying to satisfy a weaker definition

of the XOR-task, according to which the output should be higher for dissimilar

inputs than for similar inputs. The learning performance of the system improved

in several ways with the new reinforcement signal.

Another reward strategy is to reward only improvements in behaviour, for

example by calculating the reinforcement as

r = p� r̄; (2.19)

where p is a performance measure and r̄ is the mean reward acquired by the sys-

tem. Equation 2.19 gives a system that is never satisfied since the reward vanishes

in any solution with a stable reward. If the system has an adaptive search be-

haviour as described in the previous section, it will keep on searching for better

and better solutions. The advantage with such a reward is that the system will

not get stuck in a local optimum. The disadvantage is, of course, that it will not

stay in the global optimum either, if such an optimum exists. It will, however, al-

ways return to the global optimum and this behaviour can be useful in a dynamic

environment where a new optimum may appear after some time.

Even if the reward in the previous equation is a bit odd, it points out the fact

that there might be negative reward or punishment. The pole balancing system

(Barto et al., 1983) is an example of the use of negative reinforcement and in this

case it is obvious that it is easier to deliver punishment upon failure than reward

upon success since the reward would be delivered after an unpredictably long se-

quence of actions; it would take an infinite amount of time to verify a success!

In general, however, it is probably better to use positive reinforcement to guide a

system towards a solution for the simple reason that there is usually more infor-

mation in the statement “this was a good solution” than in the opposite statement

“this was not a good solution”. On the other hand, if the purpose is to make

the system avoid a particular solution (i.e. “Do anything but this!”), punishment

would probably be more efficient.

2.4.3 Learning in an evolutionary perspective

In this section, a special case of reinforcement learning called genetic algorithms

is described. The purpose is not to give a detailed description of genetic algo-

rithms, but to illustrate the fact that they are indeed reinforcement learning algo-

rithms. From this fact and the obvious similarity between biological evolution and

genetic algorithms (as indicated in the name), some interesting conclusions can be

drawn concerning the question of learning at different time scales.

2.5 Unsupervised learning 23

A genetic algorithm is a stochastic search method for solving optimization

problems. The theory was founded by Holland (1975) and it is inspired by the

theory of natural evolution. In natural evolution, the problem to be optimized is

how to survive in a complex and dynamic environment. The knowledge of this

problem is encoded as genes in the individuals’ chromosomes. The individuals

that are best adapted in a population have the highest probability of reproduc-

tion. In reproduction, the genes of the new individuals (children) are a mixture or

crossover of the parents’ genes. In reproduction there is also a random change in

the chromosomes. The random change is called mutation.

A genetic algorithm works with coded structures of the parameter space in

a similar way. It uses a population of coded structures (individuals) and evalu-

ates the performance of each individual. Each individual is reproduced with a

probability that depends on that individual’s performance. The genes of the new

individuals are a mixture of the genes of two parents (crossover), and there is a

random change in the coded structure (mutation).

Thus, genetic algorithms learn by the method of trial and error, just like other

reinforcement learning algorithms. We might therefore argue that the same basic

principles hold both for developing a system (or an individual) and for adapting

the system to its environment. This is important since it makes the question of

what should be built into the machine from the beginning and what should be

learned by the machine more of a practical engineering question than a princi-

pal one. The conclusion does not make the question less important though; in

practice, it is perhaps one of the most important issues.

Another interesting relation between evolution and learning on the individ-

ual level is discussed by Hinton and Nowlan (1987). They show that learning

organisms evolve faster than non-learning equivalents. This is maybe not very

surprising if evolution and learning are considered as merely different levels of a

hierarchical learning system. Then the convergence of the slow high-level learn-

ing process (corresponding to evolution) depends on the adaptability of the faster

low-level learning process (corresponding to individual learning). This indicates

that hierarchical systems adapt faster than non-hierarchical systems of the same

complexity.

More information about genetic algorithms can be found for example in the

books by Davis (1987) and Goldberg (1989).

2.5 Unsupervised learning

In unsupervised learning there is no external feedback at all (see figure 2.1 on

page 10). The system’s experience mentioned on page 9 consists of a set of signals

and the measure of performance is often some statistical or information theoretical

24 Learning systems

property of the signal. Unsupervised learning is perhaps not learning in the word’s

everyday sense, since the goal is not to learn to produce responses in the form of

useful actions. Rather, it is to learn a certain representation which is thought to

be useful in further processing. The importance of a good representation of the

signals is discussed in chapter 3.

Unsupervised learning systems are often called self-organizing systems (Haykin,

1994; Hertz et al., 1991). Hertz et al. (1991) describe two principles for unsuper-

vised learning: Hebbian learning and competitive learning. Also Haykin (1994)

uses these two principles but adds a third one that is based on mutual informa-

tion, which is an important concept in this thesis. Next, these three principles of

unsupervised learning are described.

2.5.1 Hebbian learning

Hebbian learning originates from the pioneering work of neuropsychologist Hebb

(1949). The basic idea is that when one neuron repeatedly causes a second neuron

to fire, the connection between them is strengthened. Hebb’s idea has later been

extended to include the formulation that if the two neurons have uncorrelated ac-

tivities, the connection between them is weakened. In learning and neural network

theory, Hebbian learning is usually formulated more mathematically. Consider a

linear unit where the output is calculated as

y =
N

∑
i=1

wixi: (2.20)

The simplest Hebbian learning rule for such a linear unit is

wi(t +1) = wi(t)+αxi(t)y(t): (2.21)

Consider the expected change ∆w of the parameter vector w using y = xT w:

E[∆w] = αE[xxT]w = αCxxw: (2.22)

Since Cxx is positive semi-definite, any component of w parallel to an eigen-

vector of Cxx corresponding to a non-zero eigenvalue will grow exponentially and

a component in the direction of an eigenvector corresponding to the largest eigen-

value (in the following called a maximal eigenvector) will grow fastest. Therefore

we see that w will approach a maximal eigenvector of Cxx. If x has zero mean,

Cxx is the covariance matrix of x and, hence, a linear unit with Hebbian learning

will find the direction of maximum variance in the input data, i.e. the first princi-

pal component of the input signal distribution (Oja, 1982). Principal component

analysis (PCA) is discussed in section 4.2 on page 64.

2.5 Unsupervised learning 25

A problem with equation 2.21 is that it does not converge. A solution to this

problem is Oja’s rule (Oja, 1982):

wi(t +1) = αy(t)(xi(t)� y(t)wi(t)) : (2.23)

This extension of Hebb’s rule makes the norm of w approach 1 and the direction

will still approach that of a maximal eigenvector, i.e. the first principal component

of the input signal distribution. Again, if x has zero mean, Oja’s rule finds the

one-dimensional representation y of x that has the maximum variance under the

constraint that kwk= 1.

In order to find more than one principal component, Oja (1989) proposed a

modified learning rule for N units:

wi j(t +1) = αyi(t)

x j(t)�

N

∑
k=1

yk(t)wk j(t)

!
; (2.24)

where wi j is the weight j in unit i. A similar modification for N units was proposed

by Sanger (1989), which is identical to equation 2.24 except for the summation

that ends at i instead of N. The difference is that Sanger’s rule finds the N first

principal components (sorted in order) whereas Oja’s rule finds N vectors span-

ning the same subspace as the N first principal components.

A note on correlation and covariance matrices

In neural network literature, the matrix Cxx in equation 2.22 is often called a

correlation matrix. This can be a bit confusing, since Cxx does not contain the

correlations between the variables in a statistical sense, but rather the expected

values of the products between them. The correlation between xi and x j is defined

as

ρi j =
E[(xi� x̄i)(x j� x̄ j)]p

E[(xi� x̄i)2]E[(x j� x̄ j)2]
(2.25)

(see for example Anderson, 1984), i.e. the covariance between xi and x j normal-

ized by the geometric mean of the variances of xi and x j (x̄ = E[x]). Hence, the

correlation is bounded, �1 � ρi j � 1, and the diagonal terms of a correlation

matrix, i.e. a matrix of correlations, are one. The diagonal terms of Cxx in equa-

tion 2.22 are the second order origin moments, E[x2
i], of xi. The diagonal terms

in a covariance matrix are the variances or the second order central moments,

E[(xi� x̄i)
2], of xi.

The maximum likelihood estimator of ρ is obtained by replacing the expecta-

tion operator in equation 2.25 by a sum over the samples (Anderson, 1984). This

estimator is sometimes called the Pearson correlation coefficient after Pearson

(1896).

26 Learning systems

2.5.2 Competitive learning

In competitive learning there are several computational units competing to give

the output. For a neural network, this means that among several units in the out-

put layer only one will fire while the rest will be silent. Hence, they are often

called winner-take-all units. Which unit fires depends on the input signal. The

units specialize to react on certain stimuli and therefore they are sometimes called

grandmother cells. This term was coined to illustrate the lack of biological plausi-

bility for such highly specialized neurons. (There is probably not a single neuron

in your brain waiting just to detect your grandmother.) Nevertheless, the most

well-known implementation of competitive learning, the self-organizing feature

map (SOFM) (Kohonen, 1982), is highly motivated by the topologically orga-

nized feature representations in the brain. For instance, in the visual cortex, line

detectors are organized on a two-dimensional surface so that adjacent detectors

for the orientation of a line are sensitive to similar directions (Hubel and Wiesel,

1962).

In the simplest case, competitive learning can be described as follows: Each

unit gets the same input x and the winner is unit i if kwi�xk< kw j �xk; 8 j 6= i.

A simple learning rule is to update the parameter vector of the winner according

to

wi(t+1) = wi(t)+α(x(t)�wi(t)); (2.26)

i.e. to move the winning parameter vector towards the present input. The rest of

the parameter vectors are left unchanged. If the output of the winning unit is one,

equation 2.26 can be written as

wi(t+1) = wi(t)+αyi(x(t)�wi(t)) (2.27)

for all units (since yi = 0 for all losers). Equation 2.27 is a modification of the

Hebb rule in equation 2.21 and is identical to Oja’s rule (equation 2.23) if yi 2
f0;1g (Hertz et al., 1991).

Vector quantization

A rather simple, but important, application of competitive learning is vector quan-

tization (Gray, 1984). The purpose of vector quantization is to quantize a distri-

bution of vectors x into N classes so that all vectors that fall into one class can be

represented by a single prototype vector wi. The goal is to minimize the distortion

between the input vectors x and the prototype vectors. The distortion measure is

usually defined using a Euclidean metric:

D =
Z
RN

p(x)kx�wk2dx; (2.28)

2.5 Unsupervised learning 27

where p(x) is the probability density function of x.

Kohonen (1989) has proposed a modification to the competitive learning rule

in equation 2.26 for use in classification tasks:

wi(t+1) = wi(t)

(
+α(x(t)�wi(t)) if correct classification

�α(x(t)�wi(t)) if incorrect classification.
(2.29)

The need for feedback from a teacher means that this is a supervised learning rule.

It works as the standard competitive learning rule in equation 2.26 if the winning

prototype vector represents the desired class but moves in the opposite direction

if it does not. The learning rule is called learning vector quantization (LVQ) and

can be used for classification. (Note that several prototype vectors can belong to

the same class.)

Feature maps

The self-organizing feature map (SOFM) (Kohonen, 1982) is an unsupervised

competitive learning rule but without winner-take-all units. It is similar to the

vector quantization methods just described but has local connections between the

prototype vectors. The standard update rule for a SOFM is

wi(t+1) = wi(t)+αh(i; j)(x(t)�wi(t)); (2.30)

where h(i; j) is a neighbourhood function which is dependent on the distance be-

tween the current unit vector i and the winner unit j. A common choice of h(i; j)
is a Gaussian. Note that the distance is not between the parameter vectors but

between the units in a network. Hence, a topological ordering of the units is im-

plied. Note also that all units, and not only the winner, are updated (although

some of them with very small steps). The topologically ordered units and the

neighbourhood function cause nearby units to have more similar prototype vec-

tors than units far apart. Hence, if these parameter vectors are seen as feature

detectors (i.e. filters), similar features will be represented by nearby units.

Equation 2.30 causes the parameter vectors to be more densely distributed in

areas where the input probability is high and more sparsely distributed where the

input probability is low. Such a behaviour is desired if the goal is to keep the

distortion (equation 2.28) low. The density of parameter vectors is, however, not

strictly proportional to the input signal probability (Ritter, 1991), which would

minimize the distortion.

Higher level competitive learning

Competitive learning can also be used on a higher level in a more complex learn-

ing system. The function of the whole system is not necessarily based on unsu-

28 Learning systems

pervised learning. It can be trained using supervised or reinforcement learning.

But the system can be divided into subsystems that specialize on different parts of

the decision space. The subsystem that handle a certain part of the decision space

best will gain control over that part. An example is the adaptive mixtures of local

experts by Jacobs et al. (1991). They use a system with several local experts and

a gating network that selects among the output of the local experts. The whole

system uses supervised learning but the gating network causes the local experts to

compete and therefore to try to take responsibility for different parts of the input

space.

2.5.3 Mutual information based learning

The third principle of unsupervised learning is based on the concept of mutual

information. Mutual information is gaining an increased attention in the signal

processing society as well as among learning theorists and neural network re-

searchers. The theory, however, dates back to 1948 when Shannon presented his

classic foundations of information theory (Shannon, 1948).

A piece of information theory

Consider a discrete random variable x:

x 2 fxig; i 2 f1;2; : : : ;Ng: (2.31)

(There is, in practice, no limitation in x being discrete since all measurements have

finite precision.) Let P(xk) be the probability of x = xk for a randomly chosen x.

The information content in the vector (or symbol) xk is defined as

I(xk) = log

�
1

P(xk)

�
=� logP(xk): (2.32)

If the basis 2 is used for the logarithm, the information is measured in bits. The

definition of information has some appealing properties. First, the information is

0 if P(xk) = 1; if the receiver of a message knows that the message will be xk,

he does not get any information when he receives the message. Secondly, the

information is always positive. It is not possible to lose information by receiv-

ing a message. Finally, the information is additive, i.e. the information in two

independent symbols is the sum of the information in each symbol:

I(xi;x j) =� log(P(xi;x j)) =� log(P(xi)P(x j))

=� logP(xi)� logP(x j) = I(xi)+ I(x j)
(2.33)

if xi and x j are statistically independent.

2.5 Unsupervised learning 29

The information measure considers each instance of the stochastic variable

x but it does not say anything about the stochastic variable itself. This can be

accomplished by calculating the average information of the stochastic variable:

H(x) =
N

∑
i=1

P(xi)I(xi) =�
N

∑
i=1

P(xi) log(P(xi)): (2.34)

H(x) is called the entropy of x and is a measure of uncertainty about x.

Now, we introduce a second discrete random variable y, which, for example,

can be an output signal from a system with x as input. The conditional entropy

(Shannon, 1948) of x given y is

H(xjy) = H(x;y)�H(y): (2.35)

The conditional entropy is a measure of the average information in x given that y

is known. In other words, it is the remaining uncertainty of x after observing y.

The average mutual information4 I(x;y) between x and y is defined as the average

information about x gained when observing y:

I(x;y) = H(x)�H(xjy): (2.36)

The mutual information can be interpreted as the difference between the uncer-

tainty of x and the remaining uncertainty of x after observing y. In other words, it

is the reduction in uncertainty of x gained by observing y. Inserting equation 2.35

into equation 2.36 gives

I(x;y) = H(x)+H(y)�H(x;y) = I(y;x) (2.37)

which shows that the mutual information is symmetric.

Now let x be a continuous random variable. Then the differential entropy h(x)
is defined as (Shannon, 1948)

h(x) =�
Z
RN

p(x) log p(x) dx; (2.38)

where p(x) is the probability density function of x. The integral is over all di-

mensions in x. The average information in a continuous variable would of course

be infinite since there are an infinite number of possible outcomes. This can be

seen if the discrete entropy definition (eq. 2.34) is calculated in limes when x

approaches a continuous variable:

H(x) =� lim
δx!0

∞

∑
i=�∞

p(xi)δx log (p(xi)δx) = h(x)� lim
δx!0

logδx; (2.39)

4Shannon (1948) originally used the term rate of transmission. The term mutual information

was introduced later.

30 Learning systems

where the last term approaches infinity when δx approaches zero (Haykin, 1994).

But since mutual information considers the difference in entropy, the infinite term

will vanish and continuous variables can be used to simplify the calculations. The

mutual information between the continuous random variables x and y is then

I(x;y) = h(x)+h(y)�h(x;y) =

Z
RN

Z
RM

p(x;y) log

�
p(x;y)

p(x)p(y)

�
dxdy; (2.40)

where N and M are the dimensionalities of x and y respectively.

Consider the special case of Gaussian distributed variables. The differential

entropy of an N-dimensional Gaussian variable z is

h(z) =
1

2
log

�
(2πe)N jCj

�
(2.41)

where C is the covariance matrix of z (see proof B.1.1 on page 153). This means

that the mutual information between two N-dimensional Gaussian variables is

I(x;y) =
1

2
log

� jCxxj jCyyj
jCj

�
; (2.42)

where

C =

�
Cxx Cxy

Cyx Cyy

�
:

Cxx and Cyy are the within-set covariance matrices and Cxy = CT
yx is the between-

sets covariance matrix. For more details on information theory, see for example

Gray (1990).

Mutual information based learning

Linsker (1988) showed that Hebbian learning gives maximum mutual informa-

tion between the input and the output in a simple case with a linear unit with noise

added to the output. In a more advanced model with several units, he showed that

there is a tradeoff between keeping the output signals uncorrelated and suppress-

ing the noise. Uncorrelated output signals give more information (higher entropy)

on the output, but redundancy can help to suppress the noise. The principle of

maximizing the information transferred from the input to the output is by Linsker

(1988) called the infomax principle.

Linsker has proposed a method, based on maximum mutual information, for

generating a topologically ordered feature map (Linsker, 1989). The map is simi-

lar to the SOFM mentioned in section 2.5.2 (page 27) but in contrast to the SOFM,

Linsker’s learning rule causes the distribution of input units to be proportional to

the input signal probability density.

2.5 Unsupervised learning 31

- - - -

- -

max(I(x : y)) max(I(y1 : y2))

x1 y1

y2x2x y

(a) (b)

Figure 2.3: The difference between infomax (a) and Imax (b).

Bell and Sejnowski (1995) have used mutual information maximization to

perform blind separation of mixed unknown signals and blind deconvolution of a

signal convolved with an unknown filter. Actually, they maximize the entropy in

the output signal y rather than explicitly maximizing the mutual information be-

tween x and y. The results are, however, the same if there is independent noise in

the output but no known noise in the input5. To see that, consider a system where

y = f (x) +η where η is an independent noise signal. The mutual information

between x and y is then

I(x;y) = h(y)�h(yjx) = h(y)�h(η); (2.43)

where h(η) is independent of the parameters of f .

Becker and Hinton (1992) have used mutual information maximization in an-

other way than Linsker and Bell and Sejnowski. Instead of maximizing the mutual

information between the input and the output they maximize the mutual informa-

tion between the output of different units, see figure 2.3. They call this principle

Imax and have used it to estimate disparity in random-dot stereograms (Becker

and Hinton, 1992) and to detect depth discontinuities in stereo images (Becker

and Hinton, 1993). A good overview of Imax is given by Becker (1996).

Among other mutual information based methods of unsupervised learning are

Barlow’s minimum entropy coding that aims at minimizing the statistical depen-

dence between the output signals (Barlow, 1989; Barlow et al., 1989; Földiák,

1990) and the Gmax algorithm (Pearlmutter and Hinton, 1986) that tries to detect

statistical dependent features in the input signal.

5“No known noise” means that the input cannot be divided into a signal part x and a noise part

η . The noise is an indistinguishable part of the input signal x.

32 Learning systems

The relation between mutual information and correlation

There is a clear relation between mutual information and correlation for Gaussian

distributed variables. Consider two one-dimensional random variables x and y.

Equations 2.42 and 2.25 then gives

I(x;y) =
1

2
log

σ2

xσ2
y

σ2
xσ2

y� (σxy)2

!
=

1

2
log

1

1�ρ2
xy

!
; (2.44)

where σ2
x and σ2

y are the variances of x and y respectively, σxy is the covariance

between x and y and ρxy is the correlation between x and y. The extension of this

relation to multidimensional variables is discussed in chapter 4.

This relationship means that for a single linear unit with Gaussian distributed

variables, the mutual information between the input and the output, i.e. the amount

of transferred information, is maximized if the correlation between the input and

the output is maximized.

2.6 Comparisons between the three learning methods

The difference between supervised learning, reinforcement learning and unsuper-

vised learning may seem very fundamental at first. But sometimes the distinction

between them is not so clear and the classification of a learning method can de-

pend upon the view of the observer.

As we have seen in section 2.4, reinforcement learning can be implemented

as a supervised learning of the reward function. The output is then chosen as the

one giving the maximum value of the approximation of the reward function given

the present input.

Another way of implementing reinforcement learning is to use the output of

the system as the desired output in a supervised learning algorithm and weight the

update step with the reward (Williams, 1988).

Furthermore, supervised learning can emerge as a special case of reinforce-

ment learning where the system is forced to give the desired output while receiv-

ing maximum reward. Also, a task for a supervised learning system can always be

reformulated to fit a reinforcement learning system simply by mapping the error

vectors to scalars, for example as a function of the norm of the error vectors.

Also unsupervised learning can sometimes be formulated as supervised learn-

ing tasks. Consider, for example, the PCA algorithms (section 2.5.1) that find the

maximal eigenvectors of the distribution of x. For a single parameter vector w the

problem can be formulated as minimizing the difference between the signal x and

2.7 Two important problems 33

the output y = xT ŵ ŵ, i.e.

1

2
E
�
kx�xT ŵ ŵk2

�
= E

�
xT x� ŵT xxT ŵ

�
= tr(C)� ŵT Cŵ =∑

i

λi� ŵT Cŵ;
(2.45)

where C is the covariance matrix of x (assuming x̄ = 0) and λi are the eigenvalues

of C. Obviously, the best choice of w is the maximal eigenvector of C. The output

is a reconstruction of x and the desired output is the same as the input. Another

example is the methods described in chapter 4 and by van der Burg (1988).

Finally, there is a similarity between all three learning principles in that they

all generally try to optimize a scalar measure of performance, for example mean

square error, accumulated reward, variance, or mutual information.

A good example illustrating how similar these three methods can be is the

prediction matrix memory in section 3.3.1

2.7 Two important problems

There are some important fundamental problems in learning systems. One prob-

lem, called perceptual aliasing, deals with the problem of consistency in the in-

ternal representation of external states. Another problem is called the credit as-

signment problem and deals with the problem of distribution of the feedback in

the system during learning. These two problems are discussed in this section. A

third important problem is how to represent the information in a learning system,

which is discussed in chapter 3.

2.7.1 Perceptual aliasing

Consider a learning system that perceives the external world through a sensory

subsystem and represents the set of external states SE by an internal state rep-

resentation set SI . This set can, however, rarely be identical to the real external

world state set SE . To assume a representation that completely describes the exter-

nal world in terms of objects, their features and relationships, is unrealistic even

for relatively simple problem settings. Furthermore, the internal state is inevitably

limited by the sensor system, which leads to the fact that there is a many-to-many

mapping between the internal and external states. That is, a state se 2 SE in the

external world can map into several internal states and, what is worse, an internal

state si 2 SI could represent multiple external world states. This phenomenon has

been termed perceptual aliasing (Whitehead and Ballard, 1990a).

Figure 2.4 illustrates two cases of perceptual aliasing. One case is when two

external states s1
e and s2

e map into the same internal state s1
i . An example is when

34 Learning systems

S

Ss

s
E

Iisisi

esese

1

1

2 3

2 3

Lerning system

Figure 2.4: Two cases of perceptual aliasing. Two external states s1
e and

s2
e are mapped into the same internal state s1

i and one external state s3
e is

mapped into two internal states s2
i and s3

i .

two different objects appear as identical to the system. This is illustrated in view

1 in figure 2.5. The other case is when one external state s3
e is represented by

two internal states s2
i and s3

i . This happens, for instance, in a system consisting of

several local adaptive models if two or more models happen to represent the same

solution to the same part of the problem.

Perceptual aliasing may cause the system to confound different external states

that have the same internal state representation. This type of problem can cause

a response generating system to make the wrong decisions. For example, let the

internal state si represent the external states sa
e and sb

e and let the system generate

an action a. The expected reward for the decision (si;a) to generate the action a

given the state si can now be estimated by averaging the rewards for that decision

accumulated over time. If sa
e and sb

e occur approximately equally often and the

actual accumulated reward for (sa
e ;a) is greater than the accumulated reward for

(sb
e ;a), the expected reward will be underestimated for (sa

e ;a) and overestimated

for (sb
e ;a), leading to a non-optimal decision policy.

There are cases when the phenomenon is a feature, however. This happens

if all decisions made by the system are consistent. The reward for the decision

(si;a) then equals the reward for all corresponding actual decisions (sk
e;a), where

k is an index for this set of decisions. If the mapping between the external and

internal worlds is such that all decisions are consistent, it is possible to collapse

a large actual state space into a small one where situations that are invariant to

the task at hand are mapped onto one single situation in the representation space.

For a system operating in a large decision space, such a strategy is in fact neces-

sary in order to reduce the number of different states. The goal is then to find a

representation of the decision space such that consistent decisions can be found.

The simplest example of such a deliberate perceptual aliasing is quantization. If

2.7 Two important problems 35

1)

2)

A B

1) 2)

ABA B

s
i s

i
s
i

1 2

Figure 2.5: Avoiding perceptual aliasing by observing the environment

from another direction.

the quantization is properly designed, the decisions will be consistent within each

quantized state.

Whitehead and Ballard (1990b) have presented a solution to the problem of

perceptual aliasing for a restricted class of learning situations. The basic idea is to

detect inconsistent decisions by monitoring the estimated reward error, since the

error will oscillate for inconsistent decisions as discussed above. When an incon-

sistent decision is detected, the system is guided (e.g. by changing its direction

of view) to another internal state uniquely representing the desired external state.

In this way, more actions will produce consistent decisions (see figure 2.5). The

guidance mechanisms are not learned by the system. This is noted by Whitehead

who admits that a dilemma is left unresolved:

“In order for the system to learn to solve a task, it must accurately

represent the world with respect to the task. However, in order for

the system to learn an accurate representation, it must know how to

solve the task.”

The issue of information representation is further discussed in chapter 3.

2.7.2 Credit assignment

In all complex control systems, there probably exist some uncertainty of how to

distribute credit (or blame) for the control actions taken. This uncertainty is called

the credit assignment problem (Minsky, 1961, 1963). Consider, for example, a po-

litical system. Is it the trade politics or the financial politics that deserves credit

36 Learning systems

for the increasing export? We may call this a structural credit assignment prob-

lem. Is it the current government or the previous one that deserves credit or blame

for the economic situation? This is a temporal credit assignment problem. Is it

the management or the staff that should be given credit for the financial result in

a company? This is what we may call a hierarchical credit assignment problem.

These three types of credit assignment problems are also encountered in the type

of control systems considered here, i.e. learning systems.

The structural credit assignment problem occurs, for instance, in a neural net-

work when deciding which weights to alter in order to achieve an improved per-

formance. In supervised learning, the structural credit assignment problem can

be handled by using back-propagation (Rumelhart et al., 1986) for instance. The

problem becomes more complicated in reinforcement learning where only a scalar

feedback is available. In section 3.4, a description is given of how the structural

credit assignment problem can be handled by the use of local adaptive models.

The temporal credit assignment problem occurs when a system acts in a dy-

namic environment and a sequence of actions is performed. The problem is to de-

cide which of the actions taken deserves credit for the result. Obviously, it is not

certain that it is the final action taken that deserves all the credit or blame. (For ex-

ample, consider the situation when the losing team in a football game scores a goal

during the last seconds of the game. It would not be clever to blame the person

who scored that goal for the loss of the game.) The problem becomes especially

complicated in reinforcement learning if the reward occurs infrequently. The tem-

poral credit assignment problem is thoroughly investigated by Sutton (1984).

Finally, the hierarchical credit assignment problem can occur in a system con-

sisting of several levels. Consider, for example, the Adaptive mixtures of local

experts (Jacobs et al., 1991). That system consists of two levels. On the lower

level, there are several subsystems that specialize on different parts of the input

space. On the top level, there is a supervisor that selects the proper subsystem for

a certain input. If the system makes a bad decision, it can be difficult to decide if

it was the top level that selected the wrong subsystem or if the top level made a

correct choice but the subsystem that generated the response made a mistake. This

problem can of course be regarded as a type of structural credit assignment prob-

lem, but to emphasize the difference we call it a hierarchical credit assignment

problem. Once the hierarchical credit assignment problem is solved and it is clear

on what level the mistake was made, the structural credit assignment problem can

be dealt with to alter the behaviour on that level.

Chapter 3

Information representation

A central issue in the design of learning systems is the representation of infor-

mation in the system. The algorithms treated in this work can be seen as signal

processing systems, in contrast to AI or expert systems that have symbolic repre-

sentations1 . We may refer to the representation used in the signal processing sys-

tems as a continuous representation while the symbolic approach can be said to

use a string representation. Examples of the latter are the Lion Algorithm (White-

head and Ballard, 1990a), the Reinforcement Learning Classifier Systems (Smith

and Goldberg, 1990) and the MENACE example in section 2.4. The genetic algo-

rithms that were described in section 2.4.3 are perhaps the most obvious examples

of string representation in biological reinforcement learning systems.

The main difference between the two approaches is that a continuous repre-

sentation has an implicit metric, i.e. there is a continuum of states and there exist

meaningful interpolations between different states. One can say that two states are

more or less similar. Interpolations are important in a learning system since they

make it possible for the system to make decisions in situations never experienced

before. This is often referred to as generalization. In a string representation there

is no implicit metric, i.e. there is no unambiguous way to tell which of two strings

is more similar to a third string than the other. There are, however, also advan-

tages with string representations. Today’s computers, for example, are designed to

work with string representations and have difficulties in handling continuous in-

formation in an efficient way. A string representation also make it easy to include

a priori knowledge in terms of explicit rules.

An approach that can be seen as a mix of symbolic representation and contin-

uous representation is fuzzy logic (Zadeh, 1968, 1988). The symbolic expressions

in fuzzy logic include imprecise statements like “many”, “close to”, “usually”,

1By “symbolic”, a more abstract representation is referred to than just a digitalization of the

signal; a digital signal processing system is still a signal processing system.

38 Information representation

etc. This means that statements need not be true or false; they can be somewhere

in between. This introduces a kind of metric and interpolation is possible (Zadeh,

1988). Lee and Berenji (1989) describe a rule-based fuzzy controller using rein-

forcement learning that solves the pole balancing problem.

Ballard (1990) suggests that it is unreasonable to suppose that peripheral mo-

tor and sensory activity are correlated in a meaningful way. Instead, it is likely

that abstract sensory and motor representations are built and related to each other.

Also, combined sensory and motor information must be represented and used in

the generation of new motor activity. This implies a learning hierarchy and that

learning occurs on different temporal scales (Granlund, 1978, 1988; Granlund and

Knutsson, 1982, 1983, 1990). Hierarchical learning system designs have been

proposed by several other researchers (e.g. Jordan and Jacobs, 1994).

Both approaches (signal and symbolic) described on the preceding page are

probably important, but on different levels in hierarchical learning systems. On a

low level, the continuous representation is probably to prefer since signal process-

ing techniques have the potential of being faster than symbolic reasoning as they

are easier to implement with analogue techniques. On a low level, interpolations

are meaningful and desirable. In a simple control task for instance, consider two

similar2 stimuli s1 and s2 which have the optimal responses r1 and r2 respectively.

For a novel stimulus s3 located between s1 and s2, the response r3 could, with

large probability, be assumed to be in between r1 and r2.

On a higher level, on the other hand, a more symbolic representation may be

needed to facilitate abstract reasoning and planning. Here, the processing speed is

not as crucial and interpolation may not even be desirable. Consider, for instance,

the task of passing a tree. On a low level, the motor actions are continuous and

meaningful to interpolate and they must be generated relatively fast. The higher

level decision on which side of the tree to pass is, however, symbolic. Obviously,

it is not successful to interpolate the two possible alternatives of “walking to the

right” and “walking to the left”. Also, there is more time to make this decision

than to generate the motor actions needed for walking.

The choice of representation can be crucial for the ability to learn. Geman

et al. (1992) argue that

“the fundamental challenges in neural modelling are about represen-

tation rather than learning per se.”

Furthermore, Hertz et al. (1991) present a simple but illustrative example to em-

phasize the importance of the representation of the input to the system. Two tasks

are considered: the first one is to decide whether or not the input is an odd number;

2Similar means here that they are relatively close to each other in the given metric compared to

the variance of the distribution of stimuli.

3.1 The channel representation 39

the second is to decide if the input has an odd number of prime factors. If the input

has a binary representation, the first task is extremely simple: the system just has

to look at the least significant bit. The second task, however, is very difficult. If

the base is changed to 3, for instance, the first task will be much harder. And if

the input is represented by its prime factors, the second task will be easier. Hertz

et al. (1991) also prove an obvious (and, as they say, silly) theorem:

“learning will always succeed, given the right preprocessor.”

In the discussion above, representation of two kinds of information is actually

treated: the information entering the system as input signals (signal represen-

tation) and the information in the system about how to behave, i.e. knowledge

learned by the system (model representation). The representations of these two

kinds of information are, however, closely related to each other. As we will see, a

careful choice of input signal representation can allow for a very simple represen-

tation of knowledge.

In the following section, a special type of signal representation called the

channel representation is presented. It is a representation that is biologically in-

spired and which has several computational advantages. The later sections will

deal more with model representations. The probably most well-known class of

model representations among learning systems, neural networks, is presented in

section 3.2. They can be seen as global non-linear models. In section 3.3 is shown

how the channel representation makes it possible to use a simple linear model.

In section 3.4 is argued that low-dimensional linear models are sufficient if they

are local enough and the adaptive distribution of such models is briefly discussed

in section 3.5. The chapter ends with simple examples of reinforcement learning

systems solving the same problem but with different representations.

3.1 The channel representation

As has been discussed above, the internal representation of information may play

a decisive role for the performances of learning systems. The representation that

is intuitively most obvious in a certain situation, for example a scalar t for tem-

perature or a three dimensional vector p = (x y z)T for a position in space, is, how-

ever, in some cases not a very good way to represent information. For example,

consider an orientation in R2 which can be represented by an angle ϕ 2 [�π;π]
relative to a fix orientation, for example the x-axis. While this may appear as a

very natural representation of orientation, it is in fact not a very good one since

it has got a discontinuity at π which means that an orientation average cannot be

consistently defined (Knutsson, 1989).

Another, perhaps more natural, way of representing information is the channel

representation (Nordberg et al., 1994; Granlund, 1997). In this representation, a

40 Information representation

set of channels is used where each channel is sensitive to some specific feature

value in the signal, for example a certain temperature ti or a certain position pi. In

the example above, the orientation in R2 could be represented by a set of channels

evenly spread out on the unit circle, as proposed by Granlund (1978). If three

channels of the shape

ck = cos2

�
3

4
(ϕ� pk)

�
; (3.1)

where p1 =
2π
3

; p2 = 0 and p3 =� 2π
3

, are used (Knutsson, 1982), the orientation

can be represented continuously by the channel vector c = (c1 c2 c3)
T which

has a constant norm for all orientations. The reason to call this a more natural

representation than for instance the angle ϕ, is that the channel representation is

frequently used in biological systems, where each nerve cell responds strongly to

a specific feature value. One example of this is the orientation sensitive cells in the

primary visual cortex (Hubel and Wiesel, 1959; Hubel, 1988). This representation

is called value encoding by Ballard (1987) who contrasts it with variable encoding

where the activity is monotonically increasing with some parameter.

Theoretically, the channels can be designed so that there is one channel for

each feature value that can occur. A function of these feature values would then be

implemented simply as a look-up table. In practice, however, the range of feature

values is often continuous (or at least quantized finely enough to be considered

continuous). Each channel can be seen as a response of a filter that is tuned to

some specific feature value. The coding is then designed so that the channel has

its maximum value (for example one) when the feature and the filter are exactly

tuned to each other, and decreases to zero in a smooth way as the feature and the

filter become less similar. This is similar to the magnitude representation proposed

by Granlund (1989).

The channel representation increases the number of dimensions in the repre-

sentation. It should, however, be noted that an increase in the dimensionality does

not have to lead to increased complexity of the learning problem. A great advan-

tage of the channel representation is that it allows for simple processing structures.

To see this, consider any continuous function y= f (x). If x is represented by a suf-

ficiently large number of channels ck of a suitable form, the output y can simply be

calculated as a weighted sum of the input channels y = wT c however complicated

the function f may be. This implies that by using a channel representation, linear

operations can be used to a great extent; this fact is used further in this chapter.

It is not obvious how to choose the shape of the channels. Consider, for exam-

ple, the coding of a variable x into channels. According to the description above,

each channel is positive and has its maximum for one specific value of x and it

decreases smoothly to zero away from this maximum. In addition, to enable rep-

resentation of all values of x in an interval, there must be overlapping channels on

3.1 The channel representation 41

c
k−2

c
k−1

c
k

c
k+1

c
k+2 x

Figure 3.1: A set of cos2 channels. Only three channels are activated

simultaneously. The sum of the squared channel outputs ck�1, ck and ck+1

is drawn with a dotted line.

this interval. It is also convenient if the norm of the channel vector is constant so

that the feature value is only represented by the orientation of the channel vector.

This enables the use of the scalar product for calculating the similarity between

values. It also makes it possible to use the norm of the channel vector to represent

some other entity related to the measurement, for instance the energy or the cer-

tainty of the measurement. One channel form that fulfils the requirements above

is:

ck =

(
cos2

�π
3
(x� k)

�
jx� kj< 3

2

0 otherwise
(3.2)

(see figure 3.1). This set of channels has a constant norm (see proof B.2.1 on page

154). It also has a constant square sum of its first derivatives (see proof B.2.2 on

page 155) (Knutsson, 1982, 1985). This means that a change ∆x in x always gives

the same change ∆c in c for any x. Of course, not only scalars can be coded into

vectors with constant norm. Any vector v in a vector space of (N�1) dimensions

can be transformed into the orientation of a unit-length vector in an N-dimensional

space. This was used, for example, by Denoeux and Lengellé (1993) in order to

keep the norm of the input vectors constant and equal to one while preserving all

the information. By using this new input representation, a scalar product could be

used for calculating the similarity between the input vectors and a set of prototype

vectors.

The channel vectors described above only exist in a small limited number of

dimensions at a time; the channels in all other dimensions are zero. The number

of simultaneously active channels is called local dimensionality. In the example

in figure 3.1, the local dimensionality is three. This means that the vector moves

along a curve as in figure 3.2 (left) as x changes. If we look at channels far apart,

42 Information representation

c

k
c

c
k−1

k+1
c

k
c

c

k+n

k−m

Figure 3.2: Left: The curve along which a channel vector can move in

a subspace spanned by three neighbouring channels. The broken part of

the curve illustrates the proceeding of the vector into other dimensions.

Right: The possible channel vectors viewed in a subspace spanned by

three distant non-overlapping channels.

only one of these channels is active at a time (figure 3.2, right); the activity is

local. We call this type of channel vector a pure channel vector. The pure channel

vector can be seen as an extreme of the sparse distributed coding (Field, 1994).

This is a coding that represents data with a minimum number of active units in

contrast to compact coding that represents data with a minimum number of units.

In general, the input to a system cannot be a pure channel vector. Consider,

for example, a system that uses visual input, i.e. images. It is obvious that the

dimensionality of the space of pure channel vectors that can represent all images

would be far to large to be of practical interest. The input should rather consist

of many sets of channels where each set measures a local property in the image,

for example local orientation. Each set can be a pure channel vector, but the total

input vector, consisting of several concatenated pure channel vectors, will not

only have local activity. We call this type of vector, which consists of many sets

of channels, a mixed channel vector.

The use of mixed channel vectors is not only motivated by limited processing

capacity. Consider, for example, the representation of a two-dimensional variable

x = (x1 x2)
T . We may represent this variable with a pure channel vector by dis-

tributing on the X -plane overlapping channels that are sensitive to different xi, as

in figure 3.3 (left). Another way is to represent x with a mixed channel vector by

using two sets of channels as in figure 3.3 (right). Here, each set is only sensitive

3.1 The channel representation 43

x

x

2

1

x

x

2

1

Figure 3.3: Left: Representation of a two-dimensional variable with one

set of channels that constitute a pure channel vector Right: Representa-

tion of the same variable with two sets of channels that together form a

mixed channel vector.

to one of the two parameters x1 and x2 and it does not depend on the other parame-

ter at all; the channel vector c1 on the x1-axis is said to be invariant with respect to

x2. Invariance can be seen as a deliberate perceptual aliasing as discussed in sec-

tion 2.7.1. If x1 and x2 represent different properties of x, for instance colour and

size, the invariance can be a very useful feature. It makes it possible to observe

one property independently of the others by looking at a subset of the channels.

Note, however, that this does not mean that all multidimensional variables should

be represented by mixed channel vectors. If, for example, (x1 x2)
T in figure 3.3

represents the two-dimensional position of a physical object, it does not seem use-

ful to see the x1 and x2 positions as two different properties. In this case, the pure

channel vector (left) might be a proper representation.

The use of mixed channel vectors offers another advantage compared to using

the original variables, namely the simultaneous representation of properties which

belong to different objects. Consider a one-dimensional variable x representing a

position of an object along a line and compare this with a channel vector c repre-

senting the same thing. Now, if two objects occur at different positions, a mixed

channel vector allows for the positions of both objects to be represented. This is

obviously not possible when using the single variable x. Note that the mixed chan-

nel vector discussed here differs from the one described previously which consists

of two or more concatenated pure channel vectors. In that case, the mixed channel

vector represents several features and one instance of each feature. In the case of

representing two or more positions, the mixed channel vector represents several

44 Information representation

x

x

x w

w

w

y+ f()

i

1

2

1

2

i

Figure 3.4: The basic neuron. The output y is a non-linear function f of a

weighted sum of the inputs x.

instances of the same feature, i.e. multiple events. Both representations are, how-

ever, mixed channel vectors in the sense that they can have simultaneous activity

on channels far apart as opposed to pure channel vectors.

3.2 Neural networks

Neural networks are perhaps the most popular and well-known implementations

of artificial learning systems. The concept is so popular that it is often used syn-

onymous with machine learning, which sometimes can be a bit misleading. There

is no unanimous definition of neural networks, but they are usually character-

ized by a large number of massively connected relatively simple processing units.

Learning capabilities are often understood even if they are not explicit. One could

of course imagine a hard-wired neural network incapable of learning. Neural net-

works can be seen as global parameterized non-linear models.

The processing units in a neural network are often called neurons (hence, the

name neural network) since they were originally designed as models of the nerve

cells (neurons) in the brain. In figure 3.4, an artificial neuron is illustrated. This

basic model of an artificial neuron was proposed by McCulloch and Pitts (1943)

where the non-linear function f was a Heaviside (unit step) function, i.e.

f (x) =

8><
>:

0 x < 0

(1=2 x = 0)

1 x > 0

: (3.3)

An example of a neural network is the two-layer perceptron illustrated in figure

3.5 which consists of neurons like the one described above connected in a feed-

forward manner. The neural network is a parameterized model and the parameters

3.2 Neural networks 45

x

x

1

2

y

y

y

1

2

3

Figure 3.5: A two-layer perceptron with a two-dimensional input and a

three-dimensional output.

are often called weights. Rosenblatt (1962) presented a supervised learning algo-

rithm for a single layer perceptron. Later, however, Minsky and Papert (1969)

showed that a single layer perceptron failed to solve even some simple prob-

lems, for example the Boolean exclusive-or function. While it was known that

a three-layer perceptron can represent any continuous function, Minsky and Pa-

pert doubted that a learning method for a multi-layer perceptron would be possible

to find. This finding almost extinguished the interest in neural networks for nearly

two decades until the 1980s when learning methods for multi-layer perceptrons

were developed. The most well-known method is back-propagation presented in

a Ph.D. thesis by Werbos (1974) and later presented by Rumelhart et al. (1986).

The solution to the problem of how to update a multi-layer perceptron was

to replace the Heaviside function (equation 3.3) with a differentiable nonlinear

function, usually a sigmoid function. Examples of common sigmoid functions are

f (x) = tanh(x) and the Fermi function:

f (x) =
1

1+ e�x
: (3.4)

The sigmoid function can be seen as a basis function for the internal representa-

tion in the network. Another choice of basis function is the radial-basis function

(RBF), for example a Gaussian, that is used in the input layer in RBF networks

(Broomhead and Lowe, 1988; Moody and Darken, 1989). The RBFs can be seen

as a kind of channel representation.

The feed-forward design in figure 3.5 is, of course, not the only possible ar-

rangement of neurons in a neural network. It is also possible to have connections

from the output back to the input, so called recurrent networks. Two famous ex-

amples of recurrent networks are the Hopfield network (Hopfield, 1982) and the

Boltzmann machine (Hinton and Sejnowski, 1983, 1986).

46 Information representation

3.3 Linear models

While neural networks are non-linear models, it could sometimes be sufficient

to use a linear model, especially if the representation of the input to the system

is chosen carefully. As mentioned above, the channel representation makes it

possible to realize a rather complicated function as a linear function of the input

channels. In fact, the RBF networks can be seen as a hidden layer creating a

channel representation followed by an output layer implementing a linear model.

In this section, a linear model for reinforcement learning called the prediction

matrix memory is presented.

3.3.1 The prediction matrix memory

In this subsection, a system that is to learn to produce an output channel vector q

as a function of an input channel vector v is described. The functions considered

here are continuous functions of a pure channel vector (see page 42) or functions

that are dependent on one property while invariant with respect to the others in a

mixed channel vector; in other words, functions that can be realized by letting the

output channels be linear combinations of the input channels. We call this type

of functions first-order functions3. The order can be seen as the number of events

in the input vector that must be considered simultaneously in order to define the

output. In practice, this means that, for instance, a first-order function does not

depend on any relation between different events; a second-order function depends

on the relation between no more than two events and so on.

Consider a first-order system which is supplied with an input channel vector

v and which generates an output channel vector q. Suppose that v and q are pure

channel vectors. If there is a way of defining a scalar r (the reinforcement) for

each decision (v, q) (i.e. input-output pair), the function r(v;q) is a second-order

function. The tensor space Q
V that contains the outer products qvT we call

the outer product decision space. In this space, the decision (v, q) is one event.

Hence, r can be calculated as a first-order function of the outer product qvT .

In practice, the system will, of course, handle a finite number of overlapping

channels and r will only be an approximation of the reward. But if the reward

function is continuous, this approximation can be made arbitrarily good by using

a sufficiently large set of channels.

3This concept of order have similarities to the one defined by Minsky and Papert (1969). In their

discussion, the inputs are binary vectors which of course can be seen as mixed channel vectors with

non-overlapping channels.

3.3 Linear models 47

p

W

Tqv

Figure 3.6: The reward prediction p for a certain stimulus-response pair

(v, q) viewed as a projection onto W in Q
V .

Learning the reward function

If supervised learning is used, the linear function could be learned by training a

weight vector w̃i for each output channel qi so that qi = w̃T v. This could be done

by minimizing some error function, for instance

E = E[kq� q̃k2]; (3.5)

where q̃ is the correct output channel vector supplied by the teacher. This means,

for the whole system, that a matrix fW is trained so that a correct output vector is

generated as

q =fWv =

 ewT
i v
...

!
: (3.6)

In reinforcement learning, however, the correct output is unknown; only a

scalar r that is a measure of the performance of the system is known (see sec-

tion 2.4 on page 12). But the reward is a function of the stimulus and the response,

at least if the environment is not completely stochastic. If the system can learn this

function, the best response for each stimulus can be found. As described above,

the reward function for a first-order system can be approximated by a linear com-

bination of the terms in the outer product qvT . This approximation can be used as

a prediction p of the reward and is calculated as

p = hW j qvT i; (3.7)

see figure 3.6. The matrix W is therefore called a prediction matrix memory.

The reward function can be learned by modifying W in the same manner as in

48 Information representation

supervised learning, but here with the aim to minimize the error function

E = E[jr� pj2]: (3.8)

Now, let each triple (v;q;r) of stimulus, response, and reward denote an experi-

ence. Consider a system that has been subject to a number of experiences. How

should a proper response be chosen by the system? The prediction p in equation

3.7 can be rewritten as

p = qT Wv = hq j Wvi: (3.9)

Due to the channel representation, the actual output is completely determined by

the direction of the output vector. Hence, we can regard the norm of q as fixed

and try to find an optimal direction of q. The q that gives the highest predicted

reward obviously has the same direction as Wv. Now, if p is a good prediction of

the reward r for a certain stimulus v, this choice of q would be the one that gives

the highest reward. An obvious choice of the response q is then

q = Wv (3.10)

which is the same first-order function asfW suggested for supervised learning in

equation 3.6. Since q is a function of the input v, the prediction can be calcu-

lated directly from the input. Equation 3.9 together with equation 3.10 give the

prediction as

p = (Wv)T Wv = kWvk2
: (3.11)

Now we have a very simple processing structure (essentially a matrix mul-

tiplication) that can generate proper responses and predictions of the associated

rewards for any first-order function.

This structure is similar to the learning matrix or correlation matrix memory

described by Steinbuch and Piske (1963) and later by Anderson (1972, 1983) and

by Kohonen (1972, 1989). The correlation matrix memory is a kind of linear as-

sociative memory that is trained with a generalization of Hebbian learning (Hebb,

1949). An associative memory maps an input vector a to an output vector b, and

the correlation matrix memory stores this mapping as a sum of outer products:

M = ∑baT
: (3.12)

The stored patterns are then retrieved as

b = Ma (3.13)

3.3 Linear models 49

which is equal to equation 3.10. The main difference is that in the method de-

scribed here, the correlation strength is retrieved and used as a prediction of the

reward. Kohonen (1972) has investigated the selectivity and tolerance with respect

to destroyed connections in the correlation matrix memories.

The training of the matrix W is a very simple algorithm. For a certain expe-

rience (v;q;r), the prediction p should, in the optimal case, equal r. This means

that the aim is to minimize the error in equation 3.8. The desired weight matrix

W0 would yield a prediction

p0 = r = hW0 j qvT i: (3.14)

Since this is a linear problem, it could be tempting to solve it analytically. This

could be done recursively using the recursive least squares (RLS) method (Ljung,

1987). The problem is that RLS involves the estimation and inversion of a p� p

matrix where p = dim(q)dim(v). Since the dimensionalities of q and v are high

in general due to the channel representation, RLS is not a very useful tool in this

case. Instead, we use stochastic gradient search (see section 2.3.1 on page 10) to

find W0. From equations 3.7 and 3.8 we get the error

ε= jr�hW j qvT ij2 (3.15)

and the gradient is

∂ε
∂W

=�2(r� p)qvT
: (3.16)

To minimize the error, W should be changed a certain amount a in the direction

qvT , i.e.

W0 = W+aqvT
: (3.17)

Equation 3.14 now gives that

r = p+akqk2kvk2 (3.18)

(see proof B.2.3 on page 156) which gives

a =
r� p

kqk2kvk2
: (3.19)

To perform stochastic gradient search (equation 2.6 on page 11), we change

the parameter vector a small step in the negative gradient direction for each itera-

tion. The update rule therefore becomes

W(t+1) = W(t)+∆W(t); (3.20)

50 Information representation

where

∆W = α
r� p

kqk2kvk2
qvT

; (3.21)

where α is the update factor (0 < α � 1) (see section 2.3.2 on page 11). If the

channel representation is chosen so that the norm of the channel vectors is constant

and equal to one, this equation is simplified to

∆W= α(r� p)qvT
: (3.22)

Here, the difference between this method and the correlation matrix mem-

ory becomes clearer. The learning rule in equation 3.12 corresponds to that in

equation 3.22 with α(r� p) = 1. The prediction matrix W in equation 3.22 will

converge when r= p, while the correlation matrix M in equation 3.12 would grow

for each iteration unless a normalization procedure is used.

Here, we can see how reinforcement learning and supervised learning can be

combined, as mentioned in section 2.6. By setting r = p+1 and α = 1 we get the

update rule for the correlation matrix memory in equation 3.12, and with r = 1

we get a correlation matrix memory with a converging matrix. This means that

if the correct response is known, it can be learned using supervised learning by

forcing the output to the correct response and setting the parameters α = 1 and

r = 1 or r = p+ 1. When the correct response is not known, the system is let to

produce the response and the reinforcement learning algorithm described above

can be used.

Relation to Q-learning

The description above of the learning algorithm assumed a reinforcement sig-

nal as a feedback to the system for each single decision (i.e. stimulus-response

pair). This is, however, not necessary. Instead of learning the instantaneous re-

ward function r(x;y), the system can be trained to learn the Q-function Q(x;y)
(equation 2.13 on page 19), which can be written as

Q(x(t);y(t)) = r(x(t);y(t))+γQ(x(t +1);y(t +1)); (3.23)

where γ is a prediction decay factor (0 < γ� 1) that makes the predicted rein-

forcement decay as the distance from the actual rewarded state increases. Now

the right-hand side of equation 3.23 can be used instead of r in equation 3.22 as

the desired prediction. This gives

∆W= α(r(t)+γp(t +1)� p(t))qvT
: (3.24)

3.4 Local linear models 51

This means that the system can handle dynamic problems with infrequent

reinforcement signals by maximizing the long-term reward function.

In one sense, this system is better suited for the use of TD-methods than the

systems mentioned in section 2.4.1 on page 17, since they have to use separate

subsystems to calculate the predicted reinforcement. With the algorithm sug-

gested here, this prediction is calculated by the same system as the response.

3.4 Local linear models

Global linear models (e.g. the prediction matrix memory) can of course not be

used for all problems. The number of dimensions required for a pure channel

representation would in general be far too high. But a global non-linear model

(e.g. a neural network) is in general not a solution. The number of parameters in

a global non-linear model would be far too high to be possible to estimate with a

low variance using a reasonable number of samples. The rescue in this situation

is that we generally do not need a global model at all.

Consider a system with a visual input consisting only of a binary4 image with

8�8 pixels (picture elements), which is indeed a limited visual sensor. There are

264 > 1019 possible different binary 8� 8 images. If they were displayed with a

frame rate of 50 frames per second, it would take about 10 billion years to view

them all, a period of time that is about the same as the age of the universe!

It is quite obvious that most of the possible events in a high-dimensional space

will never occur during the lifetime of a system. In fact, only a very small fraction

of the signal space will ever be visited by the signal. Furthermore, the environ-

ment that causes the input signals is limited by the dynamic of the outside world

and this dynamic put restrictions on how the input signal can move. This means

that the high-dimensional input signal will move on a low-dimensional subspace

(Landelius, 1997) and we do not have to search for a global model for the whole

signal space (at least if a proper representation is used).

The low dimensionality can intuitively be understood if we consider a signal

consisting of N frequency components. Such a signal can span at most a 2N-

dimensional space since each frequency component defines an ellipse and hence

spans at most a two-dimensional plane (Johansson, 1997) (see proof B.2.4 on

page 156). In the case of images, this is expressed in the assumption of local

one-dimensionality (Granlund, 1978; Granlund and Knutsson, 1995):

“The content within a window, measured at a sufficiently small band-

width, will as a rule have a single dominant component.”

4Binary, in this case, means that each pixel can only have two different values, e.g. black or

white.

52 Information representation

By this reasoning, it is sufficient to have a model or a set of models that cov-

ers the manifold where the signal exists (Granlund and Knutsson, 1990). If the

signal manifold is continuous in space and time (which is reasonable due to the

dynamic of the outside world), the low-dimensional manifold could locally be

approximated with a linear subspace (Bregler and Omohundro, 1994; Landelius,

1997).

Since we are dealing with learning systems, the local models should be adap-

tive. In this context, low-dimensional linear local models have several advantages.

First of all, the number of parameters in a low-dimensional linear model is low,

which reduces the number of samples needed for estimating the model compared

to a global model. This is necessary since the locality constraint limits the number

of available samples. Moreover, the locality reduces the spatial credit assignment

problem (section 2.7.2, page 35) since the adaptation of one local model will in

general not have any major effects on the other models (Baker and Farell, 1992).

How the local linear models should be chosen, i.e. according to what criteria

the models’ adaptation should be optimized, depends of course on the task. A

method for estimating local linear models for four different criteria is presented

in chapter 4.

3.5 Adaptive model distribution

In the previous section was argued that the signal distribution in a learning system

with high-dimensional input should be modelled with local adaptive models. This

raises the question of how to distribute these local models. The simplest way is,

of course, to divide the signal space into a number of regions (e.g. N-dimensional

boxes) and put an adaptive model in each region. Such an approach is, how-

ever, not very efficient since, as have been discussed above, most of the space

will be empty and, hence, most models will never be used. Moreover, with such

an approach, parts of the signal that could be modelled using one single model

would make use of several models due to the pre-defined subdivision. This would

cause each of these models to be estimated using a smaller number of samples

than would be the case if a single model was used and hence this would cause

an unnecessary uncertainty in the parameter estimation. Finally, the pre-defined

subdivision cannot be guaranteed to be fine enough in areas where the signal has

a complicated behaviour.

An obvious solution to this problem is to make the model distribution adap-

tive. First of all, such an approach would only put models where the signal really

exists. Furthermore, an adaptive model distribution makes it possible to distribute

models sparsely where the signal has a smooth behaviour and more densely where

it has not.

3.6 Experiments 53

An example of adaptive distribution of local linear models is given by Ritter

et al. (1989, 1992) who use a SOMF (Kohonen, 1982) (see section 2.5.2, page 27)

to distribute local linear models (Jacobian matrices) in a robot positioning task.

Other methods are discussed by Landelius (1997) who sugests linear or quadratic

models and Gaussian applicability funcitons organized in a tree structure (see also

Landelius et al., 1996). The applicability functions define the regions where the

local models are valid. In the system by Ritter et al., the applicability functions

are defined by a winner-take-all rule for the units in the SOFM (page 27).

Just as in the case of estimating the model parameters, the adaptive model

distribution is task dependent. If, for example, the goal of the system is to achieve

maximum reward, the models should be positioned where they are as useful as

possible for getting that reward and if the goal is maximum information transmis-

sion, the models should be positioned according to this goal. Hence, no general

rule can be given for how to adaptively distribute local models. One can only state

that the goal must be to optimize the same criteria as the local models are trying to

optimize together. This implies that the choice of models and the distribution of

them are dependent on each other. The simpler a model is, i.e. the less parameters

it has, the smaller the region will be where it is valid and, hence, the larger the

number of models required. This does not mean, however, that a small number of

more global complex models is as good as a large number of simpler and more

local models, even if the total number of parmeters is the same. As mentioned

above (section 3.4), the locality in the latter approach reduces the spatial credit

assignment problem and, hence, facilitates efficient learning.

3.6 Experiments

This chapter ends with two simple examples of reinforcement learning with dif-

ferent representations. The first one uses the channel representation described in

section 3.1 and the prediction matrix memory from section 3.3.1 for learning the

Q-function. The second example is a TD-method that uses local adaptive lin-

ear models both to represent the input-ouput function and to approximate the V -

function. This algorithm was presented at the ICANN’93 in Amsterdam (Borga,

1993).

The experiment is made up of a system that plays “badminton” with itself.

For simplicity, the problem is one-dimensional. The position of the shuttlecock is

represented by a variable x. The system can change the value of x by adding the

output value y to x. A small noise is also added to punish playing on the margin.

The reinforcement signal to the system is zero except upon failure when r =�1.

Failure is the case when x does not change sign (i.e. the shuttlecock does not pass

the net), or when jxj> 0:5 (i.e. the shuttlecock ends up outside the court).

54 Information representation

3.6.1 Q-learning with the prediction matrix memory

The position x is represented by 25 cos2-channels in the interval �0:6 < x < 0:6

and the ouput y is represented by 45 cos2-channels in the interval �1:1 < x < 1:1.

The channels have the shape defined in equation 3.2, illustrated in figure 3.1 on

page 41. An offset value of one was added to the reinforcement signal, i.e. r = 1

except upon failure when r = 0, since the prediction matrix memory must contain

positive values.

The prediction matrix memory was trained to learn the Q-function as defined

in equation 3.23 with the discount factor γ= 0:9. The matrix was updated accord-

ing to the update rule in equations 3.20 and 3.24. α was set to a constant value of

0:05.

The output channel vector q was generated according to equation 3.10. This

vector was then decoded into a scalar. As mentioned in section 2.4.1, stochastic

search methods are often used in reinforcement learning. Here, this is accom-

plished by adding Gaussian noise to the output. The variance σ was calculated

as

σ= maxf0; 0:1� (10� p)g (3.25)

which gives a high noise level when the system predicts a low Q-value and a low

noise level if the prediction is high. The value 10 is determined by the maximum

value of the Q-function for γ= 0:9 since ∑∞
i=0 γi = 10. The max operation is to

ensure that the variance does not get negative if the stochastic estimation occa-

sionally gives predictions higher than 10.

A typical run is illustrated to the left in figure 3.7. The graph shows the ac-

cumulated reward in a sliding window of 100 iterations. Note that the original

reinforcement signal (i.e. -1 for failure) was used. To the right, the contents of the

memory after convergence are illustrated. We see that the highest Q-value is pre-

dicted for the positions �0:2 and the corresponding outputs �0:4 approximately,

which is a reasonable solution.

3.6.2 TD-learning with local linear models

In this experiment, both the predictions p of future accumulated reward and the

actions y are linear functions of the input variable x. There is one pair of reinforce-

ment association vectors vi and one pair of action association vectors wi; i = f1;2g.

For each model i, the predicted reinforcement is calculated as

pi = vi
1x+ vi

2 (3.26)

and the output is calculated as

yi = N(µi
y;σy); (3.27)

3.6 Experiments 55

0 1000 2000 3000 4000 5000
−100

−80

−60

−40

−20

0

iterations

re
w

ar
d

input

o
u
tp

u
t

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−1

−0.5

0

0.5

1

Figure 3.7: Left: A typical run of the prediction matrix memory. The
graph shows the accumulated reward in a sliding window of 100 itera-

tions. Right: The prediction matrix memory after convergence. Black is

zero and white is the maximum value.

where

µi
y = wi

1x+wi
2: (3.28)

The system chooses the model c such that

pc = max
i
fmig; (3.29)

where

mi = N(pi
;σp) (3.30)

and generates the corresponding action yc.

The internal reinforcement signal at time t +1 is calculated as

r̂[t +1] = r[t +1]+γpmax[t; t +1]� pc[t; t]: (3.31)

This is in principle the same TD-method as the one used by Sutton (1984), except

that here there are two predictions at each time, one for each model. pmax[t; t +
1] is the maximum predicted reinforcement calculated using the reinforcement

association vector from time t and the input from time t + 1. If the system fails,

i.e. r =�1, then pmax[t; t +1] is set to zero. pc[t; t] is the prediction of the selected

model.

Learning is accomplished by changing the weights in the reinforcement as-

sociation vectors and the action association vectors. Only the vectors associated

with the chosen model are altered.

56 Information representation

The association vectors are updated according to the following rule:

wc[t +1] = wc[t]+αr̂(yc �µc
y)x (3.32)

and

vc[t +1] = vc[t]+βr̂x ; (3.33)

where c denotes the model choice, α and β are positive learning rate constants and

x =

�
x

1

�
:

In this experiment, noise is added to the output on two levels. First in the
selection of model and then in the generation of output signal. The noise levels
are controlled by σp and σy respectively, as shown in equations 3.27 and 3.30.

The variance parameters are calculated as

σp = maxf0; �0:1�maxfpigg (3.34)

and

σy = maxf0; �0:1� pcg: (3.35)

The first “max” in the two equations is to make sure that the variances do not be-

come negative. The negative signs are there because of the (relevant) predictions

being negative. In this way, the higher the prediction of reinforcement is, the more

precision there will be in the output.

The learning behaviour is illustrated to the left in figure 3.8. To the right, the

total input-output function is plotted. For each input value, the model with the

highest predicted reward has been used. The discrete step close to zero marks the

point in the input space where the system switches between the two models. The

optimal position for this point is of course zero.

One problem that can occur with this algorithm, and other similar algorithms,

is when both models prefer the same part of the input space. This means that

the two reinforcement prediction functions predict the same reinforcement for the

same inputs and, as a result, both models generate the same actions. This problem

can of course be solved if the teacher who generates the external reinforcement

signal knows approximately where the breakpoint should be and which model

should act on which side. The teacher could then punish the system for select-

ing the wrong model by giving negative reinforcement. In general, however, the

teacher does not know how to divide the problem. In that case, the teacher must

try to use a pedagogical reward as discussed in section 2.4.2 on page 20. The

teacher could for instance give less reward if the models try to cover the same part

of the input space and a higher reward when the models tend to cover different

parts of the space.

3.6 Experiments 57

0 1000 2000 3000 4000 5000
−100

−80

−60

−40

−20

0

iterations

re
w

ar
d

−0.6 −0.3 0 0.3 0.6

−1

−0.5

0

0.5

1

input

o
u
p
u
t

Figure 3.8: Left: A typical run of the TD-learning system with two local

models. The graph shows the accumulated reward in a sliding window of

100 iterations. Right: The total input-output function after convergence.

3.6.3 Discussion

If we compare the contents of the prediction matrix memory to the right in figure

3.7 and the combined function of the linear models in the TD-system plotted to

the right in figure 3.8, we see that the two systems implement approximately the

same function.

If we compare the learning behaviour (plotted to the left in figure 3.7 and

3.8), the prediction matrix memory appears to learn faster than the TD-method. It

should however be noted that each iteration of the prediction matrix memory has

a computational complexity of order O(Q�V), where Q and V are the number

of channels used for representing the input and output signals respectively. In this

experiment, we used Q = 25 and V = 45. A larger number of channels enhances

the performance when the system has converged but increases the required num-

ber of iterations until convergence as well as the computational complexity for

each iteration. The computational complexity of the second method is of order

O(N� (X +1)�Y) per iteration, where N is the number of local models (in this

case 2), X is the dimensionality of the input signal (in this case 1) and Y is the

dimensionality of the output signal (in this case 1).

The algorithms have not been optimized with respect to convergence time.

The convergence speed depends on the setting of the learning rate constants α
and β and the modulation of the variance parameters σp and σy. These param-

eters have only been tuned to constant values that work reasonably well. Better

results can be expected if the learning rates are made adaptive, as discussed in

section 2.3.2 on page 11.

58 Information representation

Chapter 4

Low-dimensional linear models

As we have seen in the previous chapter (in section 3.4), local low-dimensional

linear models is a good way of representing high-dimensional data in a learning

system. The linear models can be seen as basis vectors spanning a (local) sub-

space of the signal space. The signal can then be (approximately) described in

this new basis in terms of projections onto the new basis vectors. For signals with

high dimensionality, an iterative algorithm for finding this basis must not exhibit

a memory requirement nor a computational cost significantly exceeding O(d) per

iteration, where d is the dimensionality of the signal. Techniques involving matrix

multiplications (having memory requirements of order O(d2) and computational

costs of order O(d3)), quickly become infeasible when signal space dimensional-

ity increases.

The purpose of local models is dimensionality reduction which means throw-

ing away information that is not needed. Hence, the criterion for an appropriate

local model is dependent on the application. One criterion is to preserve as much

variance as possible given a certain dimensionality of the model. This is done by

projecting the data on the subspace of maximum data variation, i.e. the subspace

spanned by the largest principal components. This is known as principal compo-

nent analysis (PCA). There is a number of applications in signal processing where

principal components play an important role, for example image coding.

In applications where relations between two sets of data (e.g. process input

and output) are considered, PCA or other self-organizing algorithms for repre-

senting the two sets of data separately are not very useful since such methods

cannot separate useful information from noise. Consider, for example, two high-

dimensional signals that are described by their most significant principal com-

ponents. There is no reason to believe that these descriptions of the signals are

related in any way. In other words, the signal in the direction of maximum vari-

ance in one space may be totally independent of the signal in the direction of

60 Low-dimensional linear models

maximum variance in another space, even if there is a strong relation between the
signals. The reason for this is that there is no way of finding the relation between
two sets of data just by looking at one of the sets. Instead, the two signal spaces
must be considered together. One method for doing this is finding the subspaces
in the input and the output spaces for which the data covariation is maximized.
These subspaces turn out to be the ones accompanying the largest singular val-

ues of the between-sets covariance matrix (Landelius et al., 1995). A singular

value decomposition (SVD) of the between-sets covariance matrix corresponds to

partial least squares (PLS) (Wold et al., 1984; Höskuldsson, 1988).

In general, however, the input to a system comes from a set of different sensors

and it is evident that the range (or variance) of the signal values from a given

sensor is unrelated to the importance of the received information. The same line

of reasoning holds for the output which may consist of signals to a set of different

effectuators. In these cases, the covariances between signals are not relevant.

There may, for example, be one pair of directions in the two spaces that has a high

covariance due to high signal magnitude but has a high noise level, while another

pair of directions has an almost perfect correlation but a small signal magnitude

and therefore low covariance. Here, correlation between input and output signals

is a more appropriate target for analysis since this measure of signal relations is

invariant to the signal magnitudes. This approach leads to a canonical correlation

analysis (CCA) (Hotelling, 1936) of the two sets of signals.

Finally, when the goal is to predict a signal as well as possible in a least square

error sense, the basis must be chosen so that this error measure is minimized.

This corresponds to a low-rank approximation of multivariate linear regression

(MLR). This is also known as reduced rank regression (Izenman, 1975) or as

redundancy analysis (van den Wollenberg, 1977).

In general, these four different criteria for selecting basis vectors lead to four

different solutions. But, as we will see, the problems are related to each other

and can be formulated in very similar ways. An important problem which is

directly related to the situations discussed above is the generalized eigenprob-

lem or two-matrix eigenproblem (Bock, 1975; Golub and Loan, 1989; Stewart,

1976). In the next section, the generalized eigenproblem is described in some de-

tail and its relation to an energy function called the Rayleigh quotient is shown. It

is shown that the four important methods discussed above (principal component

analysis (PCA), partial least squares (PLS), canonical correlation analysis (CCA)

and multivariate linear regression (MLR)) emerge as solutions to special cases of

the generalized eigenproblem.

In section 4.7, an iterative O(d) algorithm that solves the generalized eigen-

problem by a gradient search on the Rayleigh quotient is presented. The solutions

are found in a successive order beginning with the largest eigenvalue and the cor-

4.1 The generalized eigenproblem 61

responding eigenvector. It is shown how to apply this algorithm in order to obtain
the required solutions in the special cases of PCA, PLS, CCA and MLR.

Throughout this chapter, the variables are assumed to be real valued and have
zero mean so that the covariance matrices can be defined as Cxx = E[xxT]. The
zero mean does not impose any limitations on the methods discussed since the
mean values can easily be estimated and stored by each local model.

The essence of this chapter has been submitted for publication (Borga et al.,
1997b).

4.1 The generalized eigenproblem

When dealing with many scientific and engineering problems, some version of the
generalized eigenproblem sometimes needs to be solved along the way:

Aê = λBê or B�1Aê = λê: (4.1)

(In the right-hand equation, B is supposed to be non-singular.) In mechanics,

the eigenvalues often correspond to modes of vibration. Here, however, the case

where the matrices A and B consist of components which are expectation values

from stochastic processes is considered. Furthermore, both matrices are symmet-

ric and, in addition, B is positive definite.

The generalized eigenproblem is closely related to the problem of finding the

extremum points (i.e. the points of zero derivatives) of a ratio of quadratic forms:

r =
wT Aw

wT Bw
; (4.2)

where both A and B are symmetric and B is positive definite. This ratio is known

as the Rayleigh quotient and its critical points correspond to the eigensystem of

the generalized eigenproblem. To see this, consider the gradient of r:

∂r

∂w
=

2

wT Bw
(Aw� rBw) = α(Aŵ� rBŵ); (4.3)

where α = α(w) is a positive scalar. Setting the gradient to 0 gives

Aŵ = rBŵ or B�1Aŵ = rŵ (4.4)

which is recognized as the generalized eigenproblem (equation 4.1). The solu-

tions ri and ŵi are the eigenvalues and eigenvectors respectively of the matrix

B�1A. This means that the extremum points of the Rayleigh quotient r(w) are

solutions to the corresponding generalized eigenproblem. The eigenvalues are

the extremum values of the quotient and the eigenvectors are the corresponding

62 Low-dimensional linear models

parameter vectors w of the quotient. A special case of the Rayleigh quotient is
Fisher’s linear discriminant function (Fisher, 1936) used in classification. In this
case, A is the between-class scatter matrix and B is the within-class scatter matrix

(see for example Duda and Hart, 1973).

−1 0 1

−1

0

1

w
1

w
2

 e
1

 e
2

r(w)

The Rayleigh quotient

−1 0 1

−1

0

1

 e
1

 e
2

→

→

→

←

w
1

w
2

The gradient (A w − r B w)

Figure 4.1: Left: The Rayleigh quotient r(w) between two matrices A

and B. The curve is plotted as rŵ. The eigenvectors of B�1A are marked
as reference. The corresponding eigenvalues are marked as the radii of the
two circles. Note that the quotient is invariant to the norm of w. Right:

The gradient of r. The arrows indicate the direction of the gradient and
the radii of the blobs correspond to the magnitude of the gradient.

As an illustration, the Rayleigh quotient is plotted to the left in figure 4.1 for
two matrices A and B:

A =

�
1 0
0 0:25

�
and B =

�
2 1
1 1

�
: (4.5)

The quotient is plotted as the radius in different directions ŵ. Note that the quo-

tient is invariant to the norm of w. The two eigenvalues are shown as circles with

their radii corresponding to the eigenvalues. The figure shows that the eigenvec-

tors e1 and e2 of the generalized eigenproblem coincide with the maximum and

minimum values of the Rayleigh quotient. To the right in the same figure, the

gradient of the Rayleigh quotient is illustrated as a function of the direction of w.

Note that the gradient is orthogonal to w (see equation 4.3). This means that a

small change of w in the direction of the gradient can be seen as a rotation of w.

4.1 The generalized eigenproblem 63

The arrows indicate the direction of this orientation and the radii of the blobs cor-
respond to the magnitude of the gradient. The figure shows that the directions of

zero gradient coincide with the eigenvectors and that the gradient points towards

the eigenvector corresponding to the largest eigenvalue.

If the eigenvalues ri are distinct1 (i.e. ri 6= r j for i 6= j), the different eigenvec-

tors are orthogonal in the metrics A and B, i.e.

ŵT
i Bŵ j =

(
0 for i 6= j

βi > 0 for i = j
and ŵT

i Aŵ j =

(
0 for i 6= j

riβi for i = j
(4.6)

(see proof B.3.1 on page 157). This means that the wis are linearly independent

(see proof B.3.2 on page 158). Since an n-dimensional space gives n eigenvectors

which are linearly independent, fw1; : : : ;wng constitutes a base and any w can

be expressed as a linear combination of the eigenvectors. Now, it can be proved

(see proof B.3.3 on page 158) that the function r is bounded by the largest and the

smallest eigenvalue, i.e.

rn � r � r1 (4.7)

which means that there exists a global maximum and that this maximum is r1.

To investigate if there are any other local maxima, we look at the second

derivative, or the Hessian H, of r for the solutions to the eigenproblem,

Hi =
∂2r

∂w2

����
w=ŵi

=
2

ŵT
i Bŵi

(A� riB) (4.8)

(see proof B.3.4 on page 159). The Hessian Hi have positive eigenvalues for i > 1,

i.e. there exist vectors w such that

wT Hiw > 0 8 i > 1 (4.9)

(see proof B.3.5 on page 159). This means that for all solutions to the eigenprob-

lem except for the largest root, there exists a direction in which r increases. In

other words, all extremum points of the function r are saddle points except for the

global minimum and maximum points. Since the two-dimensional example in fig-

ure 4.1 only has two eigenvalues, they correspond to the maximum and minimum

values of r.

In the following sections is shown that finding the directions of maximum

variance, maximum covariance, maximum correlation and minimum square error

can be seen as special cases of the generalized eigenproblem.

1The eigenvalues will be distinct in all practical applications since all real signals contain noise.

64 Low-dimensional linear models

4.2 Principal component analysis

Consider a set of random vectors x (signals) with a covariance matrix defined by

Cxx = E[xxT]: (4.10)

Suppose the goal is to find the direction of maximum variation in the signal distri-

bution. The direction of maximum variation means the direction ŵ such that the

linear combination x = xT ŵ possesses maximum variance. Hence, finding this

direction is equivalent to finding the maximum of

ρ = E[xx] = E[ŵT xxT ŵ] = ŵT E[xxT]ŵ =
wT Cxxw

wT w
: (4.11)

This is a special case of the Rayleigh quotient in equation 4.2 on page 61 with

A = Cxx and B = I: (4.12)

Since the covariance matrix is symmetric, it is possible to decompose it into

its eigenvalues and orthogonal eigenvectors as

Cxx = E[xxT] = ∑λi êiê
T
i ; (4.13)

where λi and êi are the eigenvalues and the orthogonal eigenvectors respectively.

Hence, the problem of maximizing the variance, ρ, can be seen as the problem of

finding the largest eigenvalue, λ1, and its corresponding eigenvector since

λ1 = êT
1 Cxxê1 = max

wT Cxxw

wT w
= maxρ: (4.14)

It is also worth noting that it is possible to find the direction and magnitude of

maximum data variation for the inverse of the covariance matrix. In this case, we

simply identify the matrices in eq. 4.2 on page 61 as A = I and B = Cxx.

The eigenvectors ei are also known as the principal components of the dis-

tribution of x. Principal component analysis (PCA) is an old tool in multivariate

data analysis. It was used already in 1901 (Pearson, 1901). The projection of data

onto the principal components is sometimes called the Hotelling transform after

Hotelling (1933) or Karhunen-Loéve transform (KLT) after Karhunen (1947) and

Loéve (1963). This transformation is as an orthogonal transformation that diago-

nalizes the covariance matrix.

PCA gives a data dependent set of basis vectors that is optimal in a statistical

mean square error sense. This was shown in equation 2.45 on page 33 for one

basis vector and the result can easily be generalized to a set of basis vectors by

the following reasoning: Given one basis vector, the best we can do is to choose

4.2 Principal component analysis 65

the maximal eigenvector of the covariance matrix. This basis vector describes the
signal completely in that direction. Hence, there is nothing more in that direction
to describe and the next basis vector should be chosen orthogonal to the first. Now
the same problem is faced again, but in a smaller space where the first principal
component of the signal is removed. So the best choice of the second basis vector
is a unit vector in the direction of the first principal component in this subspace
and that direction corresponds to the second eigenvector2 of the covariance matrix.
This process can be repeated for all basis vectors.

The KLT can be used for image coding (Torres and Kunt, 1996) since it is the
optimal transform coding in a mean square error sense. This is, however, not very
common. One reason for this is that the KLT is computationally more expensive
than the discrete cosine transform (DCT). Another reason is the need for transmis-

sion of the data dependent basis vectors. Besides that, in general the mean square

error is not a very good error measure for images since two images with a large

mean square distance can look very similar to a human observer. Another use for

PCA in multivariate statistical analysis is to find linear combinations of variables

where the variance is high. Here, it should be noted that PCA is dependent on

the units used for measuring. If the unit of one variable is changed, for example

from metres to feet, the orientations of the principal components may change. For

further details on PCA, see for example the overview by Jolliffe (1986).

When dealing with learning systems, it could be tempting to use PCA to find

local linear models to reduce the dimensionality of a high-dimensional input (and

output) space. The problem with this approach is that the best representation of

the input signal is in general not the least mean square error representation of that

signal. There may be components in the input signal that have high variances

that are totally irrelevant when it comes to generating responses and there may be

components with small variances that are very important. In other words, PCA

is not a good tool when analysing the relations between two sets of variables.

The need for simultaneous analysis of the input and output signals in learning

systems was indicated in the quotation from Brooks (1986) on page 8 and also in

the wheel-chair experiment (Held and Bossom, 1961; Mikaelian and Held, 1964)

mentioned on the same page.

2The somewhat informal notation “second eigenvector” refers to the eigenvector corresponding

to the second largest eigenvalue.

66 Low-dimensional linear models

4.3 Partial least squares

Now, consider two sets of random vectors x and y with the between-sets covari-

ance matrix defined by

Cxy = E[xyT]: (4.15)

Suppose, this time, that the goal is to find the two directions of maximal data

covariation, by which is meant the directions ŵx and ŵy such that the linear com-

binations x = xT ŵx and y = yT ŵy give maximum covariance. This means that the

following function should be maximized:

ρ = E[xy] = E[ŵT
x xyT ŵy] = ŵT

x E[xyT]ŵy =
wT

x Cxywyq
wT

x wxwT
y wy

: (4.16)

Note that, for each ρ, a corresponding value �ρ is obtained by rotating wx or wy

180�. For this reason, the maximum magnitude of ρ is obtained by finding the

largest positive value.

This function cannot be written as a Rayleigh quotient. However, the critical

points of this function coincide with the critical points of a Rayleigh quotient with

proper choices of A and B. To see this, we calculate the derivatives of this function

with respect to the vectors wx and wy (see proof B.3.6 on page 160):(∂ρ
∂wx

= 1
kwxk(Cxyŵy�ρŵx)

∂ρ
∂wy

= 1
kwyk(Cyxŵx�ρŵy):

(4.17)

Setting these expressions to zero and solving for wx and wy results in(
CxyCyxŵx = ρ2ŵx

CyxCxyŵy = ρ2ŵy:
(4.18)

This is exactly the same result as that given by the extremum points of r in equa-

tion 4.2 on page 61 if the matrices A and B and the vector w are chosen according

to:

A =

�
0 Cxy

Cyx 0

�
, B =

�
I 0

0 I

�
and w =

�
µxŵx

µyŵy

�
: (4.19)

This is easily verified by insertion of the expressions above into equation 4.4,

which results in 8<
:Cxyŵy = r

µx

µy
ŵx

Cyxŵx = r
µy

µx
ŵy

: (4.20)

4.4 Canonical correlation analysis 67

Solving for wx and wy gives equation 4.18 with r2 = ρ2. Hence, the problem of
finding the direction and magnitude of the largest data covariation can be seen as
maximizing a special case of the Rayleigh quotient (equation 4.2 on page 61) with
the appropriate choice of matrices.

The between-sets covariance matrix can be expanded by means of singular

value decomposition (SVD) where the two sets of vectors fêxig and fêyig are

mutually orthogonal:

Cxy =∑λi êxiê
T
yi (4.21)

where the positive numbers, λi, are referred to as the singular values. Since the

basis vectors are orthogonal, the problem of maximizing the quotient in equation

4.16 is equivalent to finding the largest singular value:

λ1 = êT
x1Cxyêy1 =max

wT
x Cxywyq

wT
x wxwT

y wy

=maxρ: (4.22)

The SVD of a between-sets covariance matrix is directly related to the method

of partial least squares (PLS). PLS was developed in econometrics in the 1960s by

Herman Wold. It is most commonly used for regression in the field of chemomet-

rics (Wold et al., 1984). For an overview, see for example Geladi and Kowalski

(1986) and Höskuldsson (1988). In PLS regression, the principal vectors corre-

sponding to the largest principal values are used as a new, lower dimensional,

basis for the signal. A regression of y onto x is then performed in this new basis.

As in the case of PCA, the scaling of the variables affects the solutions of

the PLS. The reason for this is the maximum covariance criteria; the covariance

between two variables is proportional to the variances of the variables. Therefore,

a scaling of the x variables to unit variance is sometimes suggested (Wold et al.,

1984). Such a solution can of course also amplify the noise which can cause

problems in the parameter estimation3.

4.4 Canonical correlation analysis

Again, consider two random variables x and y with zero mean and stemming from

a multi-normal distribution with the total covariance matrix

C=

�
Cxx Cxy

Cyx Cyy

�
= E

"�
x

y

��
x

y

�T
#

: (4.23)

3An example of such a problem has been reported from the paper industry (personal commu-

nication). In that case, the normalized data had to be filtered to reduce the amplified noise! The

filtering will likely introduce new artifacts.

68 Low-dimensional linear models

Now, suppose that the goal is to find the directions of maximum data correlation.
Consider the linear combinations x = xT ŵx and y = yT ŵy of the two variables
respectively. This means that the function to be maximized is

ρ =
E[xy]p

E[x2]E[y2]
=

E[ŵT
x xyT ŵy]q

E[ŵT
x xxT ŵx]E[ŵT

y yyT ŵy]

=
wT

x Cxywyq
wT

x CxxwxwT
y Cyywy

:

(4.24)

Also in this case, since ρ changes sign if wx or wy is rotated 180�, it is sufficient
to find the positive values.

Like equation 4.16, this function cannot be written as a Rayleigh quotient. But
also in this case, it can be shown that the critical points of this function coincide
with the critical points of a Rayleigh quotient with proper choices of A and B. The
partial derivatives of ρ with respect to wx and wy are (see proof B.3.7 on page 160)8><

>:
∂ρ

∂wx
= a

kwxk
�

Cxyŵy� ŵT
x Cxyŵy

ŵT
x Cxxŵx

Cxxŵx

�
∂ρ
∂wy

= a
kwyk

�
Cyxŵx� ŵT

y Cyxŵx

ŵT
y Cyyŵy

Cyyŵy

�
;

(4.25)

where a is a positive scalar. Setting the derivatives to zero gives the equation
system 8<

:Cxyŵy = ρλxCxxŵx

Cyxŵx = ρλyCyyŵy;

(4.26)

where

λx = λ�1
y =

s
ŵT

y Cyyŵy

ŵT
x Cxxŵx

: (4.27)

λx is the ratio between the standard deviation of y and the standard deviation of
x and vice versa. The λs can be interpreted as scaling factors between the linear
combinations. Rewriting equation system 4.26 gives(

C�1
xx CxyC�1

yy Cyxŵx = ρ2ŵx

C�1
yy CyxC�1

xx Cxyŵy = ρ2ŵy:
(4.28)

Hence, ŵx and ŵy are found as the eigenvectors of the matrices C�1
xx CxyC�1

yy Cyx

and C�1
yy CyxC�1

xx Cxy respectively. The corresponding eigenvalues ρ2 are the squared

4.4 Canonical correlation analysis 69

canonical correlations. The eigenvectors corresponding to the largest eigenvalue
ρ2

1 are the vectors ŵx1 and ŵy1 that maximize the correlation between the canoni-

cal variates x1 = xT ŵx1 and y1 = yT ŵy1.
Now, if

A =

�
0 Cxy

Cyx 0

�
; B =

�
Cxx 0

0 Cyy

�
and w =

�
wx

wy

�
=

�
µxŵx

µyŵy

�
(4.29)

equation 4.4 can be written as8<
:Cxyŵy = r

µx

µy
Cxxŵx

Cyxŵx = r
µy

µx
Cyyŵy;

(4.30)

which is recognized as equation 4.26 for ρλx = r
µx

µy
and ρλy = r

µy

µx
. Solving for

wx and wy in equation 4.30, gives equation 4.28 with r2 = ρ2. This shows that the
equations for the canonical correlations are obtained as the result of maximizing
the Rayleigh quotient (equation 4.2 on page 61).

Canonical correlation analysis was developed by Hotelling (1936). Some of
the results presented here can also be found in (Borga, 1995; Knutsson et al.,
1995; Borga et al., 1997a). Although being a standard tool in statistical analysis
(see for example Anderson, 1984), where canonical correlation has been used for
example in economics, medical studies, meteorology and even in classification of
malt whisky (Lapointe and Legendre, 1994) and wine (Montanarella et al., 1995),
it is surprisingly unknown in the fields of learning and signal processing. Some
exceptions are Becker (1996), Kay (1992), Fieguth et al. (1995), Das and Sen
(1994) and Li et al. (1997).

An important property of canonical correlations is that they are invariant with
respect to affine transformations of x and y. An affine transformation is given by
a translation of the origin followed by a linear transformation. The translation
of the origin of x or y has no effect on ρ since it leaves the covariance matrix C

unaffected. Invariance with respect to scalings of x and y follows directly from
equation 4.24. For invariance with respect to other linear transformations see
proof B.3.8 on page 161. Hence, in contrast to PLS, there is no need for normal-

ization of the variables in CCA.

Another important property is that the canonical correlations are uncorrelated

for different solutions, i.e.8><
>:

E[xx] = E[wT
xixxT wx j] = wT

xiCxxwx j = 0

E[yy] = E[wT
yiyyT wy j] = wT

yiCyywy j = 0

E[xy] = E[wT
xixyT wy j] = wT

xiCxywy j = 0

for i 6= j; (4.31)

according to equation 4.6.

70 Low-dimensional linear models

4.4.1 Relation to mutual information and ICA

As mentioned in section 2.5.3, there is a relation between correlation and mutual
information (equation 2.44). Since information is additive for statistically inde-

pendent variables (equation 2.33) and the canonical variates are uncorrelated, the

mutual information between x and y is the sum of mutual information between the

variates xi and yi if there are no higher order statistic dependencies than correlation

(second-order statistics). For Gaussian variables this means

I(x;y) =
1

2
log

�
1

∏i(1�ρ2
i)

�
=

1

2
∑

i

log

�
1

(1�ρ2
i)

�
(4.32)

using equation 2.44 on page 32. This is also more formally shown in proof B.3.9

on page 162. Kay (1992)4 has shown that this relation plus a constant holds for

all elliptically symmetrical distributions of the form

c f ((z� z̄)T C�1(z� z̄)): (4.33)

Minimizing mutual information between signal components is known as inde-

pendent component analysis (ICA) (see for example Comon, 1994). If there are

no higher order statistic dependencies than correlation (e. g. if the variables are

jointly Gaussian5), the canonical correlates xi, x j, i 6= j are independent compo-

nents since they are uncorrelated.

4.4.2 Relation to SNR

The correlation is strongly related to signal to noise ratio (SNR), which is a more

commonly used measure in signal processing. This relation is used later in this

thesis.

Consider a signal x and two noise signals η1 and η2 all having zero mean6

and all being uncorrelated with each other. Let S = E[x2] and Ni = E[η2
i] be

the energy of the signal and the noise signals respectively. Then the correlation

4There is a difference by a factor 0.5 between equation 4.32 and Kay’s equation, due to a typo-

graphical error.
5The definition of ICA requires that at most one of the source components is Gaussian (Comon,

1994).
6The assumption of zero mean is for convenience. A non-zero mean does not affect the SNR or

the correlation.

4.4 Canonical correlation analysis 71

between a(x+η1) and b(x+η2) is

ρ =
E [a(x+η1)b(x+η2)]p

E [a2(x+η1)2]E [b2(x+η2)2]

=
E
�
x2
�q�

E [x2]+E
�
η2

1

���
E [x2]+E

�
η2

2

��
=

Sp
(S+N1)(S+N2)

:

(4.34)

Note that the amplification factors a and b do not affect the correlation or the SNR.

Equal noise energies

In the special case where the noise energies are equal, i.e.
N1 = N2 = N, equation 4.34 can be written as

ρ =
S

S+N
: (4.35)

This means that the SNR can be written as

S

N
=

ρ
1�ρ

: (4.36)

Here, it should be noted that the noise affects the signal twice, so this relation
between SNR and correlation is perhaps not so intuitive. This relation is illustrated
in figure 4.2 (top).

Correlation between a signal and the corrupted signal

Another special case is when N1 = 0 and N2 = N. Then, the correlation between
a signal and a noise-corrupted version of that signal is

ρ =
Sp

S(S+N)
: (4.37)

In this case, the relation between SNR and correlation is

S

N
=

ρ2

1�ρ2
: (4.38)

This relation between correlation and SNR is illustrated in figure 4.2 (bottom).

72 Low-dimensional linear models

0 0.2 0.4 0.6 0.8 1
−50

−25

0

25

50

Correlation

S
N

R
 (

d
B

)

0 0.2 0.4 0.6 0.8 1
−50

−25

0

25

50

Correlation

S
N

R
 (

d
B

)

Figure 4.2: Top: The relation between correlation and SNR for two sig-

nals each corrupted by uncorrelated noise. Both noise signals have the

same energy. Bottom: The relation between correlation and SNR. The

correlation is measured between a signal and a noise-corrupted version of

that signal.

4.5 Multivariate linear regression 73

4.5 Multivariate linear regression

Again, consider two random variables x and y with zero mean and stemming from
a multi-normal distribution with covariance as in equation 4.23. In this case, the

goal is to minimize the square error

ε2 = E[ky�βxT ŵxŵyk2]

= E[yT y�2βŵT
x xyT ŵy +β2ŵT

x xxT ŵx]

= E[yT y]�2βŵT
x Cxyŵy +β2ŵT

x Cxxŵx;

(4.39)

i.e. a rank-one approximation of the MLR of y onto x based on minimum square

error. The problem is to find not only the regression coefficient β, but also the

optimal basis ŵx and ŵy. To get an expression for β, we calculate the derivative

∂ε2

∂β
= 2

�
βŵT

x Cxxŵx� ŵT
x Cxyŵy

�
: (4.40)

Setting the derivative equal to zero gives

β =
ŵT

x Cxyŵy

ŵT
x Cxxŵx

: (4.41)

By inserting this expression into equation 4.39 we get

ε2 = E[yT y]� (ŵT
x Cxyŵy)

2

ŵT
x Cxxŵx

: (4.42)

Since ε2 cannot be negative and the left term is independent of the parameters,

we can minimize ε2 by maximizing the quotient to the right in equation 4.42, i.e.

maximizing the quotient

ρ =
ŵT

x Cxyŵyp
ŵT

x Cxxŵx

=
wT

x Cxywyq
wT

x CxxwxwT
y wy

: (4.43)

Note that if wx and wy minimize ε2, the negation of one or both of these vectors

will give the same minimum. Hence, it is sufficient to maximize the positive root.

Like in the two previous cases, this function cannot be written as a Rayleigh

quotient, but its critical points coincide with the critical points of a Rayleigh quo-

tient with proper choices of A and B. The partial derivatives of ρ with respect to

wx and wy are (see proof B.3.10 on page 163)8<
:

∂ρ
∂wx

= a
kwxk (Cxyŵy�βCxxŵx)

∂ρ
∂wy

= a
kwxk

�
Cyxŵx� ρ2

β ŵy

�
:

(4.44)

74 Low-dimensional linear models

Setting the derivatives to zero gives the equation system8<
:

Cxyŵy = βCxxŵx

Cyxŵx =
ρ2

β ŵy;

(4.45)

which gives (
C�1

xx CxyCyxŵx = ρ2ŵx

CyxC�1
xx Cxyŵy = ρ2ŵy:

(4.46)

Now, if we let

A=

�
0 Cxy

Cyx 0

�
; B=

�
Cxx 0

0 I

�
and w=

�
wx

wy

�
=

�
µxŵx

µyŵy

�
; (4.47)

equation 4.4 can be written as8<
:Cxyŵy = r

µx

µy
Cxxŵx

Cyxŵx = r
µy

µx
ŵy;

(4.48)

which is recognized as equation 4.45 for β= r
µx

µy
and ρ2

β = r
µy

µx
. Solving equation

4.48 for wx and wy gives equation 4.46 with r2= ρ2. This shows that the minimum
square error in equation 4.39 is found as a result of maximizing the Rayleigh
quotient in equation 4.2 on page 61 for the proper choice of matrices A and B and
regression coefficient β.

So far, the first pair of eigenvectors wx1 and wy1, i.e. a rank-one solution, has

been discussed. Intuitively, a rank N regression can be expected to be optimized

(in a mean square error sense) if the N first pairs of eigenvectors are used, i.e.

ε2 = E

"
ky�

N

∑
i=1

βiŵ
T
xixŵyik2

#
(4.49)

is minimized if wxi and wyi are the solutions to equation 4.46 corresponding to the

N largest eigenvalues. To see that this really is the case, note that the eigenvec-

tors wyi in Y are orthogonal since CyxC�1
xx Cxy in equation 4.46 is symmetric. The

orthogonality of the wys is explained by the Cartesian separability of the square

error; when the error in one direction is minimized, no more can be done in that

direction to reduce the error. This means that the minimization of ε2 in equation

4.49 can be seen as N separate problems that can be solved consecutively begin-

ning with the first solution that minimizes equation 4.39. When the first solution

is found, the next solution can be searched for in the subspace orthogonal to wy1.

4.6 Comparisons between PCA, PLS, CCA and MLR 75

A B

PCA Cxx I

PLS

�
0 Cxy

Cyx 0

� �
I 0

0 I

�

CCA

�
0 Cxy

Cyx 0

� �
Cxx 0

0 Cyy

�

MLR

�
0 Cxy

Cyx 0

� �
Cxx 0

0 I

�

Table 4.1: The matrices A and B for PCA, PLS, CCA and MLR.

Now since fwyig is orthogonal, the next solution is the second pair of eigenvec-

tors and so on. Since fwyig is orthogonal, the solutions are not unique; any set of

vectors spanning the same subspace in Y can be used to minimize ε2 in equation

4.49 but, of course, with other wxis and βs.

If all solutions to the eigenproblem in equation 4.46 and the corresponding βis

are used, a solution for multivariate linear regression (MLR), also known as the

Wiener filter, is obtained. The mean square sum of the eigenvalues, i.e.

∑
i

ρ2
i =dim(Y) = tr(CyxC�1

xx Cxy)=dim(Y)

is known as the redundancy index (Stewart and Love, 1968).

It should be noted that the regression coefficient β defined in equation 4.41 is

valid for any choice of ŵx and ŵy. In particular, if we use the directions of maxi-

mum variance, β is the regression coefficient for principal components regression

(PCR). For the directions of maximum covariance, β is the regression coefficient

for PLS regression.

4.6 Comparisons between PCA, PLS, CCA and MLR

The similarities and differences between the four methods can be seen by com-

paring the matrices A and B in the generalized eigenproblem (equation 4.1 on

page 61). The matrices are listed in table 4.1.

MLR differs from the other three problems in that it is formulated as a mean

square error problem, while the other three methods are formulated as maximi-

76 Low-dimensional linear models

sation problems. Reduced rank multivariate linear regression can, for example,
be used to increase the stability of the predictors when there are more parameters
than observations, when the relation is known to be of low rank or, maybe most
importantly, when a full rank solution is unobtainable due to computational costs.
The regression coefficients can of course also be used for regression in the first
three cases. In the case of PCA, the idea is to separately reduce the dimensional-

ity of the X and Y spaces and to do a regression of the first principal components

of Y on the first principal components of X . This method is known as principal

components regression. The obvious disadvantage here is that there is no reason

to believe that the principal components of X are related to the principal compo-

nents of Y . To avoid this problem, PLS regression is sometimes used. Clearly,

this choice of basis is better than PCA for regression purposes since directions of

high covariance are selected, which means that a linear relation is easier to find.

However, neither of these solutions results in minimum least squares error. This

is only obtained using the directions corresponding to the MLR problem.

It is not only the MLR that can be formulated as a mean square error prob-

lem. van der Burg (1988) formulated CCA as a mean square error minimization

problem:

minimize ε2 = E

"
N

∑
i=1:

(xT ŵxi�yT ŵyi)
2

#
; (4.50)

where N is the rank of the solution. In this way, CCA can be seen as a supervised

learning method as discussed in section 2.6.

PCA differs from the other three methods in that it only concerns one set of

variables while the other three concern relations between two sets of variables.

The difference between PLS, CCA and MLR can be seen by comparing the matri-

ces in the corresponding eigenproblems (see table 4.1). In CCA, the between-sets

covariance matrices are normalized with respect to the within-set covariances in

both the x and the y spaces. In MLR, the normalization is done only with respect

to the x space covariance while the y space, where the square error is defined, is

left unchanged. In PLS, no normalization is done. Hence, these three cases can

be seen as the same problem, covariance maximization, where the variables have

been subjected to different, data dependent, scaling.

The main difference between CCA and the other three methods is that CCA

is closely related to mutual information as described in section 4.4.1 and, hence,

can easily be motivated in information theoretical terms. Because of this relation,

it is a bit surprising that canonical correlation seems to be rather unknown in

the signal processing, learning and neural networks societies. As an example,

a search for “neural network(s)” together with “canonical correlation(s)” in the

SciSearch Database of the Institute for Scientific Information, Philadelphia, gave

4.6 Comparisons between PCA, PLS, CCA and MLR 77

CCA

X

Y

MLR PLS PCA

Figure 4.3: Examples of eigenvectors using CCA, MLR, PLS and PCA
on the same sets of data.

3 hits. A corresponding search for “partial least square(s)” gave 103 hits, for
“linear regression” 212 hits and for “principal component(s)” 287 hits7. The same
test with “signal processing” instead of “neural networks” gave 2, 5, 18 and 31 hits
respectively. This result does not, of course, mean that all articles that matched
“principal component(s)” presented learning methods based on PCA. But it may
indicate the difference in interest in, or awareness of, the different methods within
these fields of research.

To see how these four different special cases of the generalized eigenproblem
may differ, the solutions for the same data are plotted in figure 4.3. The data are
two-dimensional in X and Y and randomly distributed with zero mean. The top

row shows the eigenvectors in X for the CCA, MLR, PLS and PCA respectively.

The bottom row shows the solutions in Y . Note that all solutions except the two

solutions for CCA and the X -solution for MLR are orthogonal. Figure 4.4 shows

the correlation, mean square error, covariance and variance of the data projected

onto the first eigenvectors for each method. The figure shows that: the correlation

is maximized for the CCA solution; the mean square error is minimized for the

MLR solution; the covariance is maximized for the PLS solution; the variance is

maximized for the PCA solution.

7The search was made on November 4, 1997, through the Norwegian BIBSYS library system

(http://www.bibsys.no). The “free text” field was used which performs a search in the title,

abstract and keywords.

78 Low-dimensional linear models

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
corr

C
C

A

M
L

R

P
L

S

P
C

A

0

1

2

3

4

5

6

7

8

9

10
mse

C
C

A

M
L

R

P
L

S

P
C

A
0

0.2

0.4

0.6

0.8

1

1.2

1.4
cov

C
C

A

M
L

R

P
L

S

P
C

A

0

0.5

1

1.5

2

2.5

3
var

C
C

A

M
L

R

P
L

S

P
C

A

Figure 4.4: The correlation, mean square error, covariance and variance
when using the first pair of vectors for each method. The correlation is
maximized for the CCA solution. The mean square error is minimized
for the MLR solution. The covariance is maximized for the PLS solution.
The variance is maximized for the PCA solution. (See section 4.6)

4.7 Gradient search on the Rayleigh quotient

In this section is shown that the solutions to the generalized eigenproblem can
be found and, hence, PCA, PLS, CCA or MLR can be performed by a gradient
search on the Rayleigh quotient.

Finding the largest eigenvalue

In the previous section was shown that the only stable critical point of the Rayleigh
quotient is the global maximum (equation 4.9 on page 63). This means that it
should be possible to find the largest eigenvalue of the generalized eigenproblem
and its corresponding eigenvector by performing a gradient search on the Rayleigh
quotient (equation 4.2 on page 61). This can be done by using an iterative algo-

4.7 Gradient search on the Rayleigh quotient 79

rithm:

w(t +1) = w(t)+∆w(t); (4.51)

where the update vector ∆w, on average, lies in the direction of the gradient:

E[∆w] = β
∂r

∂w
= α(Aŵ� rBŵ); (4.52)

where α and β are positive numbers. α is the gain controlling how far, in the
direction of the gradient, the vector estimate is updated at each iteration. This
gain could be constant as well as data or time dependent, as discussed in section
2.3.2.

In all four cases treated here, A has got at least one positive eigenvalue, i.e.
there exists an r > 0. An update rule such that

E[∆w] = α(Aŵ�Bw) (4.53)

can then be used to find the positive eigenvalues. Here, the length of the vector
represents the corresponding eigenvalue, i.e. kwk = r. To see this, consider a
choise of w that gives r < 0. Then wT ∆w < 0 since wT Aw < 0 and wT Bw � 0.
This means that kwk will decrease until r becomes positive.

The function Aŵ�Bw is illustrated in figure 4.5 together with the Rayleigh
quotient plotted to the left in figure 4.1 on page 62.

Finding successive eigenvalues

Since the learning rule defined in equation 4.52 maximizes the Rayleigh quotient
in equation 4.2 on page 61, it will find the largest eigenvalue λ1 and a correspond-

ing eigenvector ŵ1 =�ê1 of equation 4.1 on page 61. The question that naturally

arises is if, and how, the algorithm can be modified to find the successive eigen-

values and vectors, i.e. the successive solutions to the eigenvalue equation 4.1.

Let G denote the n�n matrix B�1A. Then the n equations for the n eigenval-

ues solving the eigenproblem in equation 4.1 on page 61 can be written as

GE = ED) G = EDE�1 =∑λiêif
T
i ; (4.54)

where the eigenvalues and vectors constitute the matrices D and E respectively:

D =

2
64λ1 0

. . .

0 λn

3
75 ; E =

2
4 j j

ê1 � � � ên

j j

3
5 ; E�1 =

2
64� fT

1 �
...

� fT
n �

3
75 : (4.55)

80 Low-dimensional linear models

−1 0 1

−1

0

1

w
1

w
2

r(w)

The gradient (A w − B w) ^

Figure 4.5: The function Aŵ�Bw, for the same matrices A and B as
in figure 4.1, plotted for different w. The Rayleigh quotient is plotted as
reference.

The vectors, fi, appearing in the rows of the inverse of the matrix containing the
eigenvectors are the dual vectors of the eigenvectors êi, which means that

fT
i ê j = δi j: (4.56)

ffig are also called the left eigenvectors of G and fêig and ff̂ig are said to be
biorthogonal. Remember (from equation 4.6 on page 63) that the eigenvectors êi

are both A and B orthogonal, i.e.

êT
i Aê j = 0 and êT

i Bê j = 0 for i 6= j: (4.57)

Hence, the dual vectors fi possessing the property in equation 4.56 can be found
by choosing them according to:

fi =
Bêi

êT
i Bêi

: (4.58)

Now, if ê1 is the eigenvector corresponding to the largest eigenvalue of G, the new
matrix

H=G�λ1ê1fT
1 (4.59)

4.7 Gradient search on the Rayleigh quotient 81

has the same eigenvectors and eigenvalues as G except for the eigenvalue corre-

sponding to ê1, which now becomes 0 (see proof B.3.11 on page 164). This means

that the eigenvector corresponding to the largest eigenvalue of H is the same as

the one corresponding to the second largest eigenvalue of G.

Since the algorithm starts by finding the vector ŵ1 = ê1, it is only necessary to

estimate the dual vector f1 in order to subtract the correct outer product from G and

remove its largest eigenvalue. In our case, this is a little bit tricky since G is not

generated directly. Instead, its two components A and B must be modified in order

to produce the desired subtraction. Hence, we want two modified components, A
0

and B
0

, with the following property:

B
0�1A

0

= B�1A�λ1ê1fT
1 : (4.60)

A simple solution is obtained if only one of the matrices is modified and the other

matrix is kept fixed:

B
0

= B and A
0

= A�λ1Bê1fT
1 : (4.61)

This modification can be accomplished by estimating a vector u1 = λ1Bê1 = Bw1

iteratively as:

u1(t +1) = u1(t)+∆u1(t) (4.62)

where

E[∆u1] = α (rBŵ1�u1) : (4.63)

Once this estimate has converged, u1 = λ1Bê1 can be used to express the outer

product in equation 4.61:

λ1Bê1fT
1 =

λ1Bê1êT
1 BT

êT
1 BêT

1

=
u1uT

1

êT
1 u1

: (4.64)

Now A0 can be estimated and, hence, a modified version of the learning algo-

rithm in equation 4.52 which finds the second eigenvalue and the corresponding

eigenvector to the generalized eigenproblem is obtained:

E[∆w] = α
�

A
0

ŵ� rBŵ
�
= α

��
A� u1uT

1

ŵT
1 u1

�
ŵ� rBŵ

�
: (4.65)

The vector w1 is the solution first produced by the algorithm, i.e. the largest eigen-

value and the corresponding eigenvector.

This scheme can of course be repeated in order to find the third eigenvalue by

subtracting the second solution in the same way and so on. Note that this method

does not put any demands on the range of B in contrast to exact solutions involving

matrix inversion.

In the following four sub-sections is shown how this iterative algorithm can

be applied to the four important problems described in the previous section.

82 Low-dimensional linear models

4.7.1 PCA

Finding the largest principal component

The direction of maximum data variation can be found by a stochastic gradient
search according to equation 4.53 with A and B defined according to equation
4.12:

A = Cxx and B = I: (4.12)

This leads to an unsupervised Hebbian learning algorithm that finds both the di-

rection of maximum data variation and the variance of the data in that direction:

E[∆w] = γ
∂ρ
∂w

= α (Cxxŵ�w) = α E[xxT ŵ�w]: (4.66)

The update rule for this algorithm is given by

∆w = α (xxT ŵ�w); (4.67)

where the length of the vector represents the estimated variance, i.e. kwk = ρ.

(Note that ρ in this case is always positive.)

Note that this algorithm finds both the direction of maximum data variation as

well as how much the data vary along that direction. Often algorithms for PCA

only find the direction of maximum data variation. If one is also interested in the

variation along this direction, another algorithm needs to be employed. This is the

case for the well-known PCA algorithm presented by Oja and Karhunen (1985).

Finding successive principal components

In order to find successive principal components, recall that A = Cxx and B = I.

Hence the matrix G = B�1A = Cxx is symmetric and has orthogonal eigenvectors.

This means that the dual vectors and the eigenvectors become indistinguishable

and that no other vector than w itself needs to be estimated. The outer product in

equation 4.61 then becomes:

λ1Bê1fT
1 = λ1Iê1êT

1 = w1ŵT
1 : (4.68)

This means that the modified learning rule for finding the second eigenvalue can

be written as

E[∆w] = α
�

A
0

ŵ�Bw
�
= α

�
(Cxx�w1ŵT

1)ŵ�w
�
: (4.69)

A stochastic approximation of this rule is achieved the vector w is updated by

∆w = α
�
(xxT �w1ŵT

1)ŵ�w
�

(4.70)

4.7 Gradient search on the Rayleigh quotient 83

at each time step.
As mentioned in section 4.2, it is possible to perform a PCA on the inverse of

the covariance matrix by choosing A = I and B = Cxx. The learning rule associ-

ated with this behaviour then becomes:

∆w = α (ŵ�xxT w): (4.71)

4.7.2 PLS

Finding the largest singular value

If the aim is to find the directions of maximum data covariance, the matrices A

and B are defined according to equation 4.19:

A =

�
0 Cxy

Cyx 0

�
, B =

�
I 0

0 I

�
and w =

�
µxŵx

µyŵy

�
: (4.19)

Since w on average should be updated in the direction of the gradient, the update

rule in equation 4.53 gives:

E[∆w] = γ
∂r

∂w
= α

��
0 Cxy

Cyx 0

�
ŵ� r

�
I 0

0 I

�
ŵ

�
: (4.72)

This behaviour is accomplished if at each time step, the vector w is updated with

∆w = α
��

0 xyT

yxT 0

�
ŵ�w

�
; (4.73)

where the length of the vector at convergence represents the covariance, i.e. kwk=
r = ρ. This can be done since it is sufficient to search for positive values of ρ.

Finding successive singular values

Also in this case, the special structure of the A and B matrices simplifies the pro-

cedure of finding the subsequent directions with maximum data covariance. The

compound matrix G = B�1A = A is symmetric and has orthogonal eigenvectors,

which are identical to their dual vectors. The outer product for modification of the

matrix A in equation 4.61 is identical to the one presented in the previous section:

λ1Bê1fT
1 = λ1

�
I 0

0 I

�
ê1êT

1 = w1ŵT
1 : (4.74)

A modified learning rule for finding the second eigenvalue can thus be written as

E[∆w] = α
�

A
0

ŵ�Bw
�
= α

���
0 Cxy

Cyx 0

�
�w1ŵT

1

�
ŵ�

�
I 0

0 I

�
w

�
:

(4.75)

84 Low-dimensional linear models

A stochastic approximation of this rule is achieved if the vector w is updated at
each time step by

∆w = α
���

0 xyT

yxT 0

�
�w1ŵT

1

�
ŵ�w

�
: (4.76)

4.7.3 CCA

Finding the largest canonical correlation

Again, the algorithm in equation 4.53 for solving the generalized eigenproblem
can be used for the stochastic gradient search. With the matrices A and B and the
vector w as in equation 4.29:

A =

�
0 Cxy

Cyx 0

�
; B =

�
Cxx 0

0 Cyy

�
and w =

�
wx

wy

�
=

�
µxŵx

µyŵy

�
(4.29)

the update direction is:

E[∆w] = γ
∂r

w
= α

��
0 Cxy

Cyx 0

�
ŵ� r

�
Cxx 0

0 Cyy

�
ŵ

�
: (4.77)

This behaviour is accomplished if at each time step the vector w is updated with

∆w = α
��

0 xyT

yxT 0

�
ŵ�

�
xxT 0

0 yyT

�
w

�
: (4.78)

Since kwk = r = ρ when the algorithm converges, the length of the vector repre-

sents the correlation between the variates.

Finding successive canonical correlations

In the two previous cases it was easy to cancel out an eigenvalue because the

matrix G was symmetric. This is not the case for canonical correlation. In this

case

G = B�1A =

�
C�1

xx 0

0 C�1
yy

��
0 Cxy

Cyx 0

�
=

�
0 C�1

xx Cxy

C�1
yy Cyx 0

�
: (4.79)

Because of this, it is necessary to estimate the dual vector f1 corresponding to the

eigenvector ê1, or rather the vector u1 = λ1Bê1 as described in equation 4.63:

E[∆u1] = α (Bw1�u1) = α
��

Cxx 0

0 Cyy

�
w1�u1

�
: (4.80)

4.7 Gradient search on the Rayleigh quotient 85

A stochastic approximation of this rule is given by

∆u1 = α
��

xxT 0

0 yyT

�
w1�u1

�
: (4.81)

With this estimate, the outer product in equation 4.61 can be used to modify the
matrix A:

A
0

= A�λ1Bê1fT
1 = A� u1uT

1

ŵT
1 u1

: (4.82)

A modified version of the learning algorithm in equation 4.78 which finds
the second largest canonical correlation and its corresponding directions can be
written on the following form:

E[∆w] = α
�

A
0

ŵ�Bw
�
= α

���
0 Cxy

Cyx 0

�
� u1uT

1

ŵT
1 u1

�
ŵ�

�
Cxx 0

0 Cyy

�
w

�
:

(4.83)

Again to get a stochastic approximation of this rule, the update at each time step
is performed according to:

∆w = α
���

0 xyT

yxT 0

�
� u1uT

1

ŵT
1 u1

�
ŵ�

�
xxT 0

0 yyT

�
w

�
: (4.84)

Note that this algorithm simultaneously finds both the directions of canonical
correlations and the canonical correlations ρi in contrast to the algorithm proposed
by Kay (1992), which only finds the directions.

4.7.4 MLR

Finding the directions for minimum square error

Also here, the algorithm in equation 4.53 can be used for a stochastic gradient
search. With the A, B and w according to equation 4.47:

A =

�
0 Cxy

Cyx 0

�
; B =

�
Cxx 0

0 I

�
and w =

�
wx

wy

�
=

�
µxŵx

µyŵy

�
; (4.47)

the update direction is:

E[∆w] = γ
∂r

∂w
= α

��
0 Cxy

Cyx 0

�
ŵ� r

�
Cxx 0

0 I

�
ŵ

�
: (4.85)

This behaviour is accomplished if the vector w at each time step is updated with

∆w = α
��

0 xyT

yxT 0

�
ŵ�

�
xxT 0

0 I

�
w

�
: (4.86)

Since kwk = r = ρ when the algorithm converges, the regression coefficient is
obtained as β = kwk µx

µy
.

86 Low-dimensional linear models

Finding successive directions for minimum square error

Also in this case, the dual vectors must be used to cancel out the detected eigen-

values. The non-symmetric matrix G is

G = B�1A =

�
C�1

xx 0

0 I

��
0 Cxy

Cyx 0

�
=

�
0 C�1

xx Cxy

Cyx 0

�
: (4.87)

Again, the vector u1 = λ1Bê1 is estimated as described in equation 4.63:

E[∆u1] = α (Bw1�u1) = α
��

Cxx 0

0 I

�
w1�u1

�
: (4.88)

A stochastic approximation for this rule is given by

∆u1 = α
��

xxT 0

0 I

�
w1�u1

�
: (4.89)

With this estimate, the outer product in equation 4.61 can be used to modify the

matrix A:

A
0

= A�λ1Bê1fT
1 = A� u1uT

1

ŵT
1 u1

: (4.90)

A modified version of the learning algorithm in equation 4.86 which finds the

successive directions of minimum square error and their corresponding regression

coefficient can be written on the following form:

E[∆w] = α
�

A
0

ŵ�Bw
�
= α

���
0 Cxy

Cyx 0

�
� u1uT

1

ŵT
1 u1

�
ŵ�

�
Cxx 0

0 I

�
w

�
:

(4.91)

Again, to get a stochastic approximation of this rule, the update at each time step

is performed according to:

∆w = α
���

0 xyT

yxT 0

�
� u1uT

1

ŵT
1 u1

�
ŵ�

�
xxT 0

0 I

�
w

�
: (4.92)

As mentioned earlier, the wys are orthogonal in this case. This means that

this method can be used for successively building up a low-rank approximation of

MLR by adding a sufficient number of solutions, i.e.

ỹ =
N

∑
i=1

βix
T ŵxiŵyi; (4.93)

where ỹ is the estimated y and N is the rank.

4.8 Experiments 87

4.8 Experiments

The memory requirement as well as the computational cost per iteration of the
presented algorithm is of order O(Nd), where N is the number of estimated mod-

els, i.e. the rank of the solution, and d is the dimensionality of the signal. This

enables experiments in signal spaces having dimensionalities which would be im-

possible to handle using traditional techniques involving matrix multiplications

(having memory requirements of order O(d2) and computational costs of order

O(d3)).
This section presents some experiments using the algorithm for analysis of

stochastic processes. First, the algorithm is employed to perform PCA, PLS,

CCA, and MLR. Here, the dimensionality of the signal space is kept reasonably

low in order to make a comparison with the performance of an optimal (in the

sense of maximum likelihood (ML)) deterministic solution which is calculated

for each iteration, based on the data accumulated so far.

In the final experiment, the algorithm is applied to a process in a high-dimen-

sional (1,000 dimensions) signal space. In this case, the update factor is made

data dependent and the output from the algorithm is post-filtered in order to meet

requirements of quick convergence together with algorithm robustness.

The errors in magnitude and angle were calculated relative the correct answer

wc. The same error measures were used for the output from the algorithm as well

as for the ML estimate:

εm(w) = kwck�kwk (4.94)

εa(w) = arccos(ŵT ŵc): (4.95)

4.8.1 Comparisons to optimal solutions

The test data for these four experiments were generated from a 30-dimensional

Gaussian distribution such that the eigenvalues of the generalized eigenproblem

decreased exponentially from 0.9:

λi = 0:9

�
2

3

�i�1

:

The two largest eigenvalues (0.9 and 0.6) and the corresponding eigenvectors

were simultaneously searched for. In the PLS, CCA and MLR experiments, the

dimensionalities of the signal vectors belonging to the x and y parts of the signal

were 20 and 10 respectively.

The average angular and magnitude errors were calculated based on 10 dif-

ferent runs. This computation was made for each iteration, both for the algorithm

88 Low-dimensional linear models

2000 4000 6000 8000 10000
0

π/4

π/2

PCA: Mean angular error for w
1

2000 4000 6000 8000 10000
0

π/4

π/2

PCA: Mean angular error for w
2

2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

PCA: Mean norm error for w
1

2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

PCA: Mean norm error for w
2

Figure 4.6: Results for the PCA case.

4.8 Experiments 89

2000 4000 6000 8000 10000
0

π/4

π/2

PLS: Mean angular error for w
1

2000 4000 6000 8000 10000
0

π/4

π/2

PLS: Mean angular error for w
2

2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

PLS: Mean norm error for w
1

2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

PLS: Mean norm error for w
2

Figure 4.7: Results for the PLS case.

90 Low-dimensional linear models

2000 4000 6000 8000 10000
0

π/4

π/2

CCA: Mean angular error for w
1

2000 4000 6000 8000 10000
0

π/4

π/2

CCA: Mean angular error for w
2

2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

CCA: Mean norm error for w
1

2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

CCA: Mean norm error for w
2

Figure 4.8: Results for the CCA case.

4.8 Experiments 91

2000 4000 6000 8000 10000
0

π/4

π/2

MLR: Mean angular error for w
1

2000 4000 6000 8000 10000
0

π/4

π/2

MLR: Mean angular error for w
2

2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

MLR: Mean norm error for w
1

2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

MLR: Mean norm error for w
2

Figure 4.9: Results for the MLR case.

92 Low-dimensional linear models

and for the ML solution. The results are plotted in figures 4.6, 4.7, 4.8 and 4.9 for
PCA, PLS, CCA and MLR respectively.

The errors of the algorithm are drawn with solid lines and the errors of the
ML solution are drawn with dotted lines. The vertical bars show the standard
deviations. Note that the angular error is always positive and, hence, does not
have a symmetrical distribution. However, for simplicity, the standard deviation
indicators have been placed symmetrically around the mean. The first 30 iterations
were omitted to avoid singular matrices when calculating matrix inverses for the
ML solutions.

No attempt was made to find an optimal set of parameters for the algorithm.
Instead, the experiments and comparisons were carried out only to display the be-

haviour of the algorithm and to show that it is robust and converges to the correct

solutions. Initially, the estimate was assigned a small random vector. A constant

gain factor of α = 0:001 was used throughout all four experiments.

4.8.2 Performance in high-dimensional signal spaces

The purpose of the methods discussed in this chapter is dimensionality reduction

in high-dimensional signal spaces. We have previously shown that the proposed

algorithm has the computational capacity to handle such signals. This experiment

illustrates that the algorithm behaves well also in practice for high-dimensional

signals. The dimensionality of x is 800 and the dimensionality of y is 200, so the

total dimensionality of the signal space is 1,000. The object in this experiment is

CCA.

In the previous experiment, the algorithm was used in its basic form with con-

stant update rates set by hand. In this experiment, however, a more sophisticated

version of the algorithm is used where the update rate is adaptive and the vectors

are averaged over time. The details of this extension of the algorithm are numer-

ous and beyond the scope of this thesis. Only a brief explanation of the basic

structure of the extended algorithm is given here. The algorithm can be described

in terms of four blocks as illustrated in figure 4.10.

The first block, ∆w, calculates the delta-vectors according to

(
∆wx = (yT ŵy�xT wx)x

∆wy = (xT ŵx�yT wy)y:
(4.96)

The difference between this update rule and the update rule in 4.78 on page 84

is that here the two delta-vectors wx and wy are calculated separately. But the

update rule can still be identified as the gradient of ρ in equation 4.25 on page 68

for wx =
ŵT

x Cxyŵy

ŵT
x Cxxŵx

ŵx and wy =
ŵT

y Cyxŵx

ŵT
y Cyyŵy

ŵy.

4.8 Experiments 93

x, y

∆w

DCC-SUM

f1

f2

CONS

wx, wy

wxa, wya

∆wx, ∆wy

LP

α2

c

α1

Figure 4.10: The extended CCA-algorithm. See the text for explanations.

The delta vectors are then accumulated in the DCC-SUM block in a way that

compensates for the influence of the DC-component of the sample data:8><
>:

wx = ∑α1x∆wx� ∑α1xx ∑α1x(y
T ŵy�xT wx)

∑α1x

wy = ∑α1y∆wy� ∑α1yy ∑α1y(x
T ŵx�yT wy)

∑α1y
:

(4.97)

Note that the sums can be accumulated on-line. Also note that the update factor

α1 can be different for wx and wy.

Finally, the weighted averages wxa and wya of wx and wy respectively are

calculated: (
wxa(t+1) = wxa(t)+α2x(wx(t)�wxa(t))

wya(t+1) = wya(t)+α2y(wy(t)�wya(t)):
(4.98)

Adaptability is necessary for a system without a pre-specified (time depen-

dent) update rate α. Here, the adaptive update rate is dependent on the consistency

of the change of the vector. The consistency is calculated in the CONS block as

c = kg∆wxk; (4.99)

94 Low-dimensional linear models

where g∆wx is an estimate of the normalized average delta vector:

g∆wx(t +1) =g∆wx(t)+α2x

�
∆wx

k∆wxk
�g∆wx(t)

�
: (4.100)

A similar calculation of c is made for wx.
The functions f1 and f2 map the consistency c in a suitable way. f2 increases

the sensitivity to changes in c (α2 � c2) and f1 decreases the sensitivity (α1 �
c1=2).

When there is a consistent change in w, c is large and the averaging window
is short which makes wa follow w quickly. When the changes in w are less con-

sistent, the window gets longer and wa is the average of an increasing number

of instances of w. This means, for example, that if w is moving symmetrically

around the correct solution with a constant variance, the error of wa will still tend

towards zero (see figure 4.11).

The experiment was carried out using a randomly chosen distribution of a

800-dimensional x variable and a 200-dimensional y variable. Two x and two y

dimensions were correlated. The other 798 dimensions of x and 198 dimensions

of y were uncorrelated. The variances in the 1000 dimensions were of the same

order of magnitude.

The upper plot in figure 4.11 shows the estimated first canonical correlation

as a function of number of iterations (solid line) and the true correlation in the

current directions found by the algorithm (dotted line). Note that each iteration

gives one sample.

The lower plot in figure 4.11 shows the effect of the adaptive averaging. The

two upper noisy curves show the logarithms of angular errors of the ‘raw’ es-

timates wx and wy and the two lower curves show the angular errors for wxa

(dashed) and wya (solid). The angular errors of the smoothed estimates are much

more stable and decrease more rapidly than the ‘raw’ estimates. The errors after

2� 105 samples are below one degree. (It should be noted that this is extreme

precision as, with a resolution of 1 degree, a low estimate of the number of differ-

ent orientations in a 1000-dimensional space is 102000.) The angular errors were

calculated as the angle between the vectors and the exact solutions ê (known from

the x y sample distribution), i.e.

Err[ŵ] = arccos(ŵT
a ê):

4.8 Experiments 95

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 105

0

0.5

1

1.5

iterations

co
rr

el
at

io
n

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 105

−5

−4

−3

−2

−1

0

1

iterations

A
n
g
le

 e
rr

o
r

[

lo
g
(r

ad
)

]

Figure 4.11: Top: The estimated first canonical correlation as a function
of number of iterations (solid line) and the true correlation in the current
directions found by the algorithm (dotted line). The dimensionality of one
set of variables is 800 and of the second set 200. Bottom: The logarithm
of the angular error as a function of number of iterations.

96 Low-dimensional linear models

Part II

Applications in computer vision

Chapter 5

Computer vision

In this part of this dissertation is shown how local linear adaptive models based on
canonical correlation can be used in computer vision. This chapter serves as an
introduction by giving a brief overview of the parts of the theory and terminology
of computer vision relevant to the remaining chapters. For an extensive treatment
of this subject, see (Granlund and Knutsson, 1995).

5.1 Feature hierarchies

An image in a computer is usually represented by an array of picture elements
(pixels), each one containing a gray level value or a colour vector. The images
referred to in this thesis are gray scale images. The pixel values can be seen as
image features on the lowest level. On a higher level, there are for example the
orientation and phase of one-dimensional events such as lines and edges. On

the next level, the curvature describes the change of orientation. On still higher

levels, there are features like shape, relations between objects, disparity et cetera.

It is, of course, not obvious how to sort complex features into different levels.

But, in general, it can be assumed that a function that estimates the values of

a certain feature uses features of a lower level as input. High-level features are

often estimated on a larger spatial scale than low-level features.

Low-level features (e.g. orientation) are usually estimated by using fairly sim-

ple combinations of linear filter outputs. These filter outputs are generated by

convolving (see for example Bracewell, 1986) the image with a set of filter ker-

nels. The filter coefficients can be described as a vector and so can each region of

the image. Hence, for each position in the image, the filter output can be seen as

a scalar product between a (reversed) filter vector and a signal vector.

100 Computer vision

θ

ql

qe

Figure 5.1: The phase representation of a line/edge event.

5.2 Phase and quadrature filters

Consider a half period of a cosine wave. It can illustrate the cross section of a
white1 line if it is centred around 0 and a dark line if it is centred around π. If it
is centred around π=2 or 3π=2 it can illustrate lines of opposite slopes. This leads
to the concept of phase. To represent the kind of line/edge event in question, a
phase angle θ can be used as illustrated in figure 5.1. If the line and edge filters
are designed so that they are orthogonal, their outputs, ql and qe respectively, can
be combined geometrically so that the magnitude

jqj =
q

q2
l +q2

e (5.1)

indicates the presence of a line or an edge of a certain orientation and the argument

θ= arctan(qe=ql) (5.2)

represents the kind of event in question, i.e. the phase.
A filter that fits this representation can be obtained as a complex filter consist-

ing of a real-valued line filter and an imaginary edge filter:

q = ql + iqe: (5.3)

1White is here represented by the highest value and black is represented by the lowest value.

5.3 Orientation 101

The magnitude is then the magnitude of the complex filter output q and the phase
is the complex argument of q. If the magnitude is invariant with respect to the
phase when applied on a pure sine wave function, the filter is said to be a quadra-

ture filter. A quadrature filter has zero DC component and is zero in one half-plane

in the frequency domain. An example of a quadrature filter is shown in figure 7.5

on page 130. It should be noted that the phase can only be defined after defining

a direction in which to measure the phase.

5.3 Orientation

According to the assumption of local one-dimensionality (see page 52), it can be

assumed that a small region of an image generally contains at most one domi-

nant orientation. This orientation can be detected by using a set of at least three

quadrature filters evenly spread out over all orientations (Knutsson, 1982). Here,

the channel representation discussed in section 3.1 can be recognized. The orien-

tation can be represented by a pure channel vector. If four filter orientations are

used, the pure channel vector is

q =

0
BB@
jq1j
jq2j
jq3j
jq4j

1
CCA : (5.4)

By choosing a cos2 shape with proper width of the filter functions as described

in section 3.1, the channel vector has a constant norm for all orientations. If four

filter orientations are used, each channel looks like

jqkj= d cos2(ϕk �φ); ϕk = (k�1)
π
4

; (5.5)

where ϕk is the filter orientation, φ is the line or line or edge orientation and d is

an orientation invariant component. By using this set of channels, a more compact

orientation vector can be composed:

z =

�jq1j� jq3j
jq2j� jq4j

�
: (5.6)

Inserting equation 5.5 into equation 5.6 gives

z = a

�
cos(2φ)
sin(2φ)

�
; (5.7)

where a is an orientation invariant component. This orientation representation

is called double angle representation (Granlund, 1978). The advantage with this

102 Computer vision

z
q4

q1q3

q2

Figure 5.2: The double angle representation.

representation can be seen when considering the rotation of a line. A line is iden-

tical if it is rotated 180�. Since z rotates 360� as a line rotates 180�, this gives

an unambiguous and continuous representation of the orientation as illustrated in

figure 5.2. The norm and the orientation of the orientation vector z represent dif-

ferent independent features. While the argument of z represents the orientation of

the signal, the norm depends on the energy of the signal in the passband of the

filters.

The double angle representation enables vector averaging of the orientation

estimates. Vector averaging is usually performed to get a more robust orienta-

tion estimate in a larger region of the image. Vector averaging is a geometrical

summation of the vectors followed by a normalization:

v̄=
1

n

n

∑
i=1

vi: (5.8)

The sum of inconsistently oriented vectors is shorter than the sum of vectors with

similar directions. This means that the norm of the average vector can be inter-

preted as a kind of variance, or certainty, measure. This is an important difference

between vector averaging and an ordinary geometric scalar average. If the vector

average is normalized using the average norm, i.e.

v̄=
∑n

i=1 vi

∑n
i=1 kvik

; (5.9)

the certainty measure lies between 0 and 1 where 1 means that all vectors have the

same orientation.

5.4 Frequency 103

5.4 Frequency

Since the norm of z depends on the frequency content of the signal, it can be used
for estimating local (spatial) frequency. While frequency is only strictly defined
for stationary signals, which do not hold for most physical signals, the concept
of instantaneous frequency (Carson and Fry, 1937; van der Pol, 1946) is usually
defined as the rate of change of the phase of the analytical signal (see for example
Bracewell, 1986; Granlund and Knutsson, 1995).

The instantaneous frequency can be estimated using the ratio between the out-

put of two lognormal quadrature filters (Knutsson, 1982). The radial function of

a lognormal filter is defined in the frequency domain by

Ri(f) = e�CB ln2(f= fi); (5.10)

where f = kuk is the norm of the frequency vector, fi is the centre frequency and

CB = 4=(B2 ln2) where B is the 6 dB relative bandwidth. Function 5.10 is a Gaus-

sian on a logarithmic scale. The instantaneous frequency can now be estimated

as

ωi =
jqi+1j
jqij

; (5.11)

where qi = kqik is the (orientation invariant) norm of the quadrature filter vector

of centre frequency fi and the difference between fi and fi+1 is one octave (i.e.

a factor two). An example of this is illustrated in figure 5.3 where the frequency

function of two such lognormal filters are plotted (solid curves) together with the

quotient in equation 5.11 (dashed line). See Granlund and Knutsson (1995) for

further details.

To estimate local frequencies in a wider range than that covered by the pass-

bands of two filters, a weighted sum of instantaneous frequencies can be used:

f̃ =

N�1

∑
i=0

jqij
!�1

N�1

∑
i=0

jqi+1j
p

fi fi+1; (5.12)

where fi+1 = 2 fi.

Also the frequency can be represented by a vector as illustrated in figure 5.4.

This enables vector averaging of the frequency estimates too.

5.5 Disparity

An important feature of binocular vision systems is disparity, which is a measure

of the shift between two corresponding neighbourhoods in a pair of stereo images.

104 Computer vision

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5.3: The local frequency (dashed line) estimated as a quotient be-

tween the magnitude of two lognormal quadrature filter outputs. The cen-

tre frequencies of the filters differ one octave.

High and

low

frequencies

Medium

frequencies

High

frequencies

frequencies

Low

Figure 5.4: The vector representation of frequency.

5.5 Disparity 105

The disparity is related to the angle the eyes (cameras) must be be rotated relative
to each other in order to focus on the same point in the 3-dimensional outside

world. The corresponding process is known as vergence.

The problem of estimating disparity between pairs of stereo images is not a

new one (Barnard and Fichsler, 1982). Early approaches often used matching of

some feature in the two images (Marr, 1982). The simplest way to calculate the

disparity is to correlate a region in one image with all horizontally shifted regions

on the same vertical position and then to find the shift that gave maximum correla-

tion. This is, however, a computationally very expensive method. Since vergence

implies a vision system acting in real time, other methods must be employed.

Later approaches have been more focused on using the phase information

given by for example Gabor or quadrature filters (Sanger, 1988; Wilson and Knutsson,

1989; Jepson and Fleet, 1990; Westelius, 1995). An advantage of phase-based

methods is that phase is a continuous variable that allows for sub-pixel accuracy.

In phase-based methods, the disparity can be estimated as a ratio between the

phase difference between corresponding vertical line/edge filter outputs from the

two images and the instantaneous frequency:

∆x=
∆φ
φ0 ; (5.13)

where φ0 =ω is the instantaneous frequency.

Phase-based stereo methods require the filters to be large enough to cover the

same structure in the two images, i.e. the shift must be small compared to the

wavelength of the filter. Otherwise, the phase difference ∆φ will not be related

to the shift. On the other hand, if the shift is too small compared to the wave-

length of the filter, the resolution becomes poor which leads to a bad disparity

estimate. The disparity algorithm proposed by Wilson and Knutsson (1989) han-

dles this problem by working on a scale pyramid of different image resolutions.

It starts by estimating the disparity on a coarse scale, which corresponds to using

low-frequency filters, and adjusting the cameras to minimize this disparity. This

process is then iterated on consecutively finer scales.

A problem that is not solved by that approach is when the observed surface is

tilted in depth so that the depth varies along the horizontal axis. In this situation,

the surface will be viewed at different scales by the two cameras as illustrated in

figure 5.5. This means that phase information on one scale in the left image must

be compared with phase information on another scale in the right image. In most

stereo algorithms, this problem cannot be handled in a simple way.

Another problem that most stereo algorithms are faced with occurs at vertical

depth discontinuities (but see Becker and Hinton (1993)). Around the discontinu-

ity there is a region where the algorithm either will not be able to make an estimate

106 Computer vision

Figure 5.5: Scaling effect when viewing a tilted plane.

at all, or the estimate will be some average between the two correct disparities, in-

dicating a slope rather than a step.

Chapter 6

Learning feature descriptors

In this chapter is shown how canonical correlation analysis can be used to find
models that represent local features in images. Such models can be seen as filters
that describe a particular feature in an image. The filters can also be forced to be
invariant with respect to certain other features. The features to be described are
learned by giving the algorithm examples that are presented in pairs. The pairs
are arranged in such a way that the property of a certain feature, for example the
orientation of a line, is equal for each pair while other properties, for example
phase, are presented in an unordered way. This method was presented at SCIA’97
(Borga et al., 1997a).

The idea behind this approach is to use CCA to analyse two signals where
the common signal components are due to the feature that is to be represented,
as illustrated in figure 6.1. The signal vectors fed into the CCA are image data
mapped through some function f . If f is the identity operator (or any other full-

rank linear function), the CCA finds the linear combinations of pixel data that

have the highest correlation. In this case, the canonical correlation vectors can be

seen as linear filters. In general, f can be any vector-valued function of the image

data, or even different functions fx and fy, one for each signal space. The choice

of f can be seen as the choice of representation of input data for the canonical

correlation analysis. As discussed in chapter 3, the choice of representation is

very important for the ability to learn.

The canonical correlation vectors wx and wy together with the functions fx and

fy can be seen as filters. The filters that are developed in this way have the property

of maximum correlation between their outputs when applied to two image patches

where the represented feature varies simultaneously. In other words, the filters

maximize the signal to noise ratio between the desired feature and other signals

(see section 4.4.2 on page 70).

A more general approach is to try to maximize mutual information instead

108 Learning feature descriptors

CCAf f

Figure 6.1: A symbolic illustration of the method of using CCA for find-

ing feature detectors in images. The desired feature (here illustrated by

a solid line) is varying equally in both image sequences while other fea-

tures (here illustrated with dotted curves) vary in an uncorrelated way.

The input to the CCA is a function f of the image.

of canonical correlation. This could be accomplished by changing not only the

linear projection in the CCA, but also the functions fx and fy until the maximum

correlation ρ is found. This approach relies on the relation between canonical cor-

relation and mutual information discussed in section 4.4.1. The maximum mutual

information approach is illustrated in figure 6.2. If fx and fy are parameterized

functions, the parameters can be updated in order to maximize ρ. This is related

to the work of Becker and Hinton (1992) where f was implemented as neural

networks with a single neuron in the output layers. The cost function in their ap-

proach was the quotient between the variance of the sum and the variance of the

difference of the network outputs. The approach illustrated in 6.2 allows fx and

fy to be implemented as neural networks with several units in their output layers.

In the work presented here, however, the functions are fixed and identical for

x and y. In this chapter, f is the outer product of pixel data or the outer product

of quadrature filter outputs. But projection operators can also be useful, as will

be seen in chapter 7. The motive for choosing non-linear functions here is that

we want to find feature descriptors with useful invariance properties. Of course,

also a linear filter is invariant to several changes of the signal. It is, for example,

109

CCAfx fy sy

ρ

sx

Figure 6.2: A general approach for finding maximum mutual information.

easy to design a linear filter that is invariant with respect to the mean intensity
of the image. But higher-order functions can have more interesting invariance

properties, as discussed by Giles and Maxwell (1987) and Nordberg et al. (1994).

To see this, consider the output q of a linear filter f for a signal s in one point:

q= sT f. The invariance of this filter can be defined as

dq= dsT f= 0: (6.1)

This means that the changes ds of the signal for which the linear filter is invariant

must be orthogonal to the filter.

Since the invariance properties of linear filters are very limited, it is natural

to try second-order functions, which means that f is an outer product of the pixel

data. For a quadratic function F, the output can be written as q= sT Fs. Here, the

invariance is defined by

dq= 2dsT Fs= 0: (6.2)

This expression can, for example, include the invariances in the linear case if

F = ffT . But the quadratic filter can also have invariance properties that depend

on the signal s and not only on the change ds as in the linear case. An example

illustrating the differences between invariances of linear and quadratic functions

is illustrated in figure 6.3. In the linear case, the invariances define lines in the

two-dimensional case (hyper-planes in general). The lines are orthogonal to f. In

the quadratic case, the invariances can define, for example, hyperbolic or parabolic

surfaces or ellipsoids. One example of interesting invariance properties of second-

order functions is shift or phase invariance when the filter is applied on a sine wave

pattern. This is the case for the norm of the output from a pair of quadrature filters,

which is a quadratic function of the pixel data.

110 Learning feature descriptors

dsT Fs= 0dsT f= 0

Figure 6.3: Examples of invariances for linear (left) and quadratic (right)
two-dimensional functions. The lines are iso-curves on which the func-

tion is constant. A change of the parameter vector s along the lines will

not change the output.

6.1 Experiments

If f is an outer product and the image pairs contain sine wave patterns with equal

orientations but different phase, the CCA should find a linear combination of the

outer products that is sensitive with respect to the orientation and invariant with

respect to phase. As illustrated in the experiments below, this is also what hap-

pens. The outer products weighted by the canonical correlation vectors can be

interpreted as outer products of linear filters. As shown in the experiment, these

linear filters are approximately quadrature filters, which explains the phase invari-

ance of the product. The findings of quadrature filters in the interpretation of the

result of the CCA can serve as a motive for trying products of quadrature filter

outputs as input to CCA on a higher level.

To simplify the description, two functions are used to reshape a matrix into a

vector and the other way around: vec(M) transforms (flattens) an m�n matrix M

into a vector with mn components (see definition A.1) and mtx(v;m;n) reshapes

the vector v into an m� n matrix (see definition A.2). In particular, for an m� n

matrix M,

mtx(vec(M);m;n) = M: (6.3)

6.1.1 Learning quadrature filters

The first experiment shows that quadrature filters are found by the method dis-

cussed above when products of pixel data are presented to the algorithm.

6.1 Experiments 111

i i
yx

Ix yI

25
x y

625

2525

25

25

5

11

CCA

25

625

5

5 5

1 1

outer products

Figure 6.4: Illustration of the generation of input data vectors x and y as
outer products of pixel data. See the text for a detailed explanation.

Let Ix and Iy be a pair of 5� 5 image patches. Each image consists of a sine
wave pattern with a frequency of 2π

5 and additive Gaussian noise. A sequence of
such image pairs is constructed so that, for each pair, the orientation is equal in the
two images while the phase differs in a random way. The images have independent
noise. Each image pair is described by vectors ix = vec(Ix) and iy = vec(Iy).

Let x and y be vectors describing the outer products of the image vectors, i.e.
x= vec(ixiTx) and y= vec(iyiTy). This gives a sequence of pairs of 625-dimensional

vectors describing the products of pixel data from the images. This scheme is

illustrated in figure 6.4.

The sequence consists of 6,500 examples, i.e. 20 examples per degree of free-

dom. (The outer product matrices are symmetric and, hence, the number of free

parameters is n2+n
2

where n is the dimensionality of the image vector.) For a signal

to noise ratio (SNR) of 0 dB, there were 6 significant1 canonical correlations and

1By significant, we mean that they differ from the random correlations caused by the limited

112 Learning feature descriptors

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of correlation

C
a
n

o
n

ic
a
l

c
o

rr
e
la

ti
o

n

 w
x
1
,
 w

x
2

Projections onto canonical correlation vectors w
x
 1 to w

x
8

 w
x
3
,
 w

x
4

 w
x
5
,
 w

x
6

0 π
orientation

 w
x
7
,
 w

x
8

Figure 6.5: Left: The 20 largest canonical correlations for the 10 dB SNR
sequence. Right: Projections of outer product vectors x onto the 8 first
canonical correlation vectors.

for an SNR of 10 dB there were 8 significant canonical correlations. The canonical
correlations are plotted to the left in figure 6.5. The two most significant correla-

tions for the 0 dB case were both 0.7 which corresponds to an SNR2 of 3.7 dB.

For the 10 dB case, the two highest correlations were both 0.989, corresponding

to an SNR of 19.5 dB.

The projections of image signals x for orientations between 0 and πonto the 8

first canonical correlation vectors wx from the 10 dB case are shown to the right in

figure 6.5. The test signals were generated with random phase and without noise.

As seen in the figure, the filters defined by the first two canonical correlation vec-

tors are sensitive to the double angle of the orientation of the signal and invariant

with respect to phase. The two curves are 90� out of phase and, hence, generate

double angle representation (see figure 5.2 on page 102). The following curves

show the projections onto the successive canonical correlation vectors with lower

canonical correlations. The filters defined by these vectors are sensitive to the

fourth, sixth and eighth multiples of the orientation.

set of samples. The random correlations, in the case of 20 samples per degree of freedom, is

approximately 0.4 (given by experiments).
2The relation between correlation and SNR in this case is defined by the correlation between

two signals with the same SNR, i.e. corr(s+η1;s+η2). (See section 4.4.2.)

6.1 Experiments 113

Interpretation of the result

It is not easy to interpret the 625 coefficients in each canonical correlation vector.
But since the data actually were generated as outer products, i.e. 25�25 matrices,
the interpretation of the resulting canonical correlation vectors can be facilitated
by writing them as 25� 25 matrices, Wx = mtx(wx;25;25). This means that the
projection of x onto a canonical correlation vector wx can be written as

xT wx = iTx Wxix; (6.4)

where ix is the pixel data vector. By an eigenvalue decomposition of Wx, this
projection can be written as

xT wx = iTx

∑

j

λ je je
T
j

!
ix = ∑

j

λ j

�
iTx e j

�2
; (6.5)

i.e. a square sum of the pixel data vector projected onto the eigenvectors of Wx

weighted with the corresponding eigenvalues. This means that the eigenvectors
e j can be seen as liner filters and the curves plotted to the right in figure 6.5 are
weighted square sums of the pixel data vectors projected onto the eigenvectors of
the matrices Wxi.

It turns out that only a few of the eigenvectors give significant contributions
to the projection sum in equation 6.5. This can be seen if the terms in the sum are
averaged over all orientations of the signal:

m j = E[λ j

�
iTx e j

�2
]: (6.6)

The coefficients m j measure the average energy picked up by the corresponding
eigenvectors and can therefore be seen as significance measures for the different
eigenvectors. In figure 6.6, the significance measures m j for the 25 eigenvectors
are plotted for the two first canonical correlation vectors wx1 and wx2.

Since the projections of x onto the canonical correlation vectors wx can be de-

scribed in terms of projections of pixel data ix onto a few 25-dimensional eigen-

vectors e j, these eigenvectors can be used to interpret the canonical correlation

vectors. Since the image data ix are collected from 5�5 neighbourhoods Ix, it is

logical to view also the eigenvectors e j as 5�5 matrices E j. These matrices can

be called eigenimages. The process of extracting eigenimages from a canonical

correlation vector is illustrated in figure 6.7. In figure 6.8, the four most sig-

nificant eigenimages are shown for the first (top) and second (bottom) canonical

correlations respectively.

The eigenimages can be interpreted as quadrature filter pairs, i.e. filter pairs

that have the same spectrum and differ 90� in phase (see section 5.2). For wx1,

114 Learning feature descriptors

0 5 10 15 20 25
0

0.2

0.4

0 5 10 15 20 25
0

0.2

0.4

Figure 6.6: The significance measures m j for the 25 eigenvectors for the
two first canonical correlation vectors wx1 (top) and wx2 (bottom).

CCA

1

625

5

5

25

x
w

W
x

E
j

j
e

1

2525

eigenvalue decomposition

Figure 6.7: Illustration of the extraction of 5� 5 eigenimages E j from a
625-dimensional canonical correlation vector wx.

6.1 Experiments 115

E
15

 for w
x
 1 E

16
 for w

x
 1 E

17
 for w

x
 1 E

18
 for w

x
 1

E
12

 for w
x
 2 E

13
 for w

x
 2 E

14
 for w

x
 2 E

16
 for w

x
 2

Figure 6.8: The four most significant eigenimages are shown for the first
(top row) and second (bottom row) canonical correlations respectively.

eigenimages E15 and E16 form a quadrature pair in one direction and eigenim-

ages E17 and E18 form a quadrature pair in the perpendicular direction. The same

interpretation can be made for wx2. To see more clearly that this interpretation

is correct, the eigenimage pairs can be combined in the same way as complex

quadrature filters, i.e. as one real filter and one imaginary filter with a phase dif-

ference of 90�, by multiplying one of the filters3 with i (see section 5.2, page 101).

The spectra of the combinations E15+ iE16 and E17+ iE18 for wx1 are shown in

the upper row in figure 6.9. In the lower row, the spectra of the combinations

E12+ iE14 and E13+ iE16 for wx2 are shown. The DC-component is in the centre

of the spectrum. The white circle illustrates the centre frequency of the training

signal. The blobs in the figure show that these eight eigenvectors can be inter-

preted as four quadrature filter pairs in four different directions.

6.1.2 Combining products of filter outputs

In this experiment, outputs from neighbouring sets of quadrature filters are used

rather than pixel values as input to the algorithm. The experimental result shows

that canonical correlation can find a way of combining filter outputs from a local

neighbourhood to get orientation estimates that are less sensitive to noise than the

3Usually, the real filter is symmetric and the imaginary filter is anti-symmetric. However, the

choice of offset phase does not matter as long as the filters differ 90� in phase.

116 Learning feature descriptors

|F(E
15

 + i*E
16

)|
2
 for w

x
 1 |F(E

17
 + i*E

18
)|

2
 for w

x
 1

|F(E
12

 + i*E
14

)|
2
 for w

x
 2 |F(E

13
 + i*E

16
)|

2
 for w

x
 2

Figure 6.9: Spectra for the eigenimages interpreted as complex quadrature
filter pairs.

vector averaging method (see section 5.3 on page 102).
Let qxi and qyi, i 2 f1::25g, be 4-dimensional complex vectors of filter re-

sponses from four quadrature filters from each of 25 different positions in a 5 � 5

neighbourhood. The quadrature filters used here have kernels of 7� 7 pixels, a

centre frequency of π
2
p

2
and a bandwidth of two octaves. Let Xi = qxiq

�
xi and

Yi = qyiq
�
yi be the outer products of the filter responses in each position for each

image. Finally, all products are gathered into two 400-dimensional vectors:

[ht]x =

0
BBB@

vec(X1)
vec(X2)

...

vec(X25)

1
CCCA and y =

0
BBB@

vec(Y1)
vec(Y2)

...

vec(Y25)

1
CCCA : (6.7)

This scheme is illustrated in figure 6.10.

6.1 Experiments 117

Ix yI

x y

5

11

CCA

400

5

5 5

1

q q

1 1

q q

1 1

4 4

400

4

4 4

Y Y 4

convolution

outer products

x1 x25 y1 y25

4 4

X X
1 25 1 25

Figure 6.10: Illustration of the generation of input data vectors x and y as
outer products of quadrature filter response vectors from 5�5 neighbour-
hoods.

118 Learning feature descriptors

0 200 400 600 800 1000

Angular error using canonical correlation (deg)

−90

0

90

0 200 400 600 800 1000

Angular error using vector averaging (deg)

−90

0

90

Figure 6.11: Angular errors for 1,000 different samples using canonical
correlations (top) and vector averaging (bottom).

8,000 pairs of vectors were generated. For each pair of vectors, the local
orientation was equal while the phase and noise differed randomly. Gaussian
noise was added to the images giving 0 dB SNR. The data set was analysed using
CCA. The two largest canonical correlations were both 0.85. The corresponding
vectors detected the double angle of the orientation invariant with respect to phase.

New test data were generated using a rotating sine-wave pattern with an SNR

of 0 dB and projected onto the first two canonical correlation vectors. The angular

error4 is shown in the upper plot in figure 6.11. The lower plot shows the angular

error using vector averaging on the same data. The standard deviation of the

angular error was 9:4� with the CCA method and 14:8� using vector averaging.

This is an improvement of the SNR with 4dB compared to the result when using

vector averaging on the same neighbourhood size.

4The mean angular error is not relevant since it only depends on a reference orientation. The

reference orientation can be arbitrarily chosen and, hence, it has been chosen so that the mean

angular error is zero.

6.2 Discussion 119

6.2 Discussion

In this chapter has been shown how a system can learn image feature descriptors
by using canonical correlation. A nice property of the method is that the training
is done by giving examples of what the user defines as being “equal”. In the
experiments, sine wave patterns were considered to be “equal” if they had the
same orientation, irrespectively of the phase. This was presented to the system as a
set of examples and the user did not have to figure out how to represent orientation
and phase. In the first experiment, the system developed a phase invariant double
angle orientation representation.

This type of learning is of course more useful for higher-level feature descrip-

tors, were it can be difficult to define proper representations of features. Such

features are for example corners and line crossings.

In the next chapter, another application of this method is presented, namely

disparity estimation, where the horizontal displacement between the images is

equal within the training set.

120 Learning feature descriptors

Chapter 7

Disparity estimation using CCA

An important problem in computer vision that is suitable to handle with CCA is
stereo vision, since data in this case naturally appear in pairs. In this chapter, a
novel stereo vision algorithm that combines CCA and phase analysis is presented.
The algorithm has been presented in a paper submitted to ICIPS’98 (Borga and
Knutsson, 1998).

For a learning system, the stereo problem is difficult to solve; for small dis-

parities, the high-frequency filters will give the highest accuracy, while for large

disparities, the high-frequency filters will be uncorrelated with the disparity and

only the low-frequency filters can be used. So the choice of which filters to use

for the disparity estimate must be based on a disparity estimate! Furthermore,

a general learning system cannot be supposed to know beforehand which inputs

come from a certain scale1. A solution to this problem is to let the system adapt

filters to fit the disparity in question instead of using fixed filters.

The algorithm described here consists of two parts: CCA and phase analysis.

Both are performed for each disparity estimate. Canonical correlation analysis

is used to create adaptive linear combinations of quadrature filters. These linear

combinations are new quadrature filters that are adapted in frequency response

and spatial position in order to maximize the correlation between the filter outputs

from the two images.

These new filters are then analysed in the phase analysis part of the algorithm.

The coefficients given by the canonical correlation vectors are used as weighting

coefficients in a pre-computed table that allows for an efficient phase-based search

for disparity.

In the following two sections, the two parts of the stereo algorithm are de-

1This problem is similar to the problem a system faces when learning to interpret numbers that

are represented by one digit on each input. Only the most significant digit will have any correlation

with the correct number but the correlation will be weak due to the coarse quantization. Only after

this digit is identified, it is possible to detect the use of the next digit.

122 Disparity estimation using CCA

scribed in more detail. In section 7.3 some experiments are presented to illustrate
the performance of the proposed method. Finally, the method is discussed in sec-

tion 7.4.

7.1 The canonical correlation analysis part

The input x and y to the CCA come from the left and right images respectively.

Each input is a vector with outputs from a set of quadrature filters:

x=

0
B@qx1

...

qxN

1
CA and y=

0
B@qy1

...

qyN

1
CA ; (7.1)

where qi is the (complex) filter output for the ith quadrature filter in the filter set.

The quadrature filters can bee seen as the functions f in figure 6.1 on page 108.

In this case, f is a complex vector-valued linear function, i.e. a complex matrix.

In the implementation described here, the filter set consists of two identical one-

dimensional (horizontal) quadrature filters with two pixels relative displacement.

(Other and larger sets of filters can be used including, for example, filters with

different bandwidths, different centre frequencies, different positions, etc.)

The data are sampled from a neighbourhood N around the point of the dis-

parity estimate. The choice of neighbourhood size is a compromise between noise

sensitivity and locality. The covariance matrix C is calculated using the vectors x

and y in N . The fact that quadrature filters have zero mean simplifies this calcu-

lation to an outer product sum:

C= ∑
j2N

�
x j

y j

��
x j

y j

��
: (7.2)

If a rectangular neighbourhood is used, this calculation can be made efficient by

a Cartesian separable summation of the outer products as illustrated in figure 7.1.

First the outer products are summed in a window moving horizontally for each

row. Then this result is summed again by using a window moving vertically for

each column. This scheme requires 2�m�n additions and subtractions of outer

products where m�n is the size of the image (except for the borders that are not

reached by the centre of the neighbourhood). This can be compared to a straight-

forward summation over each neighbourhood that requires N�m�n additions of

outer products, where N is the size of the neighbourhood. Hence, for a neighbour-

hood of 10�10, the separable summation is 50 times faster than a straightforward

summation over each neighbourhood.

7.2 The phase analysis part 123

21

Figure 7.1: Cartesian separable summation of the outer products.

The first canonical correlation ρ1 and the corresponding (complex) vectors wx

and wy are then calculated. If the set of filters is small, this is done by solving
equation 4.26 on page 68. In the case where only two filters are used, this calcu-

lation is very simple. If very large sets of filters are used, an analytical calculation

of the canonical correlation becomes computationally very expensive. In such a

case, the iterative algorithm presented in section 4.7.3 can be used.

The canonical correlation vectors define two new filters:

fx =
M

∑
i=1

wxifi and fy =
M

∑
i=1

wyifi; (7.3)

where fi are the basis filters, M is the number of filters in the filter set and wxi and

wyi are the components in the first pair of canonical correlation vectors. Due to

the properties of canonical correlation, the new filters, fx and fy, have outputs with

maximum correlation over N , given the set of basis filters fi.

7.2 The phase analysis part

The key idea of this part is to search for the disparity that corresponds to a real-

valued correlation between the two new filters. This idea is based on the fact that

canonical correlations are real valued (see proof B.4.1 on page 165). In other

words, find the disparity δ such that

Im [Corr (qy(ξ+δ) ; qx(ξ))] = Im [c(δ)] = 0; (7.4)

124 Disparity estimation using CCA

where qx and qy are the left and right filter outputs respectively and ξ is the spatial
(horizontal) coordinate. There does not seem to exist a well-established definition

of correlation for complex variables. The definition used here (see definition A.3)

is a generalization of correlation for real-valued variables similar to the definition

of covariance for complex variables.

A calculation of the correlation over N for all δ would be very expensive.

A much more efficient solution is to assume that the signal s can be described

by a covariance matrix Css. Under this assumption, the correlation between the

left filter convolved with the signal s and the right filter convolved with the same

signal shifted a certain amount δ can be measured. But convolving a filter with a

shifted signal is the same as convolving a shifted filter with the non-shifted signal.

Hence, the correlation c(δ) can be calculated as the correlation between the left

filter convolved with s and a shifted version of the right filter convolved with the

same signal s.

Under the assumption that the signal s has the covariance matrix Css, the cor-

relation in equation 7.4 can be written as

c(δ) =
E[q�xqy(δ)]p

E[jqxj2]E[jqyj2]

=
E
�
(s�fx)

� (s�fy(δ))
�q

E
�
(s�fx)

� (s�fx)
�

E
�
(s�fy)

� (s�fy)
�

=
E [f�xs s�fy(δ)]q

E [f�xss�fx]E
�
f�y(δ)ss�fy(δ)

�
=

f�xCssfy(δ)p
f�xCssfx f�yCssfy

;

(7.5)

where fy(δ) is a shifted version of fy. Remember that the quadrature filter out-

puts have zero mean, which is necessary for the first equality. Note the similarity

between the last expression and the expression for canonical correlation in equa-

tion 4.24 on page 68.

A lot of the computations needed to calculate c(δ) can be saved since

f�xCssfy(δ) =

M

∑
i=1

wxifi

!�
Css

M

∑
j=1

wy jf j(δ)

!

=
M

∑
i=1

M

∑
j=1

w�
xiwy jf

�
i Cssf j(δ) = ∑

i j

vi jgi j(δ);

(7.6)

where

gi j(δ) = f�i Cssf j(δ): (7.7)

7.2 The phase analysis part 125

The function gi j(δ) does not depend on the result from the CCA and can therefore
be calculated in advance for different disparities δ and stored in a table. The
denominator in equation 7.5 can be treated in the same way but does not depend
on δ:

f�xCssfx =∑
i j

vx
i jgi j(0) and f�yCssfy =∑

i j

v
y
i jgi j(0); (7.8)

where vx
i j = w�

xiwx j and v
y
i j = w�

yiwy j. Note that the filter vectors f must be padded
with zeros at both ends to enable the scalar product between a filter and a shifted
filter δ. (The zeros do not, of course, affect the result of equation 7.6.) In the case
of two basis filters, the table contains four rows and eight constants.

Hence, for a given disparity a (complex) correlation c(δ) can be computed as
a normalized weighted sum:

c(δ) =
∑i j vi jgi j(δ)q

∑i j vx
i jgi j(0) ∑i j v

y
i jgi j(0)

: (7.9)

The aim is to find the δ for which the correlation c(δ) is real valued. This is
done by finding the zero crossings of the phase of the correlation. A very coarse
quantization of δ can be used in the table since the phase is, in general, rather
linear near the zero crossing (as opposed to the imaginary part which in general is
not linear). Hence, first a coarse estimate of the zero crossing is obtained. Then the
derivative of the phase at the zero crossing is measured, using two neighbouring
samples. Finally, the error in the coarse estimate is compensated for by using the
actual phase value and the phase derivative at the estimated position:

δ= δc�
ϕ(δc)

∂ϕ=∂δ
; (7.10)

where δc is the coarse estimate of the zero crossing and ϕ(δc) is the complex phase
of c(δc) (see figure 7.2 on the next page).

7.2.1 The signal model

If the signal model is uncorrelated white noise, Css is the identity matrix and the
calculations of the values in the table reduce to a simple scalar product: gi j(δ) =
f�i f j(δ). There is no computational reason to choose white noise as signal model
if there is a better model, since the table is calculated only once. But it can still
be interesting to compare the correlation for white noise with the correlation for
another signal model in order to get a feeling for the algorithm’s sensitivity with
respect to the signal model. In other words, how does the choice of model affect
the position of the zero phase of c(δ)?

126 Disparity estimation using CCA

δ0 δc

ϕ(δ)

ϕ(δc)

δ

Figure 7.2: The estimation of the coordinate δ0 of the phase zero crossing
using the coarse estimate δc of the zero crossing, the phase value ϕ(δc)
and the derivative at the coarse estimate. The black dots illustrate the
sampling points of the phase given by the table gi j(δ).

First of all, it should be noted that the denominator in equation 7.5 is real val-

ued and, hence, does not affect the complex phase of c(δ). So, only the numerator

c0(δ) = f�xCssfy(δ) (7.11)

has to be considered. In general, Css is a Toeplitz matrix (i.e. Ci j = C(i� j))
with the columns (and rows) containing shifted versions of the (non-normalized)

autocorrelation function cs of the signal s. This means that f̃�x = f�xCss can be seen

as a convolution of f�x with the autocorrelation function cs. But

c0(δ) = f̃�xfy(δ) (7.12)

can be seen as a convolution between f̃�x and f�y , where f�y is fy reversed, since δ
only causes a shift of fy. This means that c0(δ) can be written as

c0(δ) = (f�x � cs)� f�y ; (7.13)

where (�) denotes convolution. Since the order of convolutions does not matter

(convolution is commutative and associative), c0(δ) can be written as

c0(δ) = (f�x � f�y)� cs = (f�xfy(δ))� cs; (7.14)

i.e. the convolution between f�x and f�y can be calculated first. This function can

then be convolved with the autocorrelation function to get the correct c0 for the

model.

This means that the difference between the correlation c(δ) calculated for

white noise (i.e. Css is the identity matrix) and the correlation calculated by using

7.2 The phase analysis part 127

0 20 40 60 80 100

−π

−π/2

0

π/2

π

Figure 7.3: The phase of the four rows of the table containing gi j(δ) with-

out convolution (solid line) and with convolution with the autocorrelation

function 1�jξj.

another signal model is given by the convolution of c(δ) with the autocorrelation

function of the signal model (and an amplitude scaling that does not affect the

phase). Hence, if the phase around the zero crossing is anti-symmetric (e.g. lin-

ear) in an interval that is large compared to the autocorrelation function of the

signal model, the result will be very similar to that obtained for a white noise

model. Another lax interpretation of the reasoning above is that as long as the

phase does not have bad behaviour around zero, the choice of signal model is not

critical.

As an example, the phases of the four rows in a table gi j(δ) are plotted in

figure 7.3 with and without convolution with the autocorrelation function 1�jξj.
(Note that two of the rows, g11 and g22, are equal, which means that only three

curves for each case are visible.) This autocorrelation function is usually assumed

for natural images.

7.2.2 Multiple disparities

If more than one zero crossing are detected, the magnitudes of the correlations can

be used to select a solution. Since the CCA searches for maximum correlation,

the zero crossing with maximum correlation c(δ) is most likely to be the best

estimate. If two zero crossings have approximately equal magnitude (and the

canonical correlation ρ is high), both disparity estimates can be considered to be

correct within the neighbourhood, which indicates either a depth discontinuity or

that there really exist two disparities.

128 Disparity estimation using CCA

fx fy

Figure 7.4: A simple example of a pair of filters that have two correlation
peaks.

The latter is the case for semi-transparent images, i.e. images that are sums

of images with different depths. Such images are typical of many medical ap-

plications such as x-ray images. An every-day example of this kind of image is

obtained by looking through a window with reflection. (The effect on the intensity

of a light- or X-ray when passing two objects is in fact multiplicative, but a loga-

rithmic transfer function is usually applied when generating X-ray images which

makes the images additive.)

Note that both disparity estimates are represented by the same canonical cor-

relation solution. This means that the CCA must generate filters that have correla-

tion peaks for two different disparities. To see how this can be done, consider the

simple filter pair illustrated in figure 7.4. The autocorrelation function (or con-

volution) between these two filters is identical to the left filter, which consists of

two impulses. The example is much simplified, but illustrates the possibility of

having two filters with two correlation peaks. If the CCA was used directly on

the pixel data instead of on the quadrature filter outputs, such a filter pair could

develop. In the present method, the image data are represented by using other

basis functions (the quadrature filters of the basis filter set) but it is still possible

to construct filters with two correlation peaks.

7.2.3 Images with different scales

If the images are differently scaled, the CCA will try to create filters scaled cor-

respondingly. In order to improve the disparity estimates in these cases, the table

can be extended with scaled versions of the basis filters:

gi j(σ;δ) = f�i Cssf j(σ;δ); (7.15)

where f j(σ;δ) is a scaled and shifted version of f j. The motive for this is that a

scaled signal convolved with a certain filter gives the same result as the non-scaled

signal convolved with a reciprocally scaled filter. The CCA step is not affected

by this and the phase analysis is performed as described above on each scale.

The correct scale is indicated by having the maximum real-valued correlation.

7.3 Experiments 129

The resolution in scale can be very coarse. In the experiments presented in the
following section, the filters have been scaled between +/- one octave in steps of

a quarter of an octave, which seems to be a quite sufficient resolution.

It should be noted that the disparity estimates measured in pixels will differ

in the two images since one of the images has a scaled filter as reference. But

given the filter scales, the interpretations in terms of depth are of course the same

in both images.

7.3 Experiments

In this section, some experiments are presented to illustrate the performance of the

stereo algorithm. Some results on artificial data are shown. Finally, the algorithm

is applied to two real stereo image pairs, both common test objects for stereo

images.

In all experiments presented here, a basis filter set consisting of two one-

dimensional horizontally oriented quadrature filters, both with a centre frequency

of π=4 and a bandwidth of two octaves has been used. The filters have 15 coeffi-

cients in the spatial domain and are shifted two pixels relative to each other. The

frequency function is approximately a squared cosine on a log scale:

F(u)� cos2 (k ln(u=u0)) ; (7.16)

where k = π=(2ln(2)) and u0 = π=4. The actual filter functions are illustrated in

figure 7.5.

For the experiments on the artificial data, the neighbourhood for the CCA has

been chosen to fit the problem reasonably well. This means that the neighbour-

hood is longer in the direction of constant disparity than in the direction where

the disparity changes. In the real images, a square neighbourhood has been used.

How the choice of neighbourhood can be made adaptive is discussed in section

7.4.

7.3.1 Discontinuities

The first experiment illustrates the algorithm’s ability to handle depth discontinu-

ities. The test image is made of white noise shifted so that the disparity varies

between +=� d along the horizontal axis and d varies as a ramp from �5 pix-

els to +5 pixels along the vertical axis in order to get discontinuities between

+=�10 pixels. A neighbourhood N of 13�7 pixels (horizontal � vertical) was

used for the CCA. Figure 7.6 shows the estimated disparity for this test image.

Disparity estimates with corresponding canonical correlations less than 0.7 have

been removed. In figure 7.7, two lines of the disparity estimate are shown. To

130 Disparity estimation using CCA

−5 0 5
−0.2

−0.1

0

0.1

0.2

0.3
Original filter

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Spectrum of original filter

−π −π/2 0 π/2 π

Figure 7.5: The filter in the basis filter set.

Figure 7.6: Disparity estimate for different depth discontinuities.

7.3 Experiments 131

0 10 20 30 40 50 60 70 80 90
−5

0

5

δ

0 10 20 30 40 50 60 70 80 90
0

0.5

1

horizontal position

co
rr

el
at

io
n

0 10 20 30 40 50 60 70 80 90
−5

0

5

δ

0 10 20 30 40 50 60 70 80 90
0

0.5

1

horizontal position

co
rr

el
at

io
n

Figure 7.7: Top: Line 20 (left) and line 38 (right) from the disparity
estimates in figure 7.6 on the facing page. The small dots indicate the
disparity estimates with the second strongest correlations. Bottom: The
corresponding correlations.

the left, line 20 with a disparity of +=�2:5 pixels is shown and to the right, line
38 with a disparity of 1 pixel is shown. The figures at the top show the most
likely (large dots) and second most likely (small dots) disparity estimates along
these lines. The bottom figures show the corresponding canonical correlations at
the zero crossings. Figures 7.6 and 7.7 show that for small discontinuities, the
algorithm interpolates the estimates while for large discontinuities, there are two
overlapping estimates.

An interpolation or fusion for small disparity differences is also performed by
the human visual system. The depth interval for which all points are fused into a
single image is called Panum’s area (see for example Coren and Ward, 1989).

7.3.2 Scaling

The second experiment shows that the algorithm can estimate disparities between
images that are differently scaled. The test image here is white noise warped to
form a ramp along the horizontal axis. The warping is made so that the right
image is scaled to 50% of the original size which means that there is a scale
difference of one octave. For a human, this corresponds to looking at a point
on a surface with its normal rotated 67� from the observer at a distance of 20
centimetres. In this experiment, a neighbourhood N of 3�31 pixels was used. In
figure 7.8 on the next page the results are shown for the basic algorithm without
the scaling parameter (left) and for the extended algorithm that searches for the

132 Disparity estimation using CCA

Figure 7.8: Disparity estimate for a scale difference of one octave between
the images without scale analysis (left) and with scale analysis (right).

optimal scaling (right). The lines at the back of the graphs show the mean value.
The filters created by the CCA are illustrated in figure 7.9. The left-hand plots

show the filters in the spatial domain and the right-hand plots show them in the

frequency domain.

7.3.3 Semi-transparent images

This experiment illustrates the algorithm’s capability of multiple disparity esti-

mates on semi-transparent images. The test images in this experiment were gen-

erated as a sum of two images with white uncorrelated noise. The images were

tilted in opposite directions around the horizontal axis. The disparity range was

+=� 5 pixels. Figure 7.10 illustrates the test scene. The stereo pair is shown in

figure 7.11 on page 134. Here, the averaging or fusion performed by the human

visual system for small disparities can be seen in the middle of the image. A

neighbourhood N of 31� 3 pixels was used for the CCA. The result is shown

in figure 7.12. In figure 7.13 on page 136, the estimates are projected along the

horizontal axis. The results show that the disparities of both the planes are ap-

proximately estimated. In the middle, where the disparity difference is small, the

result is an average between the two disparities in accordance with the results

illustrated in figure 7.7 on the preceding page.

7.3 Experiments 133

−8 −6 −4 −2 0 2 4 6 8

−0.2

−0.1

0

0.1

0.2

Left filter

−8 −6 −4 −2 0 2 4 6 8

−0.2

−0.1

0

0.1

0.2

Right filter

0

0.5

1
Spectrum of left filter

−π −π/2 0 π/2 π

0

0.2

0.4

0.6

0.8
Spectrum of right filter

−π −π/2 0 π/2 π

Figure 7.9: The filter created by CCA. Solid lines show the real parts and
dashed lines show the imaginary parts.

Figure 7.10: The test image scene for semi-transparent images.

134 Disparity estimation using CCA

Left Right

Figure 7.11: The stereo image pair for the semi-transparent images.

7.3.4 An artificial scene

This experiment tries to simulate a slightly more realistic case where both the

discontinuity problem and the scale problem are present. The scene can be thought

of as a pole or a tree in front of a wall. Figure 7.14 on page 136 illustrates the

scene from above. The distance from the wall to the centre of the tree was 2, the

radius of the tree was 1, the distance from the wall to the cameras was 5 and the

distance between the cameras was 0.4 length units. A texture of white noise was

applied on the wall and on the tree and a stereo pair of images was generated.

Each image had the size 200�31 pixels. The generated stereo images are shown

in figure 7.15. The disparity was only calculated for one line. Also in this case,

a neighbourhood N of 3� 31 pixels was used for the CCA. The algorithm was

run 100 times on different noise images. The result is illustrated in figure 7.16

on page 137. Close to the edges of the tree, the images are differently scaled.

In figure 7.17 on page 138, the average scale difference used by the algorithm is

plotted. The scaling can be done in nine steps between +=� one octave and in

the figure, the average scaling (in octaves) is plotted. The plot illustrates how the

algorithm scales the images relative to each other in one way near the left edge of

the tree and in the opposite way at the other edge as expected. There is no scale

difference on the background and in the middle of the tree.

7.3.5 Real images

The two final experiments illustrate how the algorithm works on real stereo image

pairs. In both experiments, a neighbourhood N of 7�7 pixels was used.

7.3 Experiments 135

0

50

100

150

0

50

100
−10

0

10

Horizontal position
Vertical position

D
is

p
ar

it
y

Figure 7.12: The result for the semi-transparent images. The disparity

estimates are coloured to simplify the visualization.

The first stereo pair is two air photographs of Pentagon (see figure 7.18 on

page 139, upper row). The result is shown in the bottom row of the same figure. To

the left, the disparity estimates are shown. White means high disparity and black

means low disparity. The lower-right image shows a certainty image calculated

from the canonical correlation in each neighbourhood. The certainty used here is

the logarithm of the SNR according to equation 4.38 on page 71 plus an offset in

order to make it positive.

The second stereo pair is two images from a well-known image sequence, the

Sarnoff tree sequence. This stereo pair is shown in top of figure 7.19 on page 140

and the result and the certainty image are shown at the bottom of the same figure.

The results are also illustrated in colour in figures 7.20 on page 141 and 7.21

on page 142. The images at the top are generated so that the colour represents

disparity and the intensity represents the original (left) image. The images at the

bottom are 3-dimensional surface plots with height and colour representing the

disparity estimates. Note that the walls in the pentagon result are depth disconti-

nuities and not just steep slopes.

136 Disparity estimation using CCA

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

Vertical position

D
is

p
ar

it
y

Figure 7.13: A projection along the horizontal axis of the estimates in
figure 7.12 on the preceding page.

Figure 7.14: The artificial tree scene from above.

Left Right

Figure 7.15: The stereo pair generated from the artificial tree scene.

7.3 Experiments 137

0 50 100 150 200
−4

−2

0

2

4

D
is

p
ar

it
y
 e

st
im

at
e

0 50 100 150 200
−4

−2

0

2

4

T
ru

e
d
is

p
ar

it
y

0 50 100 150 200
−5

0

5

D
is

p
ar

it
y
 e

rr
o
r

Horizontal position

Figure 7.16: The result for the artificial test scene. The top graph shows
the average disparity estimate. The dotted lines show the standard devia-

tion. The middle graph shows the true disparity. The bottom graph shows

the mean disparity error and the standard deviation of the disparity error

(dotted line).

138 Disparity estimation using CCA

0 50 100 150 200

Horizontal position

−1/4

0

+1/4

S
ca

le

Figure 7.17: The average scaling performed by the algorithm. 0 means
no scaling, +1=4 means that the left image is scaled +1=4 of an octave,
i.e. made smaller compared to the right image.

7.4 Discussion

The stereo algorithm described in this chapter is rather different from most image
processing algorithms. Common procedures are first to optimize a set of filters
and then to use these filters to analyse the image or performing statistical analysis
directly on the pixel data. This algorithm, however, first adapts the filters to a local
region in the image and then analyses the adapted filters.

In all the experiments presented in the preceding section, a filter set of two
filters differing only by a shift was used. A larger filter set with filters in different
scales would be able to handle larger disparity ranges. If such a set of filters was
used, the algorithm would simply select the proper scale to work on, i.e. the scale
that has the highest correlation. In general, a larger filter set offers the shapes of
the adapted filters more freedom. Hence, a larger filter set should make it easier to
handle multiple disparities, depth discontinuities and scale differences if the filter
set is chosen properly. A larger filter set covering a wider range of frequencies
would also reduce the risk of the signal in a region giving very weak filter output
because the filter does not fit the signal. With a larger filter set, the CCA would
only use the filters that have a high SNR for the current signal.

7.4 Discussion 139

Figure 7.18: Upper row: Stereo pair of Pentagon. Lower left: Resulting
disparity estimates. Lower right: Certainty image of the estimates.

140 Disparity estimation using CCA

Figure 7.19: Upper row: Stereo pair of the tree scene. Lower left: Re-

sulting disparity estimates. Lower right: Certainty image of the esti-

mates.

The filter set can be seen as the basis functions used for representing the sig-

nal. The simplest choice of basis functions is the pixels themselves. The canonical

correlation vector will then define the filters directly in the pixel base. A disad-

vantage with such an approach is that the analysis of the filter becomes expen-

sive. The canonical correlation vectors in the experiments presented here were

two-dimensional since there were two basis filters. If the pixel basis is used, the

dimensionality is equal to the size of the filters that the algorithm is to construct.

This means, for example, that if the algorithm should be able to use 1� 15 fil-

ter kernels, the canonical correlation vectors become 15-dimensional. In other

words, the pixel basis is not a good choice of signal representation in this problem

(see the discussion in chapter 3). Since we know a better representation for this

7.4 Discussion 141

Figure 7.20: Result for the pentagon images in colour. The upper im-

age displays the disparity estimate as the colour overlaid on the original

intensity image.

142 Disparity estimation using CCA

Figure 7.21: Result for the tree images in colour. The upper image dis-

plays the disparity estimate as the colour overlaid on the original intensity

image.

7.4 Discussion 143

problem (i.e. quadrature filters), it would be unwise not to use it.
The choice of neighbourhood for the CCA is of course important for the result.

If there is a priori knowledge of the shape of the regions that have relatively con-

stant depths, the neighbourhood should, of course, be chosen accordingly. This

means that if the disparity is known to be relatively constant along the vertical

axis, for example, the shape of the neighbourhood should be elongated vertically,

as in the experiments on artificial data in the previous section. It is, however,

possible to let the algorithm select a suitable neighbourhood shape automatically.

This may be done in two ways.

One way is to measure the canonical correlation for a few different neighbour-

hood shapes. These shapes could be, for example, one horizontally elongated, one

vertically elongated and one square. The algorithm should then use the result from

the neighbourhood that gave the highest canonical correlation to estimate the dis-

parity.

Another way to automatically select neighbourhood shape is to begin with

relatively small square-shaped neighbourhoods to get a coarse disparity estimate.

Then the disparity estimates are segmented. A second run of the algorithm can

then use neighbourhood shapes selected according to the shape of the segmented

regions. It should be noted that the neighbourhoods can be arbitrarily shaped and

even non-connected. The only advantage with a rectangular neighbourhood is

that it is computationally efficient when calculating the covariance matrices for

the CCA. But if this is utilized in the first run and the covariance matrices are

stored, they can simply be added when forming the new larger neighbourhoods in

the second run. On the tree image for example, this approach would give vertically

elongated neighbourhoods on the tree and horizontally elongated neighbourhoods

on the ground.

144 Disparity estimation using CCA

Chapter 8

Epilogue

In this final chapter, the thesis is summed up and discussed. To conclude, some
ideas for future research are presented.

8.1 Summary and discussion

The thesis started with a discussion of learning systems. Three different principles
of learning were described. Supervised learning can be seen as function approx-

imation. The need for a training set that has an associated set of desired output

restricts its use to tasks where such training data can be obtained. Reinforce-

ment learning, on the other hand, is more general than supervised learning and

we believe that it is an important general learning principle in complex systems.

Its relation to learning among animals and to evolution can support this position.

Unsupervised learning is a way of finding a data dependent representation of the

signals that is useful according to some criterion. We do not believe that unsu-

pervised learning is the highest general learning principle, since the performance

measure these methods are trying to maximize is related only to the internal data

representation and has nothing to do with the actual performance of the system in

terms of actions. Unsupervised learning can, however, be an important compo-

nent which helps the system find a good signal representation. It should again be

pointed out that the difference between the three learning principles is not so clear

as it might seem at first, as discussed in section 2.6.

For unsupervised learning, we believe that methods based on maximizing in-

formation are important. If nothing else is known about the optimum choice of

representation, it is probably wise to preserve as much information (rather than

variance, for example) as possible. It is, however, not only the amount of infor-

mation that is important. The information to be represented must be relevant for

the task. In other words, it must be related to information about possibly success-

146 Epilogue

ful responses; otherwise it is not useful. This makes methods based on maximum
mutual information good candidates.

The signal representation needs a model for the represented information. A
complex global model is not a realistic choice for large systems that have high-

dimensional input and output signals. The number of parameters to estimate

would be far too large and the structural credit assignment problem would be

unsolvable (see section 2.7.2). We believe that local low-dimensional linear mod-

els should be used. One reason for this is that only a small fraction of a high-

dimensional signal space will ever be visited by the signal. Furthermore, this

signal is (at least) piecewise continuous because of the dynamic of the real world,

which means that the signal can be represented arbitrarily well with local linear

models. How to distribute these models is only briefly mentioned in this thesis

(section 3.5). The interested reader is referred to the PhD thesis by Landelius

(1997) for a detailed investigation of this subject.

The choice of local linear models can be made according to different criteria

depending on the task. If maximum mutual information is the criterion, canonical

correlation analysis is a proper method for finding local linear models. CCA is

related to PCA, PLS and MLR which maximize other criteria, statistical or mean

square error (see chapter 4). An iterative algorithm for these four methods was

presented. The algorithm is more general and actually finds the solutions to the

generalized eigenproblem. An important feature of the proposed algorithm is that

it finds the solutions successively, beginning with the most significant one. This

enables low-rank versions of the solutions of the four methods which is necessary

if the signal dimensionality is high. Another nice feature is that the algorithm

gives the eigenvector and the corresponding eigenvalues and not only the normal-

ized eigenvectors as is the case with many other iterative methods.

It was shown that CCA can be used for learning feature descriptors for com-

puter vision. The proposed method allows the user to define what is equal in

two signals by giving the system examples. If other features are varied in an

uncorrelated way, the feature descriptors become invariant to these features. An

experiment showed that the system learned quadrature filters when it was trained

to represent orientation invariant to phase. When quadrature filter outputs are

used as input to the system, it learns to combine them in a way that is less sensi-

tive to noise than vector averaging without losing spatial resolution. For a 5 � 5

neighbourhood, the angular error of the orientation estimate was reduced by 4 dB

which is quite a substantial improvement. This method will most likely replace

vector averaging in many applications where there is a conflict between the need

for noise reduction and spatial resolution.

Another application of CCA in computer vision is stereo. A novel stereo

algorithm was presented in chapter 7. The algorithm is a bit unusual since first it

8.2 Future research 147

adapts filters to an image neighbourhood an then it analyses the resulting filters.
A more common approach in computer vision is first to optimize filters and then
to use these filters to analyse the image. Some interesting features of the proposed
algorithm are that it can handle depth discontinuities, multiple depths in semi-

transparent images and image pairs that are differently scaled. Although only one

basis filter set with two shifted identical filters has been tested, the results look

very promising both on real an artificial images. We believe that the proposed

method can be useful also in motion estimation, in particular on x-ray images

where there are multiple motions in semi-transparent images.

8.2 Future research

There is a number of ideas left open for future research. One interesting question

is how to combine reinforcement learning and mutual information based unsuper-

vised learning.

A rather ad hoc modification of the canonical correlation algorithm that can

handle very high-dimensional signals was presented. Other methods for handling

adaptive update factors should be investigated. Preliminary investigations indicate

that the RPROP algorithm (Riedmiller and Braum, 1993) can be modified to fit

our algorithm. Since the purpose of a gradient based algorithm is to handle very

high-dimensional signals, it is important that the algorithm is optimized to handle

such cases.

The theory for the gradient search method presented in chapter 4 was de-

veloped for real valued signals. In chapters 6 and 7, however, we have seen

that canonical correlation is useful also when analysing complex-valued signals.

Hence, an extension of the theory in chapter 4 to include complex-valued signals

is desirable.

One of the most interesting issues for future research based on this work is

to investigate how canonical correlation can be used in multidimensional signal

processing. The experiments in chapter 6 show that phase invariant orientation

filters can be learned by using this method. The use of this algorithm for detecting

other, higher-level, features should be investigated. Examples of such features are

line crossings, corners and even texture. Consider a pair of local neighbourhoods

with a given spatial relation as illustrated in figure 8.1. The spatial relation is de-

fined by a displacement vector r. If data are collected from such neighbourhood

pairs in a larger region of the image, a CCA would give the linear combination

of one neighbourhood that is the most predictable and at the same time the lin-

ear combination of the other neighbourhood that is the best predictor. For each

displacement, this would give a measure of the best linear relation between the

image patches and a description of that relation. This can be performed directly

148 Epilogue

r

x

y

Image region

Figure 8.1: Illustration of how CCA can be used for generating a texture
descriptor by analysing the linear relation between two neighbourhoods x

and by with a spatial relationship defined by the displacement vector r.

on the pixel data or on a filtered image. Consider, for example, a sine wave pattern
without noise. The canonical correlation for such an image would be one for all
displacements between the neighbourhoods. This is logical, since the pattern is
totally predictable. An ordinary correlation analysis, however, would give zero
correlations where the phase of the patterns differs 90�. A matrix containing the
largest canonical correlations for different neighbourhood displacements defines
the displacement vectors for which the patterns are linearly predictable. Instead
of the matrix, a tensor that contains the canonical correlation vectors can be used.
Such a tensor would be a descriptor of the texture. The use of such descriptors in
texture analysis should be investigated.

The generalization of the canonical correlation method aiming to find maxi-

mum mutual information as illustrated in figure 6.2 on page 109 should be investi-

gated. The non-linear functions fx and fy can be implemented as neural networks

with, for example, sigmoid or radial-basis functions. The neural networks are

trained, for example using back-propagation, in order to maximize the canonical

correlation ρ.

The method in chapter 6 is, of course, not limited to image data. Another

interesting application is speech recognition, where it is important to be invariant

with respect to how the words are pronounced.

Another very interesting issue is the extension of the stereo algorithm in chap-

8.2 Future research 149

ter 7 in order to estimate both vertical and horizontal shifts, i.e. two-dimensional

translations of the image. If the neighbourhoods are taken from different frames

in a temporal image sequence, the extended algorithm could be used for motion

estimation. The capability of handling multiple estimates in semi-transparent im-

ages would make this method interesting in medical applications. The problem of

estimating multiple motions exists for example in x-ray image sequences, where

different parts of the body move in different ways. The capability of handling scal-

ing between the images would make it possible to handle motions more complex

than pure translations, for example 3-dimensional rotations and deformations.

150 Epilogue

Appendix A

Definitions

In this appendix, some useful non-standard functions are defined. “,” means

“equal by definition”.

A.1 The vec function

Consider an m�n matrix M:

M = [m1 m2 : : : mn] (A.1)

where the columns mi are m-dimensional vectors. Then

v = vec(M),

0
BBB@

m1

m2

...

mn

1
CCCA (A.2)

A.2 The mtx function

Consider an mn-dimensional vector v. Then

M = mtx(v;m;n) , [m1 m2 : : : mn] (A.3)

where the columns mi are m-dimensional vectors.

152 Definitions

A.3 Correlation for complex variables

Consider x, y 2 C 1 with mean x̄ and ȳ respectively. The correlation between x and
y is defined as

Corr(x;y) =
E[(x� x̄)(y� ȳ)�]p
E[jx� x̄j2] E[jy� ȳj2]

(A.4)

Appendix B

Proofs

This appendix contains all the proofs referred to in the text.

B.1 Proofs for chapter 2

B.1.1 The differential entropy of a multidimensional Gaussian vari-

able

h(z) =
1

2
log
�
(2πe)N jCj

�
; (2.41)

where jCj is the determinant of the covariance matrix of z and N is the dimension-

ality of z.

Proof: The Gaussian distribution for an N-dimensional variable z is

p(z) =
1p

(2π)N jCj
e�

1
2

zT C�1z (B.1)

The definition of differential entropy (equation 2.38 on page 29) then gives

h(z) =�
Z
RN

p(z) log p(z) dz

=

Z
RN

p(z)

�
log

�q
(2π)N jCj

�
+

1

2
zT C�1z

�
dz

= log

q
(2π)N jCj + N

2
=

1

2
log
�
(2πe)N jCj

�
:

(B.2)

Here, we have used the fact thatZ
RN

p(z)zC�1z dz = E[zT C�1z] = E[tr(zzT C�1)] = N (B.3)

154 Proofs

B.2 Proofs for chapter 3

B.2.1 The constant norm of the channel set

∑8k jckj2 = constant where

ck =

8<
:cos2

�π
3 (x� k)

�
if jx� kj< 3

2

0 otherwise
(3.2)

(page 41).

Proof: Consider the interval �π
6 < x� π

6 . On this interval, all channels are zero
except for k =�1;0;1. Hence, it is sufficient to sum over these three channels.

∑ jckj
2
= cos4

hπ
3
(x�1)

i
+ cos4

hπ
3

x
i
+ cos4

hπ
3
(x+1)

i

=
1

4

 �
1+ cos

�
2π
3

x

��2

+

�
1+ cos

�
2π
3
(x�1)

��2

+

�
1+ cos

�
2π
3
(x+1)

��2
!

=
1

4

�
3+ cos2

�
2π
3

x

�
+ cos2

�
2π
3
(x�1)

�
+ cos2

�
2π
3
(x+1)

�

+2cos

�
2π
3

x

�
+2cos

�
2π
3
(x�1)

�
+2cos

�
2π
3
(x+1)

��

=
1

4

3+ cos2

�
2π
3

x

�
+

�
cos

�
2π
3

x

�
cos

�
2π
3

�
+ sin

�
2π
3

x

�
sin

�
2π
3

��2

+

�
cos

�
2π
3

x

�
cos

�
2π
3

�
� sin

�
2π
3

x

�
sin

�
2π
3

��2

+2cos

�
2π
3

x

�

+2

�
cos

�
2π
3

x

�
cos

�
2π
3

�
+ sin

�
2π
3

x

�
sin

�
2π
3

��

+2

�
cos

�
2π
3

x

�
cos

�
2π
3

�
� sin

�
2π
3

x

�
sin

�
2π
3

���

=
1

4

0
@3+ cos2

�
2π
3

x

�
+

�

1

2
cos

�
2π
3

x

�
+

p
3

2
sin

�
2π
3

x

�!2

+

�

1

2
cos

�
2π
3

x

�
�

p
3

2
sin

�
2π
3

x

�!2

+2cos

�
2π
3

x

�

+2

�

1

2
cos

�
2π
3

x

�
+

p
3

2
sin

�
2π
3

x

�!
+2

�

1

2
cos

�
2π
3

x

�
�

p
3

2
sin

�
2π
3

x

�!!

B.2 Proofs for chapter 3 155

=
1

4

3+ cos2

�
2π
3

x

�
+

1

4
cos2

�
2π
3

x

�
+

3

4
sin2

�
2π
3

x

�
�

p
3

2
cos

�
2π
3

x

�
sin

�
2π
3

x

�

+
1

4
cos2

�
2π
3

x

�
+

3

4
sin2

�
2π
3

x

�
+

p
3

2
cos

�
2π
3

x

�
sin

�
2π
3

x

�
+2cos

�
2π
3

x

�

� cos

�
2π
3

x

�
+

p
3sin

�
2π
3

x

�
� cos

�
2π
3

x

�
�
p

3sin

�
2π
3

x

��

=
1

4

�
3+ cos2

�
2π
3

x

�
+

1

2
cos2

�
2π
3

x

�
+

3

2
sin2

�
2π
3

x

��

=
9

8
:

This case can be generalized for any x that is covered by three channels of this
shape that are separated by π

3 .

B.2.2 The constant norm of the channel derivatives

∑8k j d
dx

ckj2 = constant (page 41).

Proof: The derivative of a channel k with respect to x is

d

dx
ck =�2π

3
cos

hπ
3
(x� k)

i
sin

hπ
3
(x� k)

i
:

156 Proofs

The sum is then

∑
���� d

dx
ck

����
2

=

�
2π
3

�2�
cos2

hπ
3

x
i

sin2
hπ

3
x
i

+ cos2
hπ

3
(x�1)

i
sin2

hπ
3
(x�1)

i
+ cos2

hπ
3
(x+1)

i
sin2

hπ
3
(x+1)

i�
=

�π
3

�2
�

sin2

�
2π
3

x

�
+ sin2

�
2π
3
(x�1)

�
+ sin2

�
2π
3
(x+1)

��

=

�π
3

�2

sin2

�
2π
3

x

�
+

�
sin

�
2π
3

x

�
cos

�
2π
3

�
� cos

�
2π
3

x

�
sin

�
2π
3

��2

+ sin2

�
2π
3

x

�
+

�
sin

�
2π
3

x

�
cos

�
2π
3

�
+ cos

�
2π
3

x

�
sin

�
2π
3

��2
!

=

�π
3

�2
�

sin2

�
2π
3

x

�
+2

�
sin2

�
2π
3

x

�
cos2

�
2π
3

�
+ cos2

�
2π
3

x

�
sin2

�
2π
3

���

=

�π
3

�2
�

sin2

�
2π
3

x

�
+2

�
3

4
cos2

�
2π
3

x

�
+

1

4
sin2

�
2π
3

x

���

=

�π
3

�2 3

4

�
cos2

�
2π
3

x

�
+ sin2

�
2π
3

x

��

=
π2

12
:

B.2.3 Derivation of the update rule for the prediction matrix mem-

ory

r = p+akqk2kvk2 (3.18)

Proof: By inserting equation 3.17 on page 49 into equation 3.14 on page 49, we
get

r = hW+aqvT j qvT i
= hW j qvT i+ ahqvT j qvT i
= p+a(qT qvT v)
= p+akqk2kvk2:

B.2.4 One frequency spans a 2-D plane

One frequency component defines an ellipse and, hence, spans a two-dimensional

plane (page 51).

B.3 Proofs for chapter 4 157

Proof: Consider a signal with frequency ω in an n-dimensional space:0
BBB@

a1 sin(ωt +α1)
a2 sin(ωt +α2)

...

an sin(ωt +αn)

1
CCCA= sin(ωt)

0
BBB@

a1 cosα1

a2 cosα2

...

an cosαn

1
CCCA+ cos(ωt)

0
BBB@

a1 sinα1

a2 sinα2

...

an sinαn

1
CCCA

= v1 sin(ωt)+v2 cos(ωt)

(B.4)

Remark: It should be noted that the two-dimensionality is caused by the differ-

ent phases αi. If all components have the same phase, the signal spans only one

dimension.

B.3 Proofs for chapter 4

B.3.1 Orthogonality in the metrics A and B

ŵT
i Bŵ j =

(
0 for i 6= j

βi > 0 for i = j
and ŵT

i Aŵ j =

(
0 for i 6= j

riβi for i = j
(4.6)

Proof: For solution i we have

Aŵi = riBŵi: (B.5)

The scalar product with another eigenvector gives

ŵT
j Aŵi = riŵ

T
j Bŵi (B.6)

and of course also

ŵT
i Aŵ j = r jŵ

T
i Bŵ j: (B.7)

Since A and B are Hermitian we can change positions of ŵi and ŵ j which gives

r jŵ
T
i Bŵ j = riŵ

T
i Bŵ j (B.8)

and hence

(ri� r j)ŵ
T
i Bŵ j = 0: (B.9)

158 Proofs

For this expression to be true when i 6= j, we have that ŵT
i Bŵ j = 0 if ri 6= r j. For

i = j we now have that ŵT
i Bŵi = βi > 0 since B is positive definite. In the same

way we have �
1

ri

� 1

r j

�
ŵT

i Aŵ j = 0; (B.10)

which means that ŵT
i Aŵ j = 0 for i 6= j. For i = j we know that ŵT

i Aŵi =
riŵ

T
i Bŵi = riβi.

B.3.2 Linear independence

fwig are linearly independent.

Proof: Suppose fwig are not linearly independent. This would mean that we
could write an eigenvector wk as

ŵk = ∑
j 6=k

γjŵ j: (B.11)

This means that for j 6= k,

wT
j Bwk = γjw

T
j Bw j 6= 0 (B.12)

which violates equation 4.6 on page 63. Hence, fwig are linearly independent.

B.3.3 The range of r

rn � r � r1 (4.7)

Proof: If we express a vector w in the base of the eigenvectors ŵi, i.e.

w=∑
i

γiŵi; (B.13)

we can write

r =
∑γiŵ

T
i A∑γiŵi

∑γiŵ
T
i B∑γiŵi

=
∑γ2

i αi

∑γ2
i βi

; (B.14)

B.3 Proofs for chapter 4 159

where αi = ŵT
i Aŵi and βi = ŵT

i Bŵi, since ŵT
i Aŵ j = ŵT

i Bŵ j = 0 for i 6= j. Now,
since αi = βiri (see equation 4.6 on page 63), we get

r =
∑γ2

i βiri

∑γ2
i βi

: (B.15)

Obviously this function has the maximum value r1 when γ1 6= 0 and γi = 0 8 i> 1
if r1 is the largest eigenvalue. The minimum value, rn, is obtained when γn 6= 0
and γi = 0 8 i < n if rn is the smallest eigenvalue.

B.3.4 The second derivative of r

Hi =
∂2r

∂w2

����
w=ŵi

=
2

ŵT
i Bŵi

(A� riB) (4.8)

Proof: From the gradient in equation 4.3 on page 61 we get the second deriva-

tive as

∂2r

∂w2
=

2

(wT Bw)2

��
A� ∂r

∂w
wT B� rB

�
wT Bw� (Aw� rBw)2wT B

�
: (B.16)

If we insert one of the solutions ŵi, we have

∂r

∂w

����
w=ŵi

=
2

ŵT
i Bŵi

(Aŵi� rBŵi) = 0 (B.17)

and hence

∂2r

∂w2

����
w=ŵi

=
2

ŵT
i Bŵi

(A� riB) : (B.18)

B.3.5 Positive eigenvalues of the Hessian

There exists a w such that

wT Hiw > 0 8 i > 1 (4.9)

160 Proofs

Proof: If we express a vector w as a linear combination of the eigenvectors we
get

βi

2
wT Hiw = wT (A� riB)w

= wT B(B�1A� riI)w

=∑γjŵ
T
j B(B�1A� riI)∑γjŵ j

=∑γjŵ
T
j B
�
∑r jγjŵ j�∑riγjŵ j

�
=∑γjŵ

T
j B∑(r j� ri)γjŵ j

=∑γ2
jβ j(r j� ri);

(B.19)

where βi = ŵT
i Bŵi > 0. Now, (r j� ri)> 0 for j < i so if i > 1 there is at least one

choice of w that makes this sum positive.

B.3.6 The partial derivatives of the covariance

(∂ρ
∂wx

= 1
kwxk(Cxyŵy�ρŵx)

∂ρ
∂wy

= 1
kwyk(Cyxŵx�ρŵy):

(4.17)

Proof: The partial derivative of ρ with respect to wx is

∂ρ
∂wx

=
Cxywykwxkkwyk�wT

x Cxywykwxk�1wxkwyk
kwxk2kwyk2

=
Cxyŵy

kwxk
� ρwx

kwxk2

=
1

kwxk
(Cxyŵy�ρŵx)

The same calculations can be made for ∂ρ
∂wy

by exchanging x and y .

B.3.7 The partial derivatives of the correlation

8><
>:

∂ρ
∂wx

= a
kwxk

�
Cxyŵy� ŵT

x Cxyŵy

ŵT
x Cxxŵx

Cxxŵx

�
∂ρ

∂wy
= a

kwyk
�

Cyxŵx� ŵT
y Cyxŵx

ŵT
y Cyyŵy

Cyyŵy

� (4.25)

B.3 Proofs for chapter 4 161

Proof: The partial derivative of ρ with respect to wx is

∂ρ
∂wx

=
(wT

x CxxwxwT
y Cyywy)

1=2Cxywy

wT
x CxxwxwT

y Cyywy

� wT
x Cxywy(w

T
x CxxwxwT

y Cyywy)
�1=2CxxwxwT

y Cyywy

wT
x CxxwxwT

y Cyywy

= (wT
x CxxwxwT

y Cyywy)
�1=2

�
Cxywy�

wT
x Cxywy

wT
x Cxxwx

Cxxwx

�

= kwxk�1(ŵT
x CxxŵxŵT

y Cyyŵy| {z }
�0

)�1=2

�
Cxyŵy�

ŵT
x Cxyŵy

ŵT
x Cxxŵx

Cxxŵx

�

=
a

kwxk

�
Cxyŵy�

ŵT
x Cxyŵy

ŵT
x Cxxŵx

Cxxŵx

�
; a� 0:

The same calculations can be made for ∂ρ
∂wy

by exchanging x and y .

B.3.8 Invariance with respect to linear transformations

Canonical correlations are invariant with respect to linear transformations.

Proof: Let

x = Axx0 and y = Ayy0; (B.20)

where Ax and Ay are non-singular matrices. If we denote

C0
xx = E[x0x0T]; (B.21)

the covariance matrix for x can be written as

Cxx = E[xxT] = E[Axx0x0T AT
x] = AxC0

xxAT
x : (B.22)

In the same way we have

Cxy = AxC0
xyAT

y and Cyy = AyC0
yyAT

y : (B.23)

Now, the equation system 4.26 on page 68 can be written as(
AT

x C0
xyAyŵy = ρλxAT

x C0
xxAxŵx

AT
y C0

yxAxŵx = ρλyAT
y C0

yyAyŵy

(B.24)

162 Proofs

or (
C0

xyŵ0
y = ρλxC0

xxŵ0
x

C0
yxŵ0

x = ρλyC0
yyŵ0

y;
(B.25)

where ŵ0
x =AT

x ŵx and ŵ0
y =AT

y ŵy. Obviously this transformation leaves the roots
ρ unchanged. If we look at the canonical variates,(

x0 = w0T
x x0 = wT

x AxA�1
x x = x

y0 = w0T
y y0 = wT

y AyA�1
y y = y;

(B.26)

we see that these too are unaffected by the linear transformation.

B.3.9 Relationship between mutual information and canonical cor-

relation

I(x;y) =
1

2
log

�
1

∏i(1�ρ2
i)

�
; (4.32)

where x and y are N-dimensional Gaussian variables and ρi are the canonical

correlations.

Proof: The differential entropy of a multidimensional Gaussian variable is

h(z) =
1

2
log

�
(2πe)N jCj

�
; (B.27)

where jCj is the determinant of the covariance matrix of z and N is the dimension-

ality of z (see proof B.1.1 on page 153). If z =
�

x
y

�
, the covariance matrix C can

be written as

C =

�
Cxx Cxy

Cyx Cyy

�
: (B.28)

By using the relation

jCj= jCxxj jCyy �CyxC�1
xx Cxyj (B.29)

(Kailath, 1980, page 650) and equation 2.42 on page 30, we get

I(x;y) =
1

2
log

� jCxxj jCyyj
jCj

�

=�1

2
log

� jCyy �CyxC�1
xx Cxyj

jCyyj

�
=�1

2
log

�
jI�C�1

yy CyxC�1
xx Cxyj

�
(B.30)

B.3 Proofs for chapter 4 163

assuming the covariance matrices Cxx and Cyy being non-singular. The eigenval-

ues to C�1
yy CyxC�1

xx Cxy are the squared canonical correlations (see equation 4.28

on page 68). Hence, an eigenvalue decomposition gives

I(x;y) =�1

2
log

���������
I�

2
6664

ρ2
1 0

ρ2
2

. . .

0 ρn

3
7775
���������
=�1

2
log∏

i

(1�ρ2
i)

=
1

2
log

�
1

∏i(1�ρ2
i)

�
(B.31)

since the eigenvalue decomposition does not change the identity matrix.

B.3.10 The partial derivatives of the MLR-quotient

8<
:

∂ρ
∂wx

= a
kwxk (Cxyŵy�βCxxŵx)

∂ρ
∂wy

= a
kwxk

�
Cyxŵx� ρ2

β ŵy

�
:

(4.44)

Proof: The partial derivative of ρ with respect to wx is

∂ρ
∂wx

=
(wT

x CxxwxwT
y wy)

1=2Cxywy

wT
x CxxwxwT

y wy

� wT
x Cxywy(w

T
x CxxwxwT

y wy)
�1=2CxxwxwT

y wy

wT
x CxxwxwT

y wy

= (wT
x CxxwxwT

y wy)
�1=2

�
Cxywy�

wT
x Cxywy

wT
x Cxxwx

Cxxwx

�

= kwxk�1(ŵT
x CxxŵxŵT

y ŵy| {z }
�0

)�1=2

�
Cxyŵy�

ŵT
x Cxyŵy

ŵT
x Cxxŵx

Cxxŵx

�

=
a

kwxk
(Cxyŵy�βCxxŵx) ; a� 0:

164 Proofs

The partial derivative of ρ with respect to wy is

∂ρ
∂wy

=
(wT

x CxxwxwT
y wy)

1=2Cyxwx

wT
x CxxwxwT

y wy

� wT
x Cxywy(w

T
x CxxwxwT

y wy)
�1=2wT

x Cxxwxwy

wT
x CxxwxwT

y wy

= (wT
x CxxwxwT

y wy)
�1=2

Cyxwx�

wT
x CxywywT

x Cxxwx

wT
x CxxwxwT

y wy

wy

!

= kwyk�1(ŵT
x Cxxŵx| {z }
�0

)�1=2
�
Cyxŵx� ŵT

x Cxyŵyŵy

�

=
a

kwxk

�
Cyxŵx�

ρ2

β
ŵy

�
; a� 0:

B.3.11 The successive eigenvalues

H = G�λ1ê1fT
1 (4.59)

Proof: Consider a vector u which is expressed as the sum of one vector parallel
to the eigenvector ê1, and another vector uo that is a linear combination of the
other eigenvectors and, hence, orthogonal to the dual vector f1.

u = aê1 +uo; (B.32)

where

fT
1 ê1 = 1 and fT

1 ûo = 0:

Multiplying H with u gives

Hu =
�
G�λ1ê1fT

1

�
(aê1 +uo)

= a(Gê1�λ1ê1)+(Guo�0)

= Guo:

(B.33)

This shows that G and H have the same eigenvectors and eigenvalues except
for the largest eigenvalue and eigenvector of G. Obviously the eigenvector cor-
responding to the largest eigenvalue of H is ê2.

B.4 Proofs for chapter 7 165

B.4 Proofs for chapter 7

B.4.1 Real-valued canonical correlations

The canonical correlations ρi are real valued.

Proof: The canonical correlations are eigenvalues to the matrix C�1
xx CxyC�1

yy Cyx:

C�1
xx CxyC�1

yy Cyxwx = ρiwx (B.34)

A = C�1
xx is Hermitian and positive definite. B = CxyC�1

yy Cyx is Hermitian. Then

AB = C�1
xx CxyC�1

yy Cyx is Hermitian (see proof B.4.2) and, hence, got real-valued

eigenvalues.

It should be noted that if A = C�1
xx only is positive semidefinite, A and B can

be projected into a subspace spanned by the eigenvectors of A corresponding to

the non-zero eigenvalues. This will give two new matrices A0 and B0 with the

same non-zero eigenvalues as A and B but with A0 positive definite. In this way it

can be shown that all non-zero correlations are real valued.

B.4.2 Hermitian matrices

If A is Hermitian and positive definite and B is Hermitian then AB is Hermitian.

Proof: By writing the singular value decomposition A= U�DU we see that also

C = U�D1=2U = A1=2 (B.35)

is Hermitian and positive definite. Then

CBC = C�B�C� = (CBC)� (B.36)

is Hermitian. But CBC and AB has got the same eigenvalues since

AB = C2B = C(CBC)C�1 (B.37)

is only a change of basis which does not change the eigenvalues.

166 Proofs

Bibliography

Anderson, J. A. (1972). A simple neural network generating an interactive mem-

ory. Mathematical Biosciences, 14:197–220.

Anderson, J. A. (1983). Cognitive and psychological computation with neural

models. IEEE Transactions on Systems, Man, and Cybernetics, 14:799–815.

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. John

Wiley & Sons, second edition.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Machine Learning: Proceedings of the Twelfth International

Conference, San Francisco, CA. Armand Prieditis and Stuart Russell, eds.

Baker, W. L. and Farell, J. A. (1992). Handbook of intelligent control, chapter

An introduction to connectionist learning control systems, pages 35–63. Van

Nostrand Reinhold, New York.

Ballard, D. H. (1987). Vision, Brain, and Cooperative Computation, chapter Cor-

tical Connections and Parallel Processing: Structure and Function. MIT Press.

M. A. Arbib and A. R. Hanson, Eds.

Ballard, D. H. (1990). Computational Neuroscience, chapter Modular Learning

in Hierarchical Neural Networks. MIT Press. E. L. Schwartz, Ed.

Barlow, H. (1989). Unsupevised learning. Neural Computation, 1:295–311.

Barlow, H. B., Kaushal, T. P., and Mitchson, G. J. (1989). Finding minimum

entropy codes. Neural Computation, 1:412–423.

Barnard, S. T. and Fichsler, M. A. (1982). Computational Stereo. ACM Comput.

Surv., 14:553–572.

Barto, A. G. (1992). Handbook of Intelligent Control, chapter Reinforcement

Learning and Adaptive Critic Methods. Van Nostrand Reinhold, New York. D.

A. White and D. A. Sofge, Eds.

168 Bibliography

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE Trans. on

Systems, Man, and Cybernetics, SMC-13(8):834–846.

Battiti, R. (1992). First and second-order methods for learning: Between steepest

descent and newton’s method. Neural Computation, 4:141–166.

Becker, S. (1996). Mutual information maximization: models of cortical self-

organization. Network: Computation in Neural Systems, 7:7–31.

Becker, S. and Hinton, G. E. (1992). Self-organizing neural network that discovers

surfaces in random-dot stereograms. Nature, 355(9):161–163.

Becker, S. and Hinton, G. E. (1993). Learning mixture models of spatial coher-

ence. Neural Computation, 5(2):267–277.

Bell, A. J. and Sejnowski, T. J. (1995). An information-maximization approach

to blind separation and blind deconvolution. Neural Computation, 7:1129–59.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press,

Princeton, NJ.

Bloom, F. E. and Lazerson, A. (1985). Brain, Mind, and Behavior. W. H. Freeman

and Company.

Bock, R. D. (1975). Multivariate Statistical Methods in Behavioral Research.

McGraw-Hill series in psychology. McGraw-Hill.

Borga, M. (1993). Hierarchical Reinforcement Learning. In Gielen, S. and Kap-

pen, B., editors, ICANN’93, Amsterdam. Springer-Verlag.

Borga, M. (1995). Reinforcement Learning Using Local Adaptive Models. Thesis

No. 507, ISBN 91–7871–590–3.

Borga, M. and Knutsson, H. (1998). An adaptive stereo algorithm based on canon-

ical correlation analysis. Submitted to ICIPS’98.

Borga, M., Knutsson, H., and Landelius, T. (1997a). Learning Canonical Correla-

tions. In Proceedings of the 10th Scandinavian Conference on Image Analysis,

Lappeenranta, Finland. SCIA.

Borga, M., Landelius, T., and Knutsson, H. (1997b). A unified approach to PCA,

PLS, MLR and CCA. Information Sciences. Submitted. Revised for second

review.

Bibliography 169

Bower, G. H. and Hilgard, E. R. (1981). Theories of Learning. Prentice–Hall,
Englewood Cliffs, N.J. 07632, 5 edition.

Bracewell, R. (1986). The Fourier Transform and its Applications. McGraw-Hill,

2nd edition.

Bradtke, S. J. (1993). Reinforcement learning applied to linear quadratic regu-

lation. In Advances in Neural Information Processing Systems 5, San Mateo,

CA. Morgan Kaufmann.

Bregler, C. and Omohundro, S. M. (1994). Surface learning with applications to

lipreading. In Advances in Neural Information Processing Systems 6, pages

43–50, San Francisco. Morgan Kaufmann.

Brooks, V. B. (1986). The Neural Basis of Motor Control. Oxford University

Press.

Broomhead, D. S. and Lowe, D. (1988). Multivariable functional interpolation

and adaptive networks. Complex Systems, 2:321–355.

Carson, J. and Fry, T. (1937). Variable frequency electric circuit theory with

application to the theory of frequency modulation. Bell Syste Tech. J., 16:513–

540.

Comon, P. (1994). Independent component analysis, a new concept? Signal

Processing, 36(3):287–314.

Coren, S. and Ward, L. M. (1989). Sensation & Perception. Harcourt Brace

Jovanovich, Publishers, San Diego, USA, 3rd edition. ISBN 0–15–579647–X.

Das, S. and Sen, P. K. (1994). Restricted canonical correlations. Linear Algebra

and its Applications, 210:29–47.

Davis, L., editor (1987). Genetic Algorithms and Simulated Anealing. Pitman,

London.

Denoeux, T. and Lengellé, R. (1993). Initializing back propagation networks with

prototypes. Neural Networks, 6(3):351–363.

Derin, H. and Kelly, P. A. (1989). Discrete-index markov-type random processes.

In Proceedings of IEEE, volume 77.

Duda, R. O. and Hart, P. E. (1973). Pattern classification and scene analysis.

Wiley-Interscience, New York.

170 Bibliography

Fieguth, P. W., Irving, W. W., and Willsky, A. S. (1995). Multiresolution model
development for overlapping trees via canonical correlation analysis. In In-

ternational Conference on Image Processing, pages 45–48, Washington DC.
IEEE.

Field, D. J. (1994). What is the goal of sensory coding? Neural Computation. in
press.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Ann. Eugenics, 7(Part II):179–180. Also in Contributions to Mathematical

Statisitcs (John Wiley, New York, 1950).

Földiák, F. (1990). Forming sparse representations by local anti-hebbian learning.

Biological Cybernetics.

Fletcher, R. and Reeves, C. M. (1964). Function minimization by conjugate gra-

dients. Computer Journal, 7:149–154.

Geladi, P. and Kowalski, B. R. (1986). Parial least-squares regression: a tutorial.

Analytica Chimica Acta, 185:1–17.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the

bias/variance dilemma. Neural Computation, 4:1–58.

Giles, G. L. and Maxwell, T. (1987). Learning, invariance, and generalization in

high-order neural networks. Applied Optics, 26(23):4972–4978.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Addison-Wesley.

Golub, G. H. and Loan, C. F. V. (1989). Matrix Computations. The Johns Hopkins

University Press, second edition.

Granlund, G. H. (1978). In search of a general picture processing operator. Com-

puter Graphics and Image Processing, 8(2):155–178.

Granlund, G. H. (1988). Integrated analysis-response structures for robotics sys-

tems. Report LiTH–ISY–I–0932, Computer Vision Laboratory, Linköping Uni-

versity, Sweden.

Granlund, G. H. (1989). Magnitude representation of features in image analysis.

In The 6th Scandinavian Conference on Image Analysis, pages 212–219, Oulu,

Finland.

Bibliography 171

Granlund, G. H. (1997). From multidimensional signals to the generation of re-

sponses. In Sommer, G. and Koenderink, J. J., editors, Algebraic Frames for

the Perception-Action Cycle, volume 1315 of Lecture Notes in Computer Sci-

ence, pages 29–53, Kiel, Germany. Springer-Verlag. International Workshop,

AFPAC’97, invited paper.

Granlund, G. H. and Knutsson, H. (1982). Hierarchical processing of structural

information in artificial intelligence. In Proceedings of 1982 IEEE Conference

on Acoustics, Speech and Signal Processing, Paris. IEEE. Invited Paper.

Granlund, G. H. and Knutsson, H. (1983). Contrast of structured and homogenous

representations. In Braddick, O. J. and Sleigh, A. C., editors, Physical and

Biological Processing of Images, pages 282–303. Springer Verlag, Berlin.

Granlund, G. H. and Knutsson, H. (1990). Compact associative representation of

visual information. In Proceedings of The 10th International Conference on

Pattern Recognition. Report LiTH–ISY–I–1091, Linköping University, Swe-

den, 1990.

Granlund, G. H. and Knutsson, H. (1995). Signal Processing for Computer Vision.

Kluwer Academic Publishers. ISBN 0-7923-9530-1.

Gray, R. M. (1984). Vector quaantization. IEEE ASSP Magazine, 1:4–29.

Gray, R. M. (1990). Entropy and Information Theory. Springer-Verlag, New York.

Gullapalli, V. (1990). A stochastic reinforcement learning algorithm for learning

real-valued functions. Neural Networks, 3:671–692.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Macmillan

College Publishing Company.

Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York.

Heger, M. (1994). Consideration of risk in reinforcent learning. In Cohen, W. W.

and Hirsh, H., editors, Proceedings of the 11th International Conference on

Machine Learning, pages 105–111, Brunswick, NJ.

Held, R. and Bossom, J. (1961). Neonatal deprivation and adult rearrangement.

Complementary techniques for analyzing plastic sensory–motor coordinations.

Journal of Comparative and Physiological Psychology, pages 33–37.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of

Neural Computation. Addison-Wesley.

172 Bibliography

Hinton, G. E. and Nowlan, S. J. (1987). How learning can guide evolution. Com-

plex Systems, pages 495–502.

Hinton, G. E. and Sejnowski, T. J. (1983). Optimal perceptual inference. In
Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, pages 448–453, Washington DC.

Hinton, G. E. and Sejnowski, T. J. (1986). Learning and relearning in Boltzmann
machines. In Rummelhart, D. E. and McClelland, J. L., editors, Parallel Dis-

tributed Processing: Explorations in Microstructures of Cognition. MIT Press,
Cambridge, MA.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-

lective computational capabilities. Proceedings of the National Academy of

Sciences, 79:2554–2558.

Hornby, A. S. (1989). Oxford Advanced Learner’s Dictionary of Current English.

Oxford University Press, Oxford, fourth edition. A. P. Cowie (ed.).

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal

components. Journal of Educational Psychology, 24:417–441, 498–520.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28:321–

377.

Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics,

2:211–228.

Hubel, D. H. (1988). Eye, Brain and Vision, volume 22 of Scientific American

Library. W. H. Freeman and Company. ISBN 0–7167–5020–1.

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurones in the

cat’s striate cortex. J. Physiol., 148:574–591.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and

functional architecture in the cat’s striate cortex. J. Physiol., 160:106–154.

Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear model.

Journal of Multivariate Analysis, 5:248–264.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). On the convergence of stochas-

tic iterative dynamic programming algorithms. Neural Computation, 6:1185–

1201.

Bibliography 173

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adap-

tion. Neural Networks, 1:295–307.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive

mixtures of local experts. Neural Computation, 3:79–87.

Jepson, A. D. and Fleet, D. J. (1990). Scale-space singularities. In Faugeras, O.,

editor, Computer Vision-ECCV90, pages 50–55. Springer-Verlag.

Johansson, B. (1997). Multidimensional signal recognition, invariant to affine

transformation and time-shift, using canonical correlation. Master’s thesis,

Linköpings universitet. LiTH-ISY-EX-1825.

Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag, New York.

Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical mixtures of experts and the

em algorithm. Neural Computation, 6(2):181–214.

Kailath, T. (1980). Linear Systems. Information and System Sciences Series.

Prentice-Hall, Englewood Cliffs, N.J.

Karhunen, K. (1947). Uber lineare methoden in der Wahrsccheilichkeitsrechnung.

Annales Academiae Scientiarum Fennicae, Seried A1: Mathematica-Physica,

37:3–79.

Kay, J. (1992). Feature discovery under contextual supervision using mutual in-

formation. In International Joint Conference on Neural Networks, volume 4,

pages 79–84. IEEE.

Knutsson, H. (1982). Filtering and Reconstruction in Image Processing. PhD

thesis, Linköping University, Sweden. Diss. No. 88.

Knutsson, H. (1985). Producing a continuous and distance preserving 5-D vector

representation of 3-D orientation. In IEEE Computer Society Workshop on

Computer Architecture for Pattern Analysis and Image Database Management

- CAPAIDM, pages 175–182, Miami Beach, Florida. IEEE. Report LiTH–ISY–

I–0843, Linköping University, Sweden, 1986.

Knutsson, H. (1989). Representing local structure using tensors. In The 6th Scan-

dinavian Conference on Image Analysis, pages 244–251, Oulu, Finland. Report

LiTH–ISY–I–1019, Computer Vision Laboratory, Linköping University, Swe-

den, 1989.

Knutsson, H., Borga, M., and Landelius, T. (1995). Learning Canonical Cor-

relations. Report LiTH-ISY-R-1761, Computer Vision Laboratory, S–581 83

Linköping, Sweden.

174 Bibliography

Kohonen, T. (1972). Correlation matrix memories. IEEE Trans.s on Computers,
C-21:353–359.

Kohonen, T. (1982). Self-organized formation of topologically correct feature

maps. Biological Cybernetics, 43:59–69.

Kohonen, T. (1989). Self-organization and Associative Memory. Springer–Verlag,

Berlin, third edition.

Landelius, T. (1993). Behavior Representation by Growing a Learning Tree. The-

sis No. 397, ISBN 91–7871–166–5.

Landelius, T. (1997). Reinforcement Learning and Distributed Local Model Syn-

thesis. PhD thesis, Linköping University, Sweden, S–581 83 Linköping, Swe-

den. Dissertation No 469, ISBN 91–7871–892–9.

Landelius, T., Borga, M., and Knutsson, H. (1996). Reinforcement Learning

Trees. Report LiTH-ISY-R-1828, Computer Vision Laboratory, S–581 83

Linköping, Sweden.

Landelius, T., Knutsson, H., and Borga, M. (1995). On-Line Singular Value

Decomposition of Stochastic Process Covariances. Report LiTH-ISY-R-1762,

Computer Vision Laboratory, S–581 83 Linköping, Sweden.

Lapointe, F. J. and Legendre, P. (1994). A classification of pure malt scotch

whiskies. Applied Statistics, 43(1):237–257.

Lee, C. C. and Berenji, H. R. (1989). An intelligent controller based on approxi-

mate reasoning and reinforcement learning. Proccedings on the IEEE Int. Sym-

posium on Intelligent Control, pages 200–205.

Li, P., Sun, J., and Yu, B. (1997). Direction finding using interpolated arrays in

unknown noise fields. Signal Processing, 58:319–325.

Linsker, R. (1988). Self-organization in a perceptual network. Coputer,

21(3):105–117.

Linsker, R. (1989). How to generate ordered maps by maximizing the mutual

information between input and output signals. Neural Computation, 1:402–

411.

Ljung, L. (1987). System Identification. Prentice-Hall.

Loéve, M. (1963). Probability Theory. Van Nostrand, New York.

Bibliography 175

Luenberger, D. G. (1969). Optimization by Vector Space Methods. Wiley, New
York.

Marr, D. (1982). Vision. W. H. Freeman and Company, New York.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115–133.

Mikaelian, G. and Held, R. (1964). Two types of adaptation to an optically–rotated
visual field. American Journal of Psychology, 77:257–263.

Minsky, M. L. (1961). Steps towards artificial intelligence. In Proceedings of the

Institute of Radio Engineers, volume 49, pages 8–30.

Minsky, M. L. (1963). Computers and Thought, chapter Steps Towards Artificial
Intelligence, pages 406–450. McGraw–Hill. E. A. Feigenbaum and J. Feldman,
Eds.

Minsky, M. L. and Papert, S. (1969). Perceptrons. M.I.T. Press, Cambridge, Mass.

Montanarella, L., Bassani, M. R., and Breas, O. (1995). Chemometric classifica-

tion of some European wines using pyrolysis mass spectometry. Rapid Com-

munications in Mass Spectrometry, 9(15):1589–1593.

Moody, J. and Darken, C. J. (1989). Fast learning in networks of locally-tuned

processing units. Neural Computation, 1:281–293.

Munro, P. (1987). A dual back-propagation scheme for scalar reward learning.

In Proceedings of the 9th Annual Conf. of the Cognitive Science Society, pages

165–176, Seattle, WA.

Narendra, K. S. and Thathachar, M. A. L. (1974). Learning automata - a survey.

IEEE Trans. on Systems, Man, and Cybernetics, 4(4):323–334.

Nordberg, K., Granlund, G., and Knutsson, H. (1994). Representation and Learn-

ing of Invariance. Report LiTH-ISY-I-1552, Computer Vision Laboratory, S–

581 83 Linköping, Sweden.

Oja, E. (1982). A simplified neuron model as a principal component analyzer. J.

Math. Biology, 15:267–273.

Oja, E. (1989). Neural networks, principal components, and subspaces. Interna-

tional Journal of Neural Systems, 1:61–68.

Oja, E. and Karhunen, J. (1985). On stochastic approximation of the eigenvectors

and eigenvalues of the expectation of a random matrix. Journal of Mathemati-

cal Analysis and Applications, 106:69–84.

176 Bibliography

Olds, J. and Milner, P. (1954). Positive reinforcement produced by electrical stim-

ulation of septal area and other regions of rat brain. J. comp. physiol. psychol.,

47:419–427.

Pavlov, I. P. (1955). Selected Works. Foreign Languages Publishing House,

Moscow.

Pearlmutter, B. A. and Hinton, G. E. (1986). G-maximization: An unsupervised

learning procedure for discovering regularities. In Neural Networks for Com-

puting: American Institute of Physics Conference Proceedings, volume 151,

pages 333–338.

Pearson, K. (1896). Mathematical contributions to the theory of evolution–III.

Regression, heridity and panmixia. Philosophical Transaction of the Royal

Society of London, Series A, 187:253–318.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.

Philosophical Magazine, 2:559–572.

Pollen, D. A. and Ronner, S. F. (1983). Visual cortical neurons as localized spatial

frequency filters. IEEE Trans. on Syst. Man Cybern., 13(5):907–915.

Riedmiller, M. and Braum, H. (1993). A direct adaptive method for faster back-

propagation learning: The rprop algorithm. In Proceedings of the IEEE Inter-

national Conference on Neural Networks, San Francisco, CA.

Ritter, H. (1991). Asymptotic level density for a class of vector quantization

processes. IEEE Transactions on Neural Networks, 2:173–175.

Ritter, H., Martinetz, T., and Schulten, K. (1989). Topology conseving maps for

learning visuomotor-coordination. Neural Networks, 2:159–168.

Ritter, H., Martinetz, T., and Schulten, K. (1992). Neural Computation and Self-

Organizing Maps. Addison-Wesley.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms. Spartan Books, Washington, D.C.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representa-

tions by back-propagating errors. Nature, 323:533–536.

Samuel, A. L. (1959). Some studies in machine learning using the game of check-

ers. IBM J. Res. Develop., 3(3):210–229.

Sanger, T. D. (1988). Stereo disparity computation using gabor filters. Biological

Cybernetics, 59:405–418.

Bibliography 177

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer feedforward

neural network. Neural Networks, 12:459–473.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of predic-

tion and reward. Science, 275:1593–1599.

Shannon, C. E. (1948). A mahtematical theory of communication. The Bell Sys-

tem Technical Journal. Also in N. J. A. Sloane and A. D. Wyner (ed.) Claude

Elwood Shannon Collected Papers, IEEE Press 1993.

Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis.

Prentice–Hall, Englewood Cliffs, N.J.

Smith, R. E. and Goldberg, D. E. (1990). Reinforcement learning with classifier

systems. Proceedings. AI, Simulation and Planning in High Autonomy Systems,

6:284–192.

Steinbuch, K. and Piske, U. A. W. (1963). Learning matrices and their applica-

tions. IEEE Transactions on Electronic Computers, 12:846–862.

Stewart, D. K. and Love, W. A. (1968). A general canonical correlation index.

Psychological Bulletin, 70:160–163.

Stewart, G. W. (1976). A bibliographical tour of the large, sparse generalized

eigenvalue problem. In Bunch, J. R. and Rose, D. J., editors, Sparse Matrix

Computations, pages 113–130.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning.

PhD thesis, University of Massachusetts, Amherst, MA.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.

Machine Learning, 3:9–44.

Tesauro, G. (1990). Neurogammon: a neural network backgammon playing pro-

gram. In IJCNN Proceedings III, pages 33–39.

Thorndike, E. L. (1898). Animal intelligence: An experimental study of the asso-

ciative processes in animals. Psychological Review, 2(8). Monogr. Suppl.

Torres, L. and Kunt, M., editors (1996). Video Coding: The Second Generation

Approach. Kluwer Academic Publishers.

van den Wollenberg, A. L. (1977). Redundancy analysis: An alternative for

canonical correlation analysis. Psychometrika, 36:207–209.

178 Bibliography

van der Burg, E. (1988). Nonlinear Canonical Correlation and Some Related

Techniques. DSWO Press.

van der Pol, B. (1946). The fundamental principles of frequency modulation.
Proceedings of the IEEE, 93:153–158.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge
University.

Werbos, P. (1992). Handbook of Intelligent Control, chapter Approximate dy-

namic programming for real-time control and neural modelling. Van Nostrand

Reinhold. D. A. White and D. A. Sofge, Eds.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis

in the Behavoral Sciences. PhD thesis, Harvard University.

Werbos, P. J. (1990). Consistency of HDP applied to a simple reinforcement

learning problem. Neural Networks, 3:179–189.

Westelius, C.-J. (1995). Focus of Attention and Gaze Control for Robot Vision.

PhD thesis, Linköping University, Sweden, S–581 83 Linköping, Sweden. Dis-

sertation No 379, ISBN 91–7871–530–X.

Whitehead, S. D. and Ballard, D. H. (1990a). Active perception and reinforcement

learning. Proceedings of the 7th Int. Conf. on Machine Learning, pages 179–

188.

Whitehead, S. D. and Ballard, D. H. (1990b). Learning to perceive and act. Tech-

nical report, Computer Science Department, University of Rochester.

Whitehead, S. D., Sutton, R. S., and Ballard, D. H. (1990). Advances in reinforce-

ment learning and their implications for intelligent control. Proceedings of the

5th IEEE Int. Symposium on Intelligent Control, 2:1289–1297.

Williams, R. J. (1988). On the use of backpropagation in associative reinforce-

ment learning. In IEEE Int. Conf. on Neural Networks, pages 263–270.

Wilson, R. and Knutsson, H. (1989). A multiresolution stereopsis algorithm based

on the Gabor representation. In 3rd International Conference on Image Pro-

cessing and Its Applications, pages 19–22, Warwick, Great Britain. IEE. ISBN

0 85296382 3 ISSN 0537–9989.

Wold, S., Ruhe, A., Wold, H., and Dunn, W. J. (1984). The collinearity prob-

lem in linear regression. the partial least squares (pls) approach to generalized

inverses. SIAM J. Sci. Stat. Comput., 5(3):735–743.

Bibliography 179

Zadeh, L. A. (1968). Fuzzy algorithms. Information and Control, 12:94–102.

Zadeh, L. A. (1988). Fuzzy logic. Computer, pages 83–93.

180 Bibliography

Author index

Anderson, C. W., 16, 20–22

Anderson, J. A., 48

Anderson, T. W., 25

Baird, L. C., 20

Baker, W. L., 52

Ballard, D. H., 19, 33, 35, 37, 38, 40

Barlow, H., 31

Barto, A. G., 16, 17, 19–22

Bassini, M. R., 69

Battiti, R., 11

Becker, S., 31, 69, 105, 108

Bell, A. J., 31

Bellman, R. E., 18

Berenji, H. R., 38

Bernard, S. T., 105

Bienenstock, E., 38

Bloom, F. E., 13

Bock, R. D., 60

Borga, M., 3, 53, 60, 61, 69, 107,
121

Bossom, J., 8, 65

Bower, G. H., 8

Bracewell, R. N., 99, 103

Bradtke, S. J., 20

Braum, H., 12, 147

Breas, O., 69

Bregler, C., 52

Brooks, V. B., 8, 65

Broomhead, D. S., 45

van der Burg, E., 33

Carson, J., 103

Comon, P., 70
Coren, S., 131

Darken, C. J., 45
Das, S., 69
Davis, L., 23
Dayan, P., 13, 20

Denoeux, T., 41
Derin, H., 17
Doursat, R., 38
Duda, R. E., 62
Dunn, W. J., 60, 67

Farell, J. A., 52
Fichsler, M. A., 105
Fieguth, P. W., 69
Field, D. J., 42
Fisher, R. A., 62
Fleet, D. J., 105
Fletcher, R., 11
Fry, T., 103
Földiák, F., 31

Geladi, P., 67
Geman, S., 38
Giles, G. L., 109
Goldberg, D. E., 23, 37

Golub, G. H., 60
Granlund, G. H., 38–40, 51, 52, 99,

101, 103, 109
Gray, R. M., 26, 30
Gullapalli, V., 16, 21

Hart, P. E., 62

182 Author index

Haykin, S., 11, 24, 30
Hebb, D. O., 24, 48
Heger, M., 19
Held, R., 8, 65
Hertz, J., 24, 26, 38, 39
Hilgard, E. R., 8
Hinton, G. E., 23, 28, 31, 36, 45,

105, 108
Holland, J. H., 23
Hopfield, J. J., 45
Hornby, A. S., 7
Hotelling, H., 60, 64, 69
Hubel, D. H., 26, 40
Höskuldsson, A., 60, 67

Irving, W. W., 69
Izenman, A. J., 60

Jaakkola, T., 20
Jacobs, R. A., 12, 28, 36, 38
Jepson, A. D., 105
Joahnsson, B., 51
Jolliffe, I. T., 65
Jordan, M. I., 20, 28, 36, 38

Kailath, T., 162
Karhunen, J., 82
Karhunen, K., 64
Kaushal, T. P., 31
Kay, J., 69, 70, 85
Kelly, P. A., 17
Knutsson, H., 3, 38–41, 51–53, 60,

61, 69, 99, 101, 103, 105,
107, 109, 121

Kohonen, T., 26, 27, 48, 49, 53
Kowalski, B. R., 67
Krogh, A., 24, 26, 38, 39
Kunt, M., 65

Landelius, T., 3, 9, 20, 51–53, 60, 61,
69, 107, 146

Lapointe, F. J., 69

Lazerson, A., 13
Lee, C. C., 38
Legellé, R., 41
Legendre, P., 69
Li, P., 69
Linsker, R., 30, 31
Ljung, L., 49
Loéve, M., 64
Love, W. A., 75
Lowe, D., 45
Luenberger, D. G., 11

Marr, D., 105
Martinetz, T., 53
Maxwell, T., 109
McCulloch, W. S., 44
Mikaelian, G., 8, 65
Milner, P., 13
Minsky, M. L., 35, 45, 46
Mitchson, G. J., 31
Montague, P. R., 13, 20
Montanarella, L., 69
Moody, J., 45
Munro, P., 9, 16

Narendra, K. S., 7
Nordberg, K., 39, 109
Nowlan, S. J., 23, 28, 36

Oja, E., 24–26, 82
Olds, J., 13
Omohundro, S. M., 52

Palmer, R. G., 24, 26, 38, 39
Papert, S., 45, 46
Pavlov, I. P., 7
Pearlmutter, B. A., 31
Pearson, K., 25, 64
Piske, U. A. W., 48
Pitts, W., 44
van der Pol, B., 103
Pollen, D. A., 1

Author index 183

Reeves, C. M., 11
Riedmiller, M., 12, 147
Ritter, H., 27, 53
Ronner, S. F., 1
Rosenblatt, F., 45
Ruhe, A., 60, 67
Rumelhart, D. E., 36, 45

Samuel, A. L., 19
Sanger, T. D., 25, 105
Schulten, K., 53
Sejnowski, T. J., 31, 45
Sen, P. K., 69
Shannon, C. E., 28, 29
Singh, S. P, 20
Skinner, B. F., 8
Smith, R. E., 37
Steinbuch, K., 48
Stewart, D. K., 60, 75
Sun, J., 69
Sutton, R. S., 16, 19–22, 36, 55

Tesauro, G., 14
Thathachar, M. A. L., 7
Thorndike, E. L., 7
Torres, L., 65

Van Loan, C. F., 60

Ward, L. M., 131
Watkins, C., 9, 19, 20
Werbos, P. J., 19, 20, 45
Westelius, C-J., 105

Whitehead, S. D., 19, 33, 35, 37

Wiesel, T. N., 26, 40

Williams, R. J., 16, 32, 36, 45

Willsky, A. S., 69

Wilson, R., 105

Wold, H., 60, 67

Wold, S., 60, 67

Wolfram, S., 13, 20

van den Wollenberg, A. L., 60

Yu, B., 69

Zadeh, L. A., 37, 38

