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ABSTRACT Bidirectional communication infrastructure of smart systems, such as smart grids, are vul-

nerable to network attacks like distributed denial of services (DDoS) and can be a major concern in the

present competitivemarket. In DDoS attack, multiple compromised nodes in a communication network flood

connection requests, bogus data packets or incoming messages to targets like database servers, resulting in

denial of services for legitimate users. Recently, machine learning based techniques have been explored

by researchers to secure the network from DDoS attacks. Under different attack scenarios on a system,

measurements can be observed either in an online manner or batch mode and can be used to build predictive

learning systems. In this work, we propose an efficient DDoS attack detection technique based on multilevel

auto-encoder based feature learning. We learn multiple levels of shallow and deep auto-encoders in an

unsupervised manner which are then used to encode the training and test data for feature generation. A final

unified detection model is then learned by combining the multilevel features using and efficient multiple

kernel learning (MKL) algorithm. We perform experiments on two benchmark DDoS attack databases and

their subsets and compare the results with six recent methods. Results show that the proposed method

outperforms the compared methods in terms of prediction accuracy.

INDEX TERMS Auto-encoder, cyber security, DDoS attack detection, multiple kernel learning, smart grid.

I. INTRODUCTION

Smart grid is an electrical supply network that combines an

existing power network with modern information technolo-

gies to respond more efficiently to the needs and distribu-

tion of energy. It offers several novel features that include

bi-directional communication, remote controlling of smart

home appliances, updates about consumer behavior and keep-

ing track of power grid’s stability. Such novel features need

integration of new services and devices as well as new stan-

dards and protocols for effective and simplified operation.

However, the incorporation of all these standards and devices

increases the complexity and vulnerability of the smart grid to

security threats. Particularly, the bidirectional and software-

oriented nature of the smart grid makes it very prone to cyber

attacks. A cyber attack can have a significant impact on the

whole grid that eventually will affect society, therefore, strict

security measures are required to safeguard the grid. As a

result, cybersecurity in the smart grid has become one of the

most important research problems recently.

The associate editor coordinating the review of this manuscript and
approving it for publication was Amedeo Andreotti.

To interrupt the normal safe operation of a power

grid or gain financial advantage, cyber attackers target dif-

ferent elements of cyber resiliency to manipulate the data

being communicated for power system operation and control.

These elements include data confidentiality, data integrity,

and data availability. Several prevention methods have been

implemented and investigated by researchers to protect the

network devices and databases from cyber intruders. For an

instant, Suo et al. [1] investigated the latest cyber attack

prevention technologies inclusively protecting sensor data,

communicational devices security using encryption mech-

anisms and cryptographic algorithms. Mehrdad et al. [2]

classified cyber attacks into two groups naming direct and

indirect cyber attacks and further sub-categorized the direct

cyber attacks into four sub-groups. Among them, data intru-

sion attacks are considered as the most common group of

cyber attacks and its most significant attack type is Denial

of services (DoS). In these attacks, to disrupt the normal

trend of services, the adversary introduces artificial loads

to the main service source and causes disruptions to the

normal legitimate service. Most current DoS attacks are dis-

tributed (DDoS) where attackers initiate attack from several
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adversaries simultaneously. Thus, detection and prevention of

attack from one node will not stop the attack andmake it more

complicated to differentiate between legitimate and artificial

service requests.

To enhance the security of the smart grid, DDoS attacks can

be detected by analyzing the patterns of network data. Auto-

matic analysis and detection methods enable in time response

and preventive measures which can significantly reduce the

damage. However, automatic prediction of DDoS attacks

is a challenging problem. The accuracy of a DDoS attack

prediction is the most critical factor for timely prevention of

the attacks. To enhance the accuracy, the prediction system

must learn important features from the network packets in an

efficient manner. This challenge can be tackled by employing

multiple learning models to enhance the prediction accuracy.

However, this introduces another challenge of the automatic

unification of multiple learning models. Therefore, to tackle

these challenges simultaneously, we propose an automatic

and efficient method for increasing the accuracy of DDoS

attack predictions by employing multiple learning models.

We exploit multilevel shallow and deep auto-encoders for

learning rich features. For this purpose, we employ the

Marginalized Stacked De-noising Auto-encoders [3] in our

work due to their improved training efficiency and high

accuracy. Features from a hierarchy of deep auto-encoders

are unified in a weighted fashion via an efficient Multiple

Kernel Learning (MKL) based on Dimensionality Reduc-

tion (MKLDR) algorithm [4]. The MKLDR algorithm is

effective for combining very high dimensional features and

learning a low dimensional space for classification. Our

proposed method is generic and applicable in many super-

vised learning problems that involve automatic model fusion.

We evaluate our method for DDoS attack prediction in this

paper.

Following are the main contributions of this work:

• For enhanced feature encoding, we propose multiple

levels of shallow and deep auto-encoders learned in

an unsupervised fashion from the available training

data.Multi-level auto-encoders have not been previously

explored for the DDoS detection problem.

• By unifying the encoded features from all levels we learn

the final more accurate detection model. For this pur-

pose, we propose to use multiple kernel learning which

automatically takes care of the relative importance of

different auto-encoder based features. A small unified

kernel is obtained which improves the efficiency of the

detection tasks in the testing phase.

• To the best of our knowledge, DDoS detection in smart

grid network using multilevel auto-encoders and MKL

has not been explored previously in the literature. The

proposed approach is extensively evaluated using bench-

mark datasets for DDoS detection in the smart grid net-

work. The results are compared to six DDoS detection

algorithms in terms of classification accuracy. Results

show that the proposed method outperforms the com-

pared algorithms.

The rest of the paper is organized as follows. Section 2 pro-

vides a literature review of the machine learning meth-

ods for DDoS detection in the smart grid network.

Section 3 describes the problem statement, deep learning,

andMKL.We first briefly discuss autoencoders (SDA,MDA,

MSDA) and MKL for Dimensionality Reduction (MKLDR)

algorithm. Next, we discuss our feature encoding strategy

and ensemble model learning. Then, the overall algorithm

for DDoS attack detection is presented. Section 4 presents

our experimental evaluation of the proposed method. Two

datasets available publicly are used to test our model. The

experimental set-up and parameter choice are briefly dis-

cussed. Finally, results, comparison with previous methods

and analysis are presented at the end. Section 5 presents the

conclusion of our work and discussion for future research

direction.

II. LITERATURE OVERVIEW

In this Section, we provide a review of pertinent literature

on DDoS attack detection in smart grid networks using

machine learning techniques. We summarize these tech-

niques in Table 1. The datasets collected and used for DDoS

attack detection in the smart grid network are also summa-

rized. Most of the previous methods use shallow learning

techniques or a combination of linear and non-linear methods

to achieve better results. For example, Aamir and Zaidi [5]

classified DDoS attacks using supervised machine learning

technique including Random Forests (RF), K-Nearest neigh-

bors (KNN) and Support Vector Machines (SVM). Wang

et al. [6] gather attacker information by introducing honey-

pots in advance metering infrastructure(AMI) of the smart

grid network and analyze the interaction between attacker and

defender using Bayesian-Nash equilibrium to apply defense

strategy accordingly. Diovu and Agee [7] prevent and mit-

igate DDoS attack impacts by reducing data computational

burden of AMI using a firewall integrated with the cloud

computing-based processing method. Srikantha and Kundur

[8] proposed a collaborative reputation topology configura-

tion based on the auto-healing method for the stability of

the overall power network, while one node of the network

is under attack. Varalakshmi and Selvi [9] detects and dis-

cards false malicious requests using information divergence

scheme.

Specifically used machine learning algorithms for DDoS

attack detection are Artificial Neural Networks (ANN),

K-nearest neighbor, Support vector machine(SVM), decision

tree and Naive Bayes. Generally, first, filtered network data

is stored in a database. Next, the normalization of extracted

features from the stored dataset for a stable training process

by machine learning algorithms is achieved. In the end, this

trained model is used with data packets of a real-time net-

work for the classification of DDoS attacked and legitimate

packets for further processing. Kumar and Selvakumar [10]

used multiple backpropagation models for basic results.

Q-statistics techniques along with Weighted Majority Voting

and Weighted Product Rule are used for selecting best back
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TABLE 1. Literature review of DDoS attack detection techniques using machine learning algorithms.

propagation model used initially, to enhance classification

accuracy. However, their technique requires a manual weight

setting which may not be accurate. Lu et al. [11] proposed

a DDoS attack detection method where the service source

sends pair of probes to service request node, and verify the

legitimacy of request using the gap between probes using

Fourier to time reconstruction algorithm. Berral et al. [12]

used the separate networks to collect data traffic informa-

tion from each node independently and then trained each

node of network with Naive Bayes algorithm to demean

DDoS attack impact on network by increasing efficiency of

DDoS attack detection time. According to Xu et al. [13],

majority of source IP addresses are new to target during

DDoS attack. They gathered data traffic information using

a source IP addresses and then applied reinforcement learn-

ing with Hidden Markov Models (HMM) for DDoS attack

and suspicious nodes detection. HHM is used for probabil-

ity estimation based on an observed sequence from newly

added IP addresses to place detection agents near to sus-

picious nodes. Stefan and O’Brien [14] gave attention to

utilize features of network data traffic flow and network

resources to entertain the majority of legitimate user requests.

Shon et al. [15] used Genetic Algorithm(GA) for features

selection frommaximum available fields of network data traf-

fic and then Support VectorMachine (SVM) for classification

of legitimate and DDoS infected packets. Manikopoulos and

Papavassiliou [16] used statistical Klomogrov-Smirnov test

to fetch similarities from network data measurements. After

that, they applied five distinct neural network techniques

for classification purposes. Backpropagation and hybrid

perception based back propagation neural network tech-

niques achieve the highest classification accuracy than others.

[10], [14], [16] specifically emphasis for DDoS attack detec-

tion using network data from each network packet with neural

network.

A brief look at the literature on DDoS attack detection

in the smart grid network reveals that the best performing

methods include the ones that use neural network-based mod-

eling strategies. However, DDoS attack detection has not

been previously explored using deep auto-encoder models.

Therefore, in this study, our focus is on learning multiple

levels of representations using auto-encoders and then com-

bining these representations using the MKL algorithm. Our

proposed method is simple yet more powerful as compared

to the previous methods that use linear modeling techniques.

III. PROPOSED METHOD

This section describes the proposed method for DDoS attack

detection in the smart grid network. The overall framework of

the proposed method for learning the DDoS attack detection

model in the smart grid network is illustrated in Figure 1.

First, the DDoS attack detection in the smart grid network

problem is formally defined. A brief introduction about the

auto-encoders and Marginalized De-noising Auto-encoders

is presented. After this, the theory of MKL is introduced and

the popular MKL algorithm called Multiple Kernel Learning

for Dimensionality Reduction (MKLDR) algorithm is sum-

marized. Finally, the overall detection algorithm is presented.

A. PROBLEM STATEMENT

Let X = {xi}
N
i=1 ∈ R

d×N be the labelled training data

containing d dimensional feature vectors of N different ser-

vice requests. Each vector xi ∈ R
d contain features about

customers such as source IP/port, destination IP/port, payload
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FIGURE 1. Illustration of the proposed method for learning a DDoS detection model: We first learn multilevel of shallow and deep auto-encoders in an
unsupervised fashion from the available training data. Next, we generate features for every training data sample by encoding them from the hierarchy of
the learned auto-encoders. In the next stage, the features are projected to a kernel space where they can be automatically combined in a weighted
fashion using MKL. A unified kernel is computed which is used to compute a DDoS detection model in a supervised fashion. The final detection model is
used for classification between the infected and non-infected data during test time.

bytes, packet pay size, packet reset average, destination to

source packets size, and idle time etc. We also have access

to the binary labels y = (ym)
N
m=1 also referred to as indicator

variables that convey the information whether service request

m is a legitimate (ym = 1) or illegitimate (ym = 0). The prob-

lem of DDoS attack detection involves learning a detection

model Z from the labeled training data X and subsequently

estimating the label yt of a test service requests feature vector

xt by using the learned model.

To tackle the above problem we propose to exploit deep

auto-encoders for feature learning and MKL framework for

detection model learning and classification. More specifi-

cally, we first train multiple deep auto-encoders to learn rich

features from training data in an unsupervised manner. Next,

the features are automatically combined using automatically

learned weights by MKL. The detection model obtained as a

result of the MKL algorithm is then used to classify the test

samples.

B. AUTO-ENCODERS

There are various categories of auto-encoders proposed pre-

viously in the deep learning literature [17]–[22]. Here we pro-

vide a brief description of how a conventional auto-encoder

is used to learn features from raw data. Consider the training

dataset X = {xi}
N
i=1 ∈ R

d×N introduced earlier. An auto-

encoder is trained using a backpropagation algorithm by set-

ting the inputs equal to the targets which are the input samples

itself. In other words the purpose of the encoder is to learn the

function hW ,b(xi) ≈ xi which means this encoder is learning

approximations to identity function, so that the output x̂i is

equal to xi.

Assume the dimensionality d of the input feature vectors

xi is 400 and the hidden layer units in L2 are 200. As the

numbers of hidden units are 200, it only learns the vector

of these hidden units, and then reconstructs the 400-feature

vector input xi. The reconstruction task becomes very dif-

ficult in case of a random input xi, which means each xi is

not depending on the same features. But if some features

x i of xi are same or linked with each other, this algorithm

will discover them. The above statements relied on a small

number of hidden layer units. But interesting structures can

still be discovered, if hidden units are larger in number even

lager then the input, by merging other constraints to network.

In the case of sigmoid activation function, when the output

value is near to 1, a neuron can be used as active, and when

output value is near 0, a neuron can be treated as inactive.
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Normally neurons are in an inactive state. Similarly, in the

case of tanh activation function, the state of neurons is nor-

mally inactive when the output value is near to −1.

Let a
(2)
j (xi) represents the activation of hidden unit,

the average activation function for hidden unit j is ρ̂ =
1
N

∑N
i=1[a

(2)
j (xi)]. Applying constraint ρ (sparsity parameter)

ρ̂ = ρ, usually value of ρ is near to zero like ρ = 0.09 etc.

This means, average activation of each hidden neuron j must

be near to 0 to satisfy this constraint. For this purpose the

objective function is
∑s2

j=1 ρlog
ρ

ρ̂j
+ (1 − ρ)log

1−ρ

1−ρ̂j
, where

s2 = the number of units in the hidden layer. According

to Kullback-Leibler (KL) divergence concept, it can also be

written as
∑s2

j=1KL(ρ||ρ̂j). Here the (KL) is basically the

divergence between a Bernoulli random variable with means

ρ and ρ̂j.We can easily find the differences between two

distributions using KL divergence. KL divergence become

zero if ρ̂j = ρ. Therefore the cost function is:

jsparse(W, b) = j(W, b) + β

s2
∑

j=1

KL(ρ||ρ̂j) (1)

Here, sparse penalty term weight is controlled by β. Average

activation of unit j depends upon ρ̂j and hidden unit activation

depends on factorW, b.

The above cost function is optimized using the backprop-

agation algorithm to learn the parameters W and b. In the

case of a small dataset, average activation can be found by

setting all forward passes to the training dataset. Then this

computed activation can be used to perform backpropagation

for other data samples. When a dataset is large, computer

memory might become an issue, therefore, forward passes

have to be set one by one, and in the end, their activations

should be summed up to compute ρ̂j.

C. STACKED DE-NOISING AUTO-ENCODER (SDA)

As previously explained, an auto-encoder consists of two

parts, an encoder h(.) that is used to map an input xi ∈ R
d to

some hidden representation h(xi) ∈ R
dh , and a decoder g(.)

that is used to map this hidden representation back to a recon-

structed version of xi, such that g(h(xi)) ≈ xi. The reconstruc-

tion error is expressed using some loss function l(xi, g(h(xi)))

and is minimized to learn the parameters of the auto-encoder.

The loss function can take different forms including the

squared error loss or Kullback-Leibler (KL) divergence.

De-noising auto-encoders work on the principal that the input

samples are corrupted slightly before mapping them into the

hidden layer representation. Their training involves recon-

struction of the (or denoising) of the actual input xi from

its corrupted version x̃i by minimizing l(xi, g(h(x̃i))). Various

forms of corruptions exist including additive isotropic Gaus-

sian noise or binary masking noise. Binary masking noise is

also popular which sets a portion of the features for each input

sample equal to zero. Several de-nosing auto-encoders can

be stacked (Stacked De-noising Auto-encoders (SDA) [23])

for learning deep feature representation consisting ofmultiple

layers.

Although SDAs [23] can be used to learn rich features for

classification, they have several disadvantages. For example,

their training time is slow due to the stochastic gradient

descent based back-propagation algorithm. SDAs also con-

tain multiple hyper-parameters such as learning rate, number

of epochs, noise ratio, mini-batch size and network structure,

which require tuning using a validation dataset. This can add

further time to the already slow training process. Moreover,

the optimization is non-convex and initialization plays a key

role in final the results.

D. MARGINALIZED DE-NOISING AUTO-ENCODER (MDA)

Recently, Chen et al. [3] proposed an improved version of

the SDA called Marginalized SDA (MDA) to improve the

training time significantly. The MDA algorithm reduces to a

closed form solution and thus does not require a backpropa-

gation algorithm to learn the network parameters. This makes

MDA computations more efficient as compared to conven-

tional SDA. Furthermore, several MDAs can be stacked

together to generate deep feature representation. Moreover,

the classification accuracy of the MDA has been found to be

similar to that of the SDA [3]. Therefore, inspired by these

advantages, we employ the MDA algorithm to learn robust

features for DDoS detection in this study.

The basic building block of the MDA is a single layer

de-noising auto-encoder. Each input sample xi from the train-

ing dataset X = {xi}
N
i=1 ∈ R

d×N is corrupted by randomly

removing features (setting them to zero). Specifically, a fea-

ture is given a value of 0 with probability p ≥ 0.

Let the corrupted version of xi is denoted by x̃i. In contrast

to the two step encoder and decoder mechanism in SDA,

MDA reconstructs from the corrupted input samples using a

single parameter matrix W : Rd → R
d , that minimizes the

following reconstruction loss:

1

2N

N
∑

i=1

||xi − Wx̃i||
2. (2)

Note, to incorporate the bias term in the formulation a con-

stant feature is added in the input feature vector, xi = [xi; 1].

This includes the bias into the parameters W = [W,b] and

the bias is not corrupted during MDA learning.

The solution to (2) depends on the random corruptions of

the individual features of the input. To reduce the variance,

MDA performs multiple iterations over the training data and

use different corruption in each iteration. Then, the parameter

matrix W is learned in a way that the overall squared loss is

minimized:

Lsq(W) =
1

2RN

R
∑

j=1

N
∑

i=1

||xi − Wx̃i,j||
2. (3)

where x̃i,j denotes the jth corrupted copy of the original

input xi.

Denote the R-times repeated version of the training data

matrix X as X̄ = [X, . . . ,X]. Similarly, the corrupted copy
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of X̄ is denoted as X̃. The overall loss in (2) can now be

written as:

Lsq(W) =
1

2RN
tr

[

(

X − WX̃)T
(

X − WX̃)

]

(4)

The closed form solution to (4) can be obtained by using least

squares algorithm [24]:

W = PQ−1 where Q = X̃X̃T and P = XX̃T (5)

The larger R is, the more corruption are averaged. Ideally,

R → ∞ means that to learn the parameter matrix W we

should use infinitely many versions of the corrupted data.

The matrices P and Q converge to their expected values R

and tends to infinity by using the weak law of large num-

bers. Therefore, the expectations of Q and P is derived and

expressed as the parameter matrix W as:

W = E[P]E[Q]−1. (6)

To compute the expectations of these two matrices let

E[Q] =

n
∑

i=1

E[x̃ix̃
T
i ]. (7)

A non-diagonal element in the matrix x̃ix̃
T
i remains un-

corrupted if the two features α and β survive the corruption

with probability (1 − p)2. This is done for the diagonal

elements with a probability 1 − p. Next, the vector q =

[1 − p, . . . , 1 − p, 1]T ∈ Rd+1, is defined in which qα

denotes the probability of a feature α which stays uncor-

rupted. Moreover, S = XXT is defined as the scatter matrix

of the uncorrupted input features and the expectation of the

matrix Q is expressed as:

E[Q]α,β =

{

Sαβqαqβ if α 6= β

Sαβqαqβ if α 6= β
(8)

In a similar way, the expectations of P can also be obtained

in closed-form as E[P]αβ = Sαβqβ . With the help of

these matrices of expectations, the re-constructive parameter

matrix W is computed directly without even constructing a

single corrupted input x̃i. Thus, this algorithm is termed as

Marginalized De-noising Auto-encoder (MDA).

The MDA algorithm has multiple advantages over the tra-

ditional DAs: For example,MDAneeds only a single iteration

over the data to compute the matrices E[Q],E[P]. Moreover,

the optimization problem is convex and has a globally optimal

closed-form solution.

Similar to SDAs, non-linearity can also be incorporated

in MDA using a non-linear transfer function h(.). More

specifically, the output of each MDA is passed through a

non-linear transfer function for non-linear mapping. In this

manner, the parameter matrix W will be able to learn non-

linear features. Several types of non-linear transfer functions

can be used such as sigmoid function, hyperbolic tangent and

the recently proposed rectifier linear unit [25]. In this study,

we use the tanh() transfer function.

E. FEATURE GENERATION USING MARGINALIZED

STACKED DE-NOISING AUTO-ENCODER (MSDA)

In this paper, we stack multiple layers of MDAs by con-

necting the output of the (t − 1)th MDA (after the transfer

function) to the input of the t th MDA. The output of the t th

MDA is ht and the original input is denoted to be h0 = x.

To stacke multiple MDAs, the training is performed in a

greedily layerwise fashion i.e. each parameter matrix Wt is

learned to reconstruct the previous layer output ht−1 using

all the possible corruptions and the output of the t th layer

becomes ht = tanh(Wtht−1). The stacked de-noising algo-

rithm is referred to asMarginalized StackedDe-noisingAuto-

encoder (MSDA) [3]. The key aspects which are responsible

for the success of the SDAs include its non-linearity and abil-

ity to learn deep features. MSDA framework also included

these capabilities in addition to its fast training time. Once

the auto-encoder is trained, we use it for non-linear feature

generation. To generate feature representation for a sample

xi we first pass it through the learned MSDA with L layers.

We then concatenate all the activations h0 − hL into a single

feature vector denoted as fi ∈ R
(d∗L).

To achieve a multilevel representation, we train a mixture

of shallow (having few layers) and deep (having many lay-

ers) MSDAs. Specifically, we train M number of different

MSDAs having a different numbers of layers to generate M

multiple feature representations of a sample xi (See Fig. 1).

Thus the training data X is transformed to Fm = {fmi }Ni=1
under the mth representation. Such multilevel representation

is more discriminative than the single level representation.

IV. MULTIPLE KERNAL LEARNING (MKL)

Several previousworks like [26]–[30] shows that the accuracy

of a classifier can be greatly enhanced by fusing multiple

features. Therefore, in this work, we propose to use MKL

to learn a unified detection model from the multilevel auto-

encoder features. For this purpose, we choose an efficient

MKL algorithm called Multiple Kernel Learning for Dimen-

sionality Reduction (MKLDR) [4] algorithm.

A. THE MULTIPLE KERNEL LEARNING FOR

DIMENSIONALITY REDUCTION (MKLDR) ALGORITHM

The MKLDR algorithm [4] optimally combines several fea-

ture representation into a unified feature representation.

MKLDR gives a general dimension reduction framework

for features representation of data using multiple kernels.

MKLDR effectively works in learning a detection model

for supervised learning problems. Here we gave a descrip-

tion of the MKLDR algorithm. First, the process of mak-

ing base kernels from multiple features representations are

explained. Next, the process of learning the ensemble kernel

in a discriminative dimensionality reduction framework is

explained.

Let M be the number of MSDAs so that each sample in

our training data has M different feature representations i.e

the training data X is transformed to Fm = {fmi }Ni=1 ∈ R
d×N
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under the mth deep representation. First, each feature repre-

sentation is described as a kernel matrix. For this purpose,

a distance matrix Dm ∈ R
N×N is constructed Dm(i, j) =

dm(f
m
i , fmj ); where dm is the distance under the m feature

representation. The groupwise distances of data samples

are converted to kernal matrices [31], [32] using the Gaus-

sian kernel as Km(i, j) = exp

(

−D2
m(f

m
i ,fmj )

σ 2
m

)

, where σm

is the Gaussian scale factor. Next, for M kernel matrices

{Km}Mm=1, the MKLDR algorithm learns an ensemble kernel

in a weighted fashion as:

k(fmi , fmj ) =

M
∑

m=1

βmkm(f
m
i , fmj ), βm ≤ 0, (9)

where the weights βm for each kernel are automatically

learned in a discriminative learning framework. Km may not

be always positive, but by adding the smallest eigenvalue

of Km into the diagonal, this issue can be resolved [32].

In case if it’s still negative, then the absolute value is added

to the diagonal of Km. The optimal weights β1, β2, . . . .βM
can now be learned for fusing theseM different types of deep

feature representations. This makes the MKLDR algorithm

applicable to many diverse input kernels and distance mea-

sures efficiently. Kernelization in MKLDR is nearly similar

to kernel PCA in [33], but the only difference is that MKLDR

uses more than one kernels {km}Mm=1 [34].

Let φ : Fm →: F is feature mapping induced by K such

that fmi → φ(fmi ), for i = 1, 2, . . . .N . The MKLDR uses

the kernel trick to learn a projection v and the weights βm
simultaneously

vTφ(fmi ) =

N
∑

n=1

M
∑

m=1

αnβmkm(f
m
n , fmi ) = αTK(i)β (10)

where β = [β1 . . . .βM ]T ∈ R
M , α = [α1 . . . .αN ]

T ∈ R
N

and

K
(i) =







K1(1, i) . . . KM (1, i)
...

. . .
...

K1(N , i) . . . KM (N , i)







With (10) the constrained optimization problem for

one-dimensional MKLDR is as follow:

min
α,β

N
∑

i,j=1

||αTK(i)β − αTK(j)β||2wij (11)

s. t.

N
∑

i,j=1

||αTK(i)β − αTK(j)β||2w′
ij = 1,

βm ≥ 0 for m = 1, 2, . . . ,M . (12)

The positivity constraints in (12) are introduced so that the

learned ensemble kernelK inMKLDR is a non-negative com-

bination of the individual base kernels. Note that v denotes

the one-dimensional projection consisting of the coefficients

in the vector α and the kernel weights β. These two vectors

contribute to the construction of the projection according to

the respective strength of the input samples and the base

kernels. To derive a multidimensional version of the projec-

tion v, P coefficient vectors learned can be represented as

A = [α1 α2 . . . . .αP].

Given the projection matrix A and weight vector β, each

one dimensional projection vi can be found by the respective

coefficient vector αi and the kernel weight vector β. The

learned projection matrix V = [v1 v2 . . . . .vP] can now

project samples to the P-dimensional Euclidean space where

classification can be performed. Analogously to the one

dimensional case, the sample projection xi can be expressed

as VTφ(xi) = AT
K

(i)β ∈ R
P.. The optimization problem

(11) is extended for the multidimensional case as:

min
A,β

N
∑

i,j=1

||AT
K

(i)β − AT
K

(j)β||2wij (13)

s. t.

N
∑

i,j=1

||AT
K

(i)β − AT
K

(j)β||2w′
ij = 1,

βm ≥ 0, for m = 1, 2, . . . ,M . (14)

The four types of spaces involved in theMKLDRalgorithm

are illustrated in Fig. 1. These include the input feature space

consisting of the deep features learned viaMSDAs, the kernel

space which consists of the input features mapped to a Repro-

ducing Kernel Hilbert Space (RKHS) via a valid kernel and

the Euclidean space where the projection model is learned.

As the direct optimization of a problem (13) is often diffi-

cult, MKLDR algorithm [4] uses an iterative two-step algo-

rithm to optimize A and β in an alternating fashion. In every

iteration, the optimization of one ofA or β is performedwhile

the other is fixed. The roles of A and β are switched. These

iterations are repeated until convergence is achieved or up to

some maximum number of iterations.

Optimizing A. By fixing β and using the property ||u||2 =

trace(uuT ) for a column vector u, the optimization problem

(13) is reduced to

min
A

trace(ATSβ
w,A)

s. t. trace(ATSβ
w,A) = 1 (15)

where

S
β
W =

N
∑

i,j=1

wij(K
(i) − K

(j))ββT (K(i) − K
(j))T

S
β

W ′ =

N
∑

i,j=1

w′
ij(K

(i) − K
(j))ββT (K(i) − K

(j))T (16)

where W and W′ are the affinity matrices defined for a

specific dimensionality reduction framework e.g. Linear Dis-

criminant Analysis (LDA) and wij and w′
ij represents the

values at the index ij. It can be observed that the problem

(15) is a trace ratio optimization problem, minA
trace(AT S

β
wA)

trace(AT S
β

w′A)
.

Following [35] and [36], a closed-form solution can be
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obtained by converting (15) into a corresponding ratio trace

problem, i.e., minA trace[(A
TS

β

w′A)
−1(ATS

β
wA)].

Consequently, the columns of the optimal A∗ =

[α1 α2 . . . . .αP], consists of the eigenvectors that correspond

to the first P smallest eigenvalues of S
β
wα = λS

β

w′α.

Optimizing β. Next, A is fixed and letting ||u||2 = uT u,

the problem in (13) now reduces to:

minβ βTSAwβ

s. t. βTSAwβ = 1

and β ≥ 0, (17)

where

SAW =

N
∑

i,j=1

wij(K
(i) − K

(j))TAAT (K(i) − K
(j)),

SAW ′ =

N
∑

i,j=1

w′
ij(K

(i) − K
(j))TAAT (K(i) − K

(j)) (18)

The additional constraints β ≥ 0 make the optimization

of problem (17) to be no longer a generalized eigenvalue

problem. Rather, the problem now becomes a non-convex

quadratically constrained quadratic programming (QCQP)

problem, which is generally hard to solve. One way to solve it

is to use its convex relaxation by adding the auxiliary variable

B of size M ×M :

min
β,B

trace(SAw,B) s. t. trace(SAw,B) = 1 (19)

eTmβ ≥ 0, m = 1, 2, . . . . .,M (20)
[

1 βT

β B

]

� 0 (21)

where em in (20) is a column vector of zeros except having

a 1 at themth index. Moreover, the constraint in (21) enforces

that the square matrix should be positive semi-definite. The

above problem is solved using the semi-definite program-

ming (SDP) as explained in [4].

The algorithm of MKLDR needs an initial value for either

A or β in the alternating optimization. Two different vari-

ations can be used. For example, β can be initialized by

setting all the weight elements to 1. Similarly, A can also be

initialized by setting it to identity matrix AAT = I . Usually,

the second initialization strategy achieves better results than

the first strategy. In our experiments, we used the second

initialization strategy to learn our model.

B. TEST SAMPLE CLASSIFICATION

After accomplishing the training procedure of MKLDR,

we are ready to project a testing sample which is encoded

from the multilevel auto-encoders, say ft , into the learned

space of lower dimension by

xt 7→ AT
K

(z)β, (22)

where K(z) ∈ R
N×M and K

(z)(n,m) = km(fn, ft ).

After the low dimensional feature representation is obtain

for ft we use the Nearest Neighbor (NN) classifier to estimate

the label.

V. EXPERIMENTAL RESULTS

We perform experiments on two benchmark intrusion detec-

tion datasets and compare the results of the proposed algo-

rithms in terms of DDoS detection accuracy with six recent

machine learning based DDoS detection algorithms. These

methods include Naive-Bayes [37], Decision Tree [37],

KN [38], LSVM [38], Random Forest [39] and LSTM [39].

For the baseline, we learn a detection model using the linear

SVM on the raw features of the labeled training data. The

details of the datasets used in our experiments are provided

below.

A. UNB ISCX INTRUSION DETECTION

EVALUATION 2012 DATASET

The first publicly available dataset used in our experiments

is UNB ISCX Intrusion Detection Evaluation 2012 dataset

named IDE2012. We use the 11th June testbed named

as IDE2012/11 and 16th June testbeds [40] named as

IDE2012/16. In the IDE2012/11, there are 325,757 samples

(packets) each having 204 features. Similarly, in IDE2012/16,

there are 464,989 samples each having 204 features. The

labels of each sample are provided as safe, unsafe, acceptable

and unrated. We discretize the labels into safe (0), unrated

(1) and acceptable (2). Some example features of each data

packet include values such as source port, destination port,

event generator, event signature, event priority, ndpi risk,

ndpi detected protocol, payload bytes first, etc. Features that

are not numbers were discretized. According to this dataset,

10000 packets are infected by DDoS attacks, which is 15% of

total packets, showing 15% is the infection rate. Part of this

dataset is shown in Table 2.

TABLE 2. Example features and their corresponding labels of four
packets in the IDE2012/11 DataSet.

To test our model’s ability to learn from various amounts

of data, we also randomly sample 10,000 samples from each

dataset. In addition to the two-class classification settings

safe (0), unsafe (1), we also evaluate our model on the four

class classification settings where the labels correspond to

safe (0), unsafe (1), acceptable (2) and unrated (3). The details

and names for these splits of the datasets are shown in Table 3.
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FIGURE 2. The Average accuracy of the proposed method on the 16 datasets.

TABLE 3. Details of the packets, features, and subsets generated from
the IDE2012 Dataset.

B. UNSW-NB15 DATASET

The next publicly available dataset that we used in our

experiments is the UNSW-NB15 [41] dataset. The Australian

Center for Cyber Security (ACCS) used the IXIA Perfect-

storm tool to create the UNSW-NB15 dataset. There is a total

of 7,00,001 packets (samples) each having 49 features. Some

example features include source IP, source port, destina-

tion IP, destination port, transaction protocol, state, duration,

source jitters (mSec), destination jitters (mSec), record start

time, record last time and attack category, etc. For our work,

we convert the non-number feature into discrete features. The

labels are provided as non-attack and attack.We discretize the

labels as an attack (0) and non-attack (1). Again, to push our

model limits divided 4 sets of this dataset as shown in Table 4.

VI. EXPERIMENTAL SETUP

In total, we have 16 datasets named D1 to D16. To evaluate

our model, we randomly divide these datasets into two por-

tions, one having 80% data, and the other one with 20% data

of this dataset. 80%of data is then used to train ourmodel, and

20% is for testing purposes. This process is repeated 10 times

and average accuracy is reported for 10 experiments.

TABLE 4. Details of the packets, features and subsets generated from the
UNSW-NB15 dataset.

To analyze the performance of the proposed algorithm,

we used the following performance indicators. TN (True

Negative) is used for the amount of normal data detected

as normal. FN (False Negative) is used for the amount of

normal data detected as infected. TP (True Positive) is used

for the amount of infected data detected as infected.FP (False

Positive) is used for the amount of infected data detected as

normal. These quantities are used to measure the Accuracy=
TN+TP

TN+FN+TP+FP of the proposed algorithm.

The proposed algorithm includes the parameters of the

MSDA and the parameters of the MKLDR algorithm. For

feature learning the parameters include a number of deep

MSDAsM , corruption probability p and the number of layers

in each MSDA L. We use M = 9 MSDAs in our experi-

ments. The number of layers in each MSDA is selected as

Lm = [1, 3, 5, 7, 9, 11]. The corruption probability pm for

each MSDA is set from the set 0.1,0.2,. . . ,0.5. Note that these

parameters can also be further tuned in a cross-validation

framework for more improved results. ForMKL theMKLDR

algorithm includes the Gaussian scale factor for each ker-

nel σm, the choice of dimensionality reduction algorithm to

compute the affinity matrices W, W′ and the dimensionality

of the low dimensional space. In MKLDR the parameter σm
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TABLE 5. Average accuracy and standard deviations of 10-fold cross validation experiments.

FIGURE 3. Effect on the accuracy by using a different number of MSDAs on subsets of ISCX IDE 11-June dataset. The final accuracy saturates
beyond using 7 MSDAs.

is automatically tuned by the method given in [4]. For the

computation of affinity matrices, we select the LDA algo-

rithm. The parameters of the compared algorithms are set

according to the recommendations of the original authors

to achieve the best results. For both datasets and their sub

datasets, we perform 10-fold cross-validation and the average

of the 10-folds is presented as the final detection accuracy.

All the experimentation were performed on a computer with

32.5 GB memory and NVIDIA Tesla V100 GPUs using

Matlab implementations.

VII. RESULTS AND ANALYSIS

Figure 2 shows that the average accuracy achieved by the

proposed method on the 16 datasets. Achieved accuracy with

large datasets (D1,D3,. . . ,D15) is slightly lower as compared

to accuracy achieved on the smaller datasets. This is because

of large number of test sets in large dataset. However, the pro-

posed method can learn equally good features from both

small and large datasets. The highest accuracy of 97% is

achieved on the D2 dataset.

Table 5 shows a comparison of the average accuracy of

the proposed method with six other machine learning based

methods for DDoS attack detection. It can be observed that

the proposed algorithm has significantly outperformed the

compared algorithms. This is because our algorithm is able

to learn rich features in multiple auto-encoders and then

combine these representations in the kernel domain. Most of

the previousmethods use a single representation that is unable

to achieve satisfactory accuracy. Our algorithm, on the other

hand, uses multiple deep models that are able to learn useful
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FIGURE 4. Relationship of the number of MSDAs vs the final accuracy on different subsets of ISCX IDE 16-June dataset. The final accuracy
saturates beyond using 8 MSDAs.

FIGURE 5. Relationship of the number of MSDAs vs the final accuracy on different subsets of UNSW NB15 1 and 2 datasets. The final accuracy
saturates beyond using 8 MSDAs.

FIGURE 6. Relationship of the number of MSDAs vs the final accuracy on different subsets of UNSW NB15 3 and 4 datasets. The final accuracy
saturates beyond using 7 MSDAs.

features from the training data. The LSTM [39] based method

achieves better results than the other compared methods.

However, due to the fusion of multiple models, our proposed

method achieved better results than the standalone LSTM

based method.

A. EFFECT OF NUMBER OF MSDAS USED ON ACCURACY

We analyze the accuracy of the proposed method by fusing

a different number of MSDAs to build the final classifier.

These experiments were performed on the D1-D16 datasets.

Specifically, we vary the number of MSDAs to be fused from

2 to 10. The number of layers in each MSDA is randomly

chosen from the set Lm = [1, 3, 5, 7, 9, 11]. These MSDAS

are then fused using the MKLDR algorithm to obtain a final

classifier. Figure (3)(4)(5)(6) shows the accuracy of vary-

ing the number of MSDAs in case of each dataset. It can

be observed that for each dataset the accuracy increases as

we increase the number of MSDAs. However, the accuracy
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saturates at around 6 MSDAs. This trend shows that the

proposed fusion method is effective.

VIII. CONCLUSION

We presented a DDoS attack detection system based on

multilevel deep learning technology. The overall system is

targeted towards more accurate and more efficient DDoS

attack detection in the smart grid network. Our algorithm

exploits both shallow and deep auto-encoders for learning

powerful features in an unsupervised manner. Features from

multilevel auto-encoders are combined usingMultiple Kernel

Learning (MKL) that automatically learns the weights of

the features in the ensemble. Experiments are performed on

two benchmark DDoS attack detection databases (and their

subsets) and the results are compared with six state-of-the-

art methods. Our results show that the proposed method

outperforms the compared methods in terms of accuracy and

simplicity. In the future, this work can be implemented in a

run time environment for securing against DDoS attacks.
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