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ABSTRACT
We introduce a mixture model of trees to describe evolution-
ary processes that are characterized by the accumulation
of permanent genetic changes. The basic building block
of the model is a directed weighted tree that generates a
probability distribution on the set of all patterns of genetic
events. We present an EM-like algorithm for learning a mix-
ture model of K trees and show how to determine K with
a maximum likelihood approach. As a case study we con-
sider the accumulation of mutations in the HIV-1 reverse
transcriptase that are associated with drug resistance. The
fitted model is statistically validated as a density estimator
and the stability of the model topology is analyzed. We ob-
tain a generative probabilistic model for the development of
drug resistance in HIV that agrees with biological knowl-
edge. Further applications and extensions of the model are
discussed.
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1. INTRODUCTION
Despite the introduction of 18 different drugs that in-

hibit replication of human immunodeficiency virus type 1
(HIV-1), therapeutic success is still limited. A major factor
contributing to therapy failure even of modern combination
therapies (highly active antiretroviral therapy, HAART) is
the virus’ ability to escape from drug pressure by develop-
ing drug resistance [28, 35]. This escape mechanism is based
on HIV’s high rates of replication and mutation. Residual
viral reproduction under therapy allows for generating ge-
netic variants that have a selective advantage under drug
pressure. Eventually, some of these mutants may replicate
as well or nearly as well as a wild type virus and thus lead
to viral rebound.

Considerable work has been carried out on characterizing
the relationship between genetic changes in the viral drug
targets and phenotypic drug resistance. Many single mu-
tations have been linked to resistance against one or more
drugs [32]. Mutational patterns conferring resistance have
been identified by several statistical and machine learning
methods [2, 4, 31]. Some computational approaches make
use of this (either data-derived or expert) knowledge in or-
der to find optimal drug combinations based on sequence
information on the viral drug targets [1, 25]. In particular,
it has been shown that predictions of clinical response can
benefit from exploring possible mutational pathways of the
virus.

However, much less is known about how resistance-
associated mutations accumulate. Some mutations are
known to occur preferentially in clusters [3, 15, 37], but the
order of accumulation is usually unknown. Only a few stud-
ies based on longitudinal (time series) data have revealed
directed dependencies between mutations [5, 27]. This type
of analysis is not practical for many different drugs or even
drug combinations, because large longitudinal samples from
patients under the same therapeutic regimen are difficult to
obtain. As an alternative, we propose a method for estimat-
ing mutational pathways from cross-sectional data (i.e. data
from different patients at different time points), which are
much more abundant.

We develop the technique in a general setting and consider
the development of HIV-1 drug resistance to the nucleoside
reverse transcriptase inhibitor zidovudine as a test case.



1.1 Zidovudine Resistance
Zidovudine (AZT) has been approved for clinical use

in 1987 as the first anti-HIV drug. Soon after approval
mutations in HIV-1 reverse transcriptase (RT) have been
found that decrease susceptibility to the drug and develop
within a few month of therapy [23, 24]. The most common
RT mutations (“classical zidovudine mutations”) that de-
velop under zidovudine therapy are M41L1, D67N, K70R,
L210W, T215F/Y, and K219E/Q. Other mutations such
as the multi-nucleoside resistance mutations V75I, F77L,
F116Y, Q151M and the two amino acids insertion after posi-
tion 69 are less frequent and typically occur under prolonged
combination therapies containing two or more nucleoside RT
inhibitors. K70R and T215F/Y are generally the first muta-
tions to occur causing 4- to 8- and 10- to 16-fold zidovudine
resistance in vitro, respectively [5, 22]. The double mutant
41L+215F/Y causes already 60- to 70- fold resistance. 41L,
215F/Y and 210W tend to occur together (215-41 pathway)
as well as 70R and 219E/Q (70-219 pathway). Substitution
M41L may also appear first, albeit less frequently. How-
ever, in contrast to the 70R+215F/Y double mutant, the
41L+70R co-occurrence is hardly ever observed. This dis-
crepancy is explained by a replication defect of the 41L+70R
intermediate [19].

In general, the evolution of drug resistance is driven by
several factors including

• nucleotide substitution patterns such as transi-
tion/transversion bias [21],

• viral fitness (replication capacity of the virus),

• drug resistance (decreased drug susceptibility).

Under therapy the viral population is exposed to a strong se-
lective pressure. Mutations almost always arise one at a time
and each single advantageous mutation must be fixed into
the population. In consequence, relatively few evolution-
ary pathways lead from the wild type to a highly resistant,
well replicating mutant as compared to the large number of
possible mutational patterns [16].

1.2 Outline
We describe the evolution of drug resistance as the accu-

mulation of permanent genetic changes. Our model of the
stochastic evolutionary process aims at identifying directed
dependencies between mutational events. The basic build-
ing block of the model is a directed tree. Vertices of the
tree represent binary random variables, each indicating the
occurrence of an event (mutation). Edge weights represent
conditional probabilities between events with the constraint
that a child event does not occur whenever the parent event
has not occurred. These restricted Bayesian tree models
have been pioneered by Desper et al. in the context of onco-
genesis [9]. In section 2 we recall basic model properties and
an efficient combinatorial algorithm for tree reconstruction
from observed (cross-sectional) patterns of events.

The tree models provide a detailed and interpretable de-
scription of the process of accumulating genetic changes.
They represent a considerable improvement over indepen-
dence or linear path models. Nevertheless, we will see that

1We use the syntax ax b (or simply x b) to denote amino acid
substitutions in RT, where a is the amino acid in the refer-
ence strain HXB2 at position x and b the mutated residue.

the special tree structure fits only certain subgroups of the
data. We interpret this shortcoming as indicating that the
data has been generated by more than one (tree-like) pro-
cess. Therefore, we introduce the broader class of mixture
models of trees. Ideally, we would like to identify multiple
evolutionary processes acting on the same gene (or genome),
each process in one specialized component of the mixture
model. In particular, we will introduce a “noise component”
that includes all otherwise unexplained samples. We define
these mixture models in section 3 and present an EM-like al-
gorithm for learning structure and parameters of the model
from data. In section 4 we illustrate how model selection
(choosing the optimal number of trees) can be performed
in a maximum likelihood fashion. We compare the mixture
model for the development of zidovudine resistance with bi-
ological knowledge.

In section 5 we present cross-validation and bootstrap
methods for the validation of our model. Section 6 discusses
further applications of the method, related work and open
questions.

2. MUTAGENETIC TREES

2.1 Data Representation
We consider ` different events {1, . . . , `}, including a spe-

cial “null event” that has initially occurred in all samples.
A pattern xi of events is represented by a row vector of
indicator variables of length `:

xi = (xi1, . . . , xi`),

xij =

�
1, if event j has occurred in sample i

0, else.

Thus, a set of N observed patterns is represented by the
binary matrix

X = (xij) 1≤i≤N
1≤j≤`

.

We denote by Ω = 2{1,...,`} the set of all possible patterns
of length `.

For the case of HIV-1 zidovudine resistance we consider
a set of N = 364 samples derived from previously un-
treated patients under zidovudine mono-therapy as available
from the Stanford HIV Drug Resistance Database [30]. No
resistance-associated mutations other than the six classical
zidovudine mutations are present in this data set. Thus,
the set of ` = 7 events comprises 41L, 67N, 70R, 210W,
215F/Y, and 219E/Q, plus the initial state characterized by
M41, D67, K70, L210, T215, and K219 and referred to as
the “wild type”. The data set contains 35 different muta-
tional patterns. The null pattern representing the wild type
is observed in 115 samples.

We reconstruct dependencies between events from the
joint probabilities between all pairs of events, which can be
estimated reliably from moderately large data sets.

2.2 Definition
To describe the ordered accumulation of genetic changes,

we consider directed trees over the set of events, where each
edge is weighted with the conditional probability of the child
event given that the parent event has occurred. Formally, a
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Figure 1: Mutagenetic tree for the development
of zidovudine resistance. Nodes are labeled with
resistance-associated mutations in the HIV-1 re-
verse transcriptase, edge labels represent condi-
tional probabilities between mutational events.

mutagenetic tree2 T = (V, E, r, p) consists of a set of vertices
V representing events, a set of edges E, a special vertex
r ∈ V , and a map p : E → [0, 1] such that:

• (V, E) is a branching, i.e. a digraph whose underlying
undirected graph is a forest, and each vertex has at
most one entering edge.

• The vertex r represents the null event and has no en-
tering edge.

• For all edges e = (j1, j2) ∈ E,

– p(e) = Pr(j2|j1) is the conditional probability of
event j2 given that event j1 has occurred,

– p(e) > 0 (if p(e) = 0, we can delete e from E),

– p(e) < 1 if e leaves the root (if Pr(j2|r) = 1,
events j2 and r can be merged).

Note that a mutagenetic tree can have more than one con-
nected component. However, most of the time we will be
concerned only with the arborescence (connected branch-
ing) containing the special root vertex r.

Figure 1 shows a mutagenetic tree for the development of
resistance to zidovudine.

A mutagenetic tree induces a probability distribution on
the set Ω of all possible mutational patterns as follows. Draw
each edge independently from E with probability p(e). Then
the set of vertices that are reachable from the root is the
outcome of the experiment.

2.3 Tree Reconstruction
Desper et al. have shown how to reconstruct the mutage-

netic tree from all pairwise joint probabilities of events [9].
Consider the complete digraph G = (V, V ×V, w) on the set
of vertices V corresponding to the events with weights

w(j1, j2) = log Pr(j1, j2) − log(Pr(j1) + Pr(j2)) − log Pr(j2),
2We follow the notation of Desper et al. who call these tree
models in the context of oncogenesis oncogenetic trees [9].

where Pr(j) denotes the marginal probability of event j and
Pr(j1, j2) the joint probability of events j1 and j2. Then the
mutagenetic tree is the branching in G that maximizes the
sum of its edge weights. The maximum weight branching
can be computed in O(|V ||E|) time by Edmonds’ branching
algorithm [7, 11, 20, 34].

In practice, we do not know the joint probabilities of
events, but have to estimate them from the data. For suf-
ficiently many samples the above algorithm will reconstruct
the correct mutagenetic tree with high probability (see [9]
for proofs and a quantitative version of this statement).

Finally, if the observed sample does not come from a dis-
tribution generated by a mutagenetic tree, we hope that the
reconstructed tree captures many of the strong dependencies
(causality flows) between events.

2.4 Likelihood Computation
Given a mutagenetic tree T = (V, E, r, p), the likelihood

of a pattern x of events is the probability that T generates x:
L(x|T) = Pr(x|T). Let S ⊆ V be the set of events specified
by x. If there is a subset E′ ⊆ E such that S is the set of
all vertices reachable from r in the subtree (V, E′), then x

can be generated by T, and the likelihood is given by

L(x|T) =
Y

e∈E′

p(e) ·
Y

e∈(S×V \S)

(1 − p(e)) .

If there is no such edge subset, the topology of T does not
allow for generating x and hence L(x|T) = 0. For exam-
ple, for the mutagenetic tree displayed in Figure 1 and the
pattern defined by the mutations 70R and 219Q we find

L(x|T) = 0.46 · 0.43 · (1 − 0.46) · (1 − 0.65) = 0.037,

whereas the pattern composed of 215Y and 41L can not be
generated by that tree.

The likelihood computation can be done efficiently by
traversing the mutagenetic tree in a breadth first search
starting from r. Note that connected components of T other
than the arborescence rooted at r do not affect the likelihood
of a pattern.

We call T a star, if all edges e ∈ E leave the root vertex
r. The star topology models events as being inpedendent of
each other. In terms of the likelihood a star is characterized
as follows.

Lemma 1. A mutagenetic tree is a star, if and only if all
2` possible patterns of events have positive likelihood.

Proof. If T is a star,

L(x|T) =
Y

{j|xj=1}

Pr(j) ·
Y

{j|xj=0}

(1 − Pr(j)) > 0,

since Pr(j) = Pr(j|r) ∈ (0, 1) by definition.
If T is not a star, there is at least one edge (j1, j2) with

j1 6= r and any pattern with xj1 = 0 and xj2 = 1 has
likelihood zero.

Thus, for noisy real world data the assumption of a tree
topology will generally be too strict in the likelihood sense.
Moreover, the estimated mutagenetic tree for the develop-
ment of zidovudine resistance (Figure 1) does not capture
all of the known pathways. Indeed, the tree topology im-
plies that M41L and T215F/Y can only occur after K70R
despite the fact that the 215-41 pathway is also observed



in the absence of K70R. Consequently, one third of the ob-
served mutational patterns have likelihood zero under the
estimated mutagenetic tree.

To overcome these limitations we consider the broader
class of mixture models of mutagenetic trees.

3. MIXTURE MODELS

3.1 Definition
Suppose that Y1, . . . , YK are multivariate discrete random

variables with range Ω that are distributed according to mu-
tagenetic treesTk = (V, Ek, r, pk), k = 1, . . . , K,

respectively. Let 41, . . . ,4K ∈ {0, 1} be binary random
variables with Pr(4k = 1) = αk. We call the modelM =

KX
k=1

αkTk with αk ∈ [0, 1] and
KX

k=1

αk = 1,

that generates the random variable Y =
PK

k=1 4kYk, a K-
mutagenetic trees mixture model.

Thus, the likelihood of a pattern of events x in the mixture
model is

L(x|M) =

KX
k=1

αkL(x|Tk).

Throughout we will consider mixture models that have a
special structure in the first mutagenetic tree T1. We assume
that, in addition to different pathways of accumulation of
events, there is a certain probability β of any event occurring
spontaneously independent of all other events. Thus, T1 is
a star with p(e) = β for all e ∈ E1. T1 can be regarded
as the noise component of the model. Including a star in
the mixture model ensures that all patterns of events have
positive likelihood.

3.2 EM-like Learning Algorithm
Given the number of trees K, we want to reconstruct a

K-mutagenetic trees mixture model from observed patterns
X. This task would be easy, if we knew for each pattern
of events from which component(s) of the model it has been
generated: We would apply K times the reconstruction tech-
nique for a single tree. However, this information is missing
and we have to estimate it from the data, too. This pro-
cedure results in an algorithm similar to an EM algorithm
[8].

Our goal is to find mutagenetic trees T1, . . . ,TK and mix-
ture parameters α1, . . . , αk that maximize the log-likelihood
of the data, which can be written as

NX
i=1

log

KX
k=1

αkL(xi|Tk),

if the xi are independent. The responsibility of model com-
ponent k for sample xi is defined as

γik = Pr(4k = 1|M, xi).

Let Nk =
PN

i=1 γik be the weighted number of samples gen-
erated by Tk. In an iterative fashion, we estimate γ (E step)
and M (M step) from the data.

Input:

• Patterns of events X = (xij) 1≤i≤N
1≤j≤`

• Number of mutagenetic trees K ≥ 2

Output:

• K-mutagenetic trees mixture model
PK

k=1 αkTk

Procedure:

1. Guess initial responsibilities:

(a) Run (K − 1)-means clustering algorithm

(b) Set responsibilities

γik =

� 1
2
, if xi is in cluster k − 1

1
2(K−1)

, else.

2. M-like step. Update model parameters:

Set Nk =
PN

i=1 γik for all k = 1, . . . , K.

Let T1 be a star with edge weights

β =
1

`N1

X̀
j=1

NX
i=1

γi1xij .

For k = 2, . . . , K:

(a) For all pairs of events (j1, j2), 1 ≤ j1, j2 ≤ `,
estimate their joint probabilities

pk(j1, j2) =
1

Nk

NX
i=1

γikxij1xij2 .

(b) Compute the maximum weight branching Tk

from the complete digraph with weights w de-
rived from pk.

(c) Compute the mixture parameter αk = Nk

N
.

3. E step. Compute responsibilities:

γik =
αkL(xi|Tk)PK

m=1 αmL(xi|Tm)
.

4. Iterate steps 2 and 3 until convergence.

Figure 2: EM-like algorithm for learning a K-
mutagenetic trees mixture model from data.

Given an estimate of M =
PK

k=1 αkTk, we can estimate γ

by

γik =
αkL(xi|Tk)PK

m=1 αmL(xi|Tm)
.

Given an estimate of γ, we update M as follows. For the
noise component (k = 1) we choose the star topology and
estimate β as the rate of occurrence of any event in this
component,

β =
1

`N1

X̀
j=1

NX
i=1

γi1xij .



For k ≥ 2, we first estimate all joint probabilities between
pairs of events within the k-th component:

pk(j1, j2) =
1

Nk

NX
i=1

γikxij1xij2 .

Next, we reconstruct Tk from pk by solving the maximum
weight branching problem as described in section 2.3. Edges
with pk(j1, j2) < 0.01 are previously deleted from the com-
plete graph in order to avoid weekly connected components
within one mutagenetic tree. Finally, the mixture parame-
ters are updated by the equation

αk =
Nk

N
=

1

N

NX
i=1

γik.

We iterate the E step and the M step until the log-
likelihood function does not increase any more.

To run the algorithm we need initial values for the respon-
sibilities γik. The starting solution can be picked at random,
but in general this strategy will yield poor results. The two
common approaches to overcome this problem are either to
sample many random starting solutions, or to identify a sin-
gle promising initial solution. To limit computational costs
we decided for the latter approach and perform an ordinary
k-means clustering with k = K − 1 on the set of patterns
using squared Euclidean distance as dissimilarity measure3

[17]. From the k-means cluster assignments we derive the
initial responsibilities

γik =

� 1
2
, if sample xi belongs to cluster k − 1

1
2(K−1)

, else.

The procedure is summarized in Figure 2. It is differing
from a true EM algorithm in the fact that the tree recon-
struction step does not provide a maximum likelihood esti-
mate. Thus, unlike with a true EM algorithm, our EM-like
algorithm is not guaranteed to converge to a local maximum
of the log-likelihood function. Nevertheless, we have not ob-
served such deviating behavior on any real world data set
so far.

4. MODEL SELECTION
There is still one model parameter that we do not know,

namely the number of mutagenetic trees K in the mixture
model. Our learning algorithm is efficient enough to perform
model selection in a cross-validation setting. For the zidovu-
dine resistance data, we have used 10-fold cross-validation
in order to estimate the likelihood on unseen data for val-
ues of K between 1 and 10. Figure 3 shows the estimated
likelihood as a function of K. We propose to apply the
one-standard-error rule, i.e. to pick the most parsimonious
model within one standard error of the maximum mean log-
likelihood [17]. This yields K = 3, and the 3-mutagenetic
trees mixture model for the development of zidovudine re-
sistance in the HIV-1 RT is shown in Figure 4.

This model assigns 19% of the data to the noise compo-

3The starting solution for the k-means algorithm, i.e. the set
of initial cluster centers, is a random subset of the data of
size k. In all experiments, we have chosen the best k-means
clustering (the one minimizing the within-cluster point scat-
ter) obtained from 100 random starting solutions.
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Figure 3: 10-fold cross-validation log-likelihood es-
timates for K-mutagenetic trees mixture models as
a function of K.

nent4. These data are not necessarily free of any dependen-
cies between events, but within the model class they are best
explained by the independence assumption. 47% of the data
are estimated to be generated by a linear path model that
involves the 70-219 pathway followed by 67N and the 215-41
pathway. The remaining 34% of the data are assigned to a
mutagenetic tree with initial event 215F/Y followed by ei-
ther the 70-219 pathway or—with greater probability—the
remainder of the 215-41 pathway, namely 41L and 210W.

In conclusion, the mixture model of mutagenetic trees
captures all major established facts about the development
of zidovudine resistance under zidovudine mono-therapy.
Moreover, it provides a quantitative, generative probabilis-
tic model of the accumulation of resistance-associated mu-
tations.

5. VALIDATION
After comparing the estimated mixture model with bio-

logical knowledge, we now turn to quantitative approaches
for model validation. We will derive measures of confidence
regarding the mixture model as both a density estimator and
a way of learning structural dependencies between events.

5.1 Goodness of Fit
Drawing a random sample from a K-mutagenetic trees

mixture model M =
PK

k=1 αkTk is straightforward. We first
draw a uniform random number and decide according to the
mixture parameters α = (α1, . . . , αK) which mutagenetic
tree to use. In the selected tree we draw each edge e ∈ E

independently with probability p(e). The sample consists of
all events that are reachable from r in the induced subgraph.

We want to quantify how closely a trained mixture model
reproduces the empirical probability distribution on Ω =

2{1,...,`}. To compare two histograms H1, H2 ∈ N2`

we use
the cosine distance, defined in terms of the angle spanned

4in the sense of the mixture model: in general, each sample
is distributed over several components, cf. section 5.1.
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Figure 4: 3-Mutagenetic trees mixture model M =
0.19T1 + 0.47T2 + 0.34T3 for the development of zi-
dovudine resistance. Each tree is preceded by its
weight αk. The upper tree T1 is a star and repre-
sents the noise component. In the second tree we
have omitted the connected component consisting
of the single vertex with label 210W, and similarly
67N in the third tree.

by the histogram vectors as

dist(H1, H2) = 1 − cos\(H1, H2) = 1 −
〈H1, H2〉

‖H1‖ ‖H2‖
∈ [0, 1].

Using cross-validation we calculate for each partition of
the data into training and test set the histogram distance
between test data and

1) training data,

2) simulated data drawn from the optimal mixture model,

3) simulated data drawn from a single mutagenetic tree
model,

4) simulated data drawn from a single star model with
non-uniform edge weights.

The three models are estimated from the training data, and
the size of the simulated sample equals that of the training
data. The first histogram distance measures only the effect
of finite sampling, whereas the other distances include losses
that are due to imperfect model assumptions and/or param-
eter estimates. We compare the optimal mixture model with
a single mutagenetic tree model and with a star model rep-
resenting the null hypothesis of independence of events.

Figure 5 shows the distribution of all distances for 100
runs of 10-fold cross-validation each. Histograms generated
from the estimated mixture model closely resemble the ob-
served data. In contrast, both the single tree model and
the independence assumption provide inferior model fits.
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Figure 5: Box-plot of histogram distances from 100
10-fold cross-validation runs. From left to right: dis-
tances between histograms of test data and training
data (first box), simulated data from the optimal
mixture model (second box), simulated data from
the single tree model (third box), simulated data
from the null model (fourth box). Simulated data
are drawn from the models that have been fitted on
the training data. The null model refers to the inde-
pendence assumption of events and is a single star
with non-uniform edge weights.

likelihood sample subset
L(x|T1) L(x|T2) L(x|T3) fraction description

> 0 > 0 > 0 31.6% null patterns
> 0 > 0 = 0 30.2% 70-219 pathway
> 0 = 0 > 0 25.0% 215-41 pathway
> 0 = 0 = 0 13.2% “noise”

Table 1: Distribution of samples among the compo-
nents of the mixture model shown in Figure 4. The
fraction of samples refers to the full data set of 364
samples.

Similar results are obtained with the L2 and L1 distance
maesures between histograms instead of the cosine distance.

In the same cross-validation runs we have determined the
percentage of samples that remain unexplained by the non-
trivial components of the mixture model. The mean per-
centage of samples with likelihood zero in all but the noise
component was 13%. Thus, the mixture model maps 87%
of the observed patterns onto the other identified mutage-
netic trees. For the optimal model on the full data (Figure
4) it happens to be the case that the only pattern that can
be generated by both non-trivial trees is the null pattern.
We report in Table 1 the distribution of samples among the
trees in detail.

5.2 Tree Stability
We have already interpreted the topology of the mutage-

netic trees in detail. Here we use the bootstrap [12] in order
to obtain an estimate of the dependence of the topology on
sampling effects. Since there is no standard way of compar-
ing two mixture models, we confine ourselves to analyzing
the stability of each single mutagenetic tree. For a mixture
model, we fix the responsibilities γ obtained from the EM-
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Figure 6: Bootstrap analysis of tree stability. Edge
weights represent relative counts in 10,000 boot-
strap samples. The two mutagenetic trees are the
two non-trivial components of the mixture model in
Figure 4.

algorithm. For tree Tk, we resample with replacement each
pattern of events xi with probability γik. From the boot-
strap sample of size N a mutagenetic tree is reconstructed.
As a test statistic we consider the relative count of each edge
e ∈ Ek in the bootstrap trees.

In Figure 6 we report for the zidovudine data these esti-
mates based on 10,000 bootstrap samples. The two muta-
genetic trees are the two non-trivial components of the mix-
ture model displayed in Figure 4. We find strong support for
most edges, particularly for 70R as initial event and for the
dependencies 215F/Y→ 41L→ 210W and 70R→ 219E/Q→
67N. The latter edge suggests that mutation D67N may be
best explained as a late event in the 70-219 pathway.

6. DISCUSSION
We have presented mixture models of mutagenetic trees

for modeling evolutionary processes that can be described as
an accumulation of permanent genetic changes along multi-
ple pathways. Application to the development of zidovudine
resistance in the HIV-1 RT has shown that, compared to sin-
gle mutagenetic trees, the class of mixture models provides
both better density estimation of observed patterns of events
and biologically more plausible models.

6.1 Applications
Further applications of the model include the accumula-

tion of mutations associated with resistance to other an-
tiretroviral drugs in protease and RT, the current drug tar-
gets of HAART. Together, these models may be helpful in
designing treatment protocols that avoid the accumulation
of cross-resistance conferring mutations so that clinicians
do not run out of therapeutic options too early. However,
since mono-therapies are obsolete, mutational pathways un-
der combination therapy must be identified. It remains to
be investigated if combination therapy pathways are a func-
tion of the pathways for the single drugs forming the com-

bination. If such a relationship can not be found, we may
face another data scarceness problem induced by the large
number of possible drug combinations.

As density estimators, the mixture models can also be
used for classification. A common classification problem in
the context of HIV drug resistance is to separate susceptible
from resistant strains. With mixture models Msus trained
on the susceptible and Mres trained on the resistant subset,
we consider the likelihood ratio

L(x|Msus)

L(x|Mres)

to decide whether a pattern x is more likely to originate from
the susceptible or the resistant subpopulation. Analysis of
the model Mres may reveal pathways leading to resistance
independent of the applied drug pressure, including cross-
resistance pathways induced by other drugs.

6.2 Model-based Clustering
The classical EM algorithm for learning Gaussian mix-

ture models can be regarded as a soft version of K-means
clustering [17]. For each model component, the EM algo-
rithm assigns a responsibility to each sample, whereas the
K-means clustering algorithm assigns each sample to ex-
actly one of the K clusters. Likewise, we can easily modify
our K-mutagenetic trees mixture model learning algorithm
(Figure 2) to obtain a clustering algorithm. It suffices to
store cluster assignments instead of responsibilities in the
matrix γ:

γik =

�
1, if sample xi is in cluster k

0, else,

and change the E step to

γik =

�
1, if k = arg max1≤m≤K L(xi|Tm)
0, else.

This model-based clustering is useful in situations where
pathways are known or suspected to be mutually exclusive.

6.3 Full ML Estimation
We would arrive at a true EM algorithm if we estimated

the mutagenetic trees Tk (Figure 2, step 2(b)) in a maximum
likelihood (ML) fashion. However, finding the ML topology
of a mutagenetic tree appears difficult in absence of a con-
struction rule and in view of the large number of possible
trees. Thus, heuristic search methods need to be applied,
such as those used in ML phylogeny estimation [13].

6.4 Related Work
Chow and Liu have used unrestricted Bayesian tree mod-

els to approximate multivariate discrete probability distri-
butions [6]. They show that solving the maximum weight
spanning tree problem in the complete graph with edges be-
tween features (events) weighted by their mutual informa-
tion provides a ML tree estimate. Maximum weight branch-
ings have been proposed in a similar setting [18]. Our mu-
tagenetic trees mixture models are similar in spirit to the
work of Meilă and Jordan [26], who apply an EM algorithm
to generalize the Chow-Liu algorithm to mixtures of trees.
Friedman et al. have extended the Chow-Liu procedure for
classification tasks [14].

Graph models related to mutagenetic trees have been
developed for oncogenesis, where chromosomal losses and



gains are considered as events. The distance matrix between
events defined by

−2 log Pr(j1, j2) + log Pr(j1) + log Pr(j2)

has been used as input for distance-based phylogeny meth-
ods like neighbor-joining [10]. The resulting phylogenetic
tree represents events as leaves of the tree and groups closely
related events together. Internal vertices are considered
“hidden events” and do not have a direct interpretation.

A similar approach uses a ML estimation procedure for
tree fitting [36]. A closed formula for the ML parameters
of a tree is derived, while searching for the ML topology is
done heuristically.

Finally, generalizing from tree models, directed acyclic
graph (DAG) models have been proposed [29, 33]. Here
vertices represent subsets of the set of events and an edge
{j1} → {j1, j2} represents the probability that j1 occurs
first and j2 occurs second. Edges for larger subsets are de-
fined similarly. For limited subset size ML estimation of
model parameters is feasible.

Our mixture models have the same expressive power as
DAG models. We expect DAG models to be more appropri-
ate for highly connected networks of events, whereas mixture
models may be more adequate to identify a few parallel or
confluent pathways.
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