Learning Multivalued Multithreshold Functions

Martin Anthony
Department of Mathematics
and Centre for Discrete and Applicable Mathematics
London School of Economics, London WC2A 2AE, UK
m.anthony@lIse.ac.uk

CDAM Research Report LSE-CDAM-2003-03, January 2003

Abstract

This paper concernsiultivalued multithresholdunctions,{0, 1, ..., k}-valued func-
tions onRR™ that may be considered as generalizations of (linear) threshold functions, or
as discretized versions of artificial neurons. Such functions have arisen in the context of
multiple-valued logic and artificial neural networks. For any fixeeve present two proce-
dures which, given a set of points labelled with the values of some (unknown) multivalued
multithreshold function, will produce such a function that achieves the same classifica-
tions on the points. (That is, we present ‘consistent hypothesis finders’.) One of these is
based on linear programming, and the other on an ‘incremental’ procedure suggested by
Obradovt and Parberry. In standard probabilistic models of learning, it is natural to ask
for some information about how many labelled data points should be used as the basis for
valid inference about the function that is labelling the data. We investigate this question for
the class of multivalued multithreshold functions. Finally, we exarminithreshold func-
tions a class of 0, 1}-valued functions related to the multivalued multithreshold functions.
We give a simple description of an algorithm based on a procedure suggested by Takiyama,
and we raise some open questions on the effectiveness of this algorithm, and, generally, on
the complexity of finding consistent hypotheses for samples of multithreshold functions.



1 Introduction

This paper concermaultivalued multithresholéunctions {0, 1, .. ., k}-valued functions ofR”

that may be considered as generalizations of the (linear) threshold functions, or as discretized
versions of artificial neurons. (Such functions have arisen in the context of multiple-valued
logic and artificial neural networks; see [22, 17], for example.)

A consistent hypothesis findier a set of functions is an algorithm that, on being presented with

a set of points, each labelled with the value of some (unknown) function from the class, will
produce (a representation of) some function in the class that achieves the same classifications on
the points. For the class of multivalued multithreshold functions (for any fiyede present

two consistent hypothesis finders: one is based on linear programming, and the other is an
‘incremental’ method arising from a procedure suggested by Obradov Parberry [22].

In standard probabilistic models of learning, it is useful to have bounds @athple complexity

of learning a setd of functions: that is, to know something about how many labelled data
points should be used as the basis for valid inference about an unknown funetiéhthat is
labelling the data. We obtain an upper bound on the sample complexity of learning multivalued
multithreshold functions.

Finally, we examinemultithreshold functionsa class of{0, 1}-valued functions related to the
multivalued multithreshold functions. We give a simple description of an algorithm based on

a procedure suggested by Takiyama [26], and we raise some open questions on the effective-
ness of this algorithm, and, generally, on the complexity of finding a multithreshold function
consistent with a sample of such a function.

2 Multivalued multithreshold functions

Fork € N, let [k] denote the s€ft0, 1, ..., k}. A [k]-valued multithreshold function (or, briefly,
k-MTF) is a functionf : R" — [k] defined as follows: there amgeightsw,, ws,...,w,
andthresholds?; < 0, < ... < 6 such that, forr = (z1,29,...,2,) € R", if we define
S={0}u{r:> " wx; > 0.}, thenf(x) = min S, the least element of.



It is useful to think of these functions geometrically. Any such function corresponklpao-

allel hyperplanes dividin@R™ into £ + 1 regions. If we traverse the regions in one of the two
directions normal to the hyperplanes, the classifications given to points in the regions between
the hyperplanes increase successively ffotm & (with classificatior) to those below the first
hyperplane, and classificatiérto those above theth hyperplane, and with points lying on the
hyperplanes being given the classifications of the region just being entered).

One reason for being interested in these functions is that they can be regarded as discretized
(or finite-precision) versions of monotonic neural network activation functions. They have also
proven to be of interest in multiple-valued logic. Obradoaind Parberry [22], and Ngom

et al.[17, 18, 19] examined special types of multivalued multithreshold functions, where the
domain of the functions was taken to [#¢", rather tharR™ as here. That is, they considered

the (k + 1)-ary functions [22] ok + 1)-valued logic function§l 7] corresponding té-MTFs.

3 Finding a consistent multivalued multithreshold function

Suppose we are given a sequefice zo, . . ., z,,,) of m points ofR"™, each of which has been la-
belled with the corresponding valu&s:;) of some[k]-valued multithreshold functioh(giving

us asample((xy,t(x1)),. .., (xm, t(x,,)) of t). Without knowing precisely th&arget function

t, we might want to construct/aMTF consistentvith ¢ on the sample; that is, to producé-a

MTF h such that(z;) = t(z;) fori = 1,2,..., m. A procedure achieving this will be referred

to as aconsistent hypothesis finderhis is a natural and central problem in machine learning
and data-mining, where one seekisygothesighat is anexplanationof the classified data set,

and potentially a good predictor of the classifications of other, as yet unseen, points from the
same corpus of data.

3.1 Using linear programming

One approach to finding &MTF consistent with a sampke of points labelled by &-MTF
is to use linear programming. Suppose that, in the samplgoints have classification(for
0 <i < k) and denote these points by), :pg), e ,x,(i?i. Consider the following linear program,
in which there arex + k£ + 1 real variablesw; for 1 < i <n, §; for1 < j < k, andy. Here,



w = (wy,ws, ..., w,) and, fora, b € R, (a, b) denotes the inner produetb = > | a;b;.

Maximizey subject to the constraints

(w, xg”) —0i—y > 0
O — (w,a) =y = 0
01 — (w,x§0)> -y =2 0
(w,z§k)> —y >0

w;, > —1

—w; > —1

6, > —1

-6, > -1
y = 0,

wherel ranges froml to £, i ranges froml to £ — 1 and, for each fixed (for the inequalities
involving xy)), j ranges froml to m;. There aren + 2n + 2k constraints in total. Given

that the sample is labelled according to the values of sbiWE'F ¢, the program is feasible

and has a positive solution. Note that the first four sets of inequalities require a weight vector
w and threshold vectaf such that the resulting-MTF correctly classifies the; and such

that, additionally, the inner products ‘clear’ the required threshold by at least the amount
Now, all of this is possible for some positivg given the existence afand the finiteness of

s. Furthermore, the next four inequalities make the feasible region bounded, and, by scaling
weight and threshold vectors, if necessary, it can be seer tiest a realizable weight vector

and threshold vector satisfying these bounds. By solving this linear program, a conskistent
MTF can therefore be obtained, and so we have a consistent hypothesis finder. This method
can be made to run in polynomial time in the logarithmic cost model by using, for instance,
Karmarkar's algorithm [11]. In particular, if the sample pointsare restricted to domairk|”,

then the running time of the algorithm is bounded by a polynomiatin + 1), the size of the
sample.

3.2 Anincremental procedure

ObradovE and Parberry [22] proposed an incremental algorithm for ‘learmiAGfTFs on the
basis of a given sample of such a function. A slightly modified version of this algorithm was

4



presented in [17]. These algorithms are generalizations of the well-known and well-studied
perceptron learning algorithm (details of which may be found in [25, 2]), which corresponds to
the special case in whioh= 1.

The algorithm in [22] maintains eurrent weight vectotw = (wq, ws, . .., w,) andthreshold
vectorf = (04,6,,...,0;), whered; < 0, < --- < 0. Together, these representarrent
hypothesisMTF h . On presentation of an examplec [k]|" together with its classification

t(z), if h(x) = t(x) the algorithm does nothing, while i(z) # t(x) then the algorithm
slighly altersw and one of thé;. The algorithm is, in this sensecremental Obradovt and
Parberry established a result along the lines of the classical ‘perceptron convergence theorem’,
by proving that on any (possibly infinite) sequence of examples fidfn each classified by
somek-MTF, ¢, there is an absolute bound on the number of mistakes (and hence updates) the
algorithm can make (this bound depending prilo prove this, they invoked the classical result

for the perceptron.

As a consequence of the finiteness result of Obradand Parberry, the incremental procedure

can be used to construct a consistent hypothesis finder in the case where all the examples belong
to [k|™. For, given a finite sample = ((z1,t(z1), ..., (zm, t(z,)), we can cycle through these
labelled examples repeatedly until no further updates will occur, at which point the current
hypothesis must be consistent with the sample. We will give a direct proof that, more generally,
this procedure for finding a consistedMTF works when the examples can beRfi and are

not restricted to be if%|" (which, as already mentioned, was the focus in [22, 17]). First, we
describe the consistent hypothesis finder in pseudo-code.

Algorithm L: Incremental consistent hypothesis finder fork-MLTs.

Input: Sample s = ((z1,t(x1),...,(xm,t(xm)) Of k-MLT t.
Output: Weights w1, ...,w, and thresholds 0 <--- <0

forall 7, set w;:=0
forall I, set 6;,:=0

repeat until no updates needed in a complete cycle through S
for i:=1 to m do
let h be the current hypothesis, represented by w and 6

if v=~h(x;) #t(x;) then
let A =t(x;) — h(x;) =t(z;) —v
if A <0 then



update the weights and thresholds as follows
Oy — 0, +1

0, — 6, for [+#v (i.e.,, no change)

W — W — X

if A >0 then

return wi, wo, ..

end

The k-MTF corresponding to the weights and thresholds output by the algorithm is called the

update the weights and thresholds as follows
Opi1 Oy —1

6, — 6, for 1#v+1 (i.e.,, no change)

W <~— W+ x;

Lw, and 6q, ..., 0.

output hypothesisf the algorithm, and is denotdd’s).

Ngomet al.[17] considered a slight variant of the procedure suggested by ObtaaodiPar-
berry. (The problem they considered was slightly more general too: they were interested in
incrementally learning ‘permutably homogeneous perceptrons’, of whibtTFs are a spe-
cial type.) Following their variation of [22], an alternative consistent hypothesis finder can be

devised that has the following update rule:

if v=~h(x;) # t(x;) then
let A =t(x;) — h(x;) =t(z;) —v
if A <0 then

update the weights and thresholds as follows
Oy — 0, + A =0, —|A|

0; — 0, for [ #wv (i.e., no change)
w—w— Az, = w+ |Alz;

if A >0 then

Thus, in this case, the extent by which the weights and thresholds are changed depends on
how far h(z;) is from ¢(x;) and not merely on the ‘sign’ of the difference. A further possible

update the weights and thresholds as follows
Opt1 < Opy1 — A

0,6, for I#v+1 (i.e,, no change)

w «— w + Ax;

6



modification is to have a ‘learning rate’ (possibly changing in time) multiplying the additive
changes.

Obradove and Parberry [22] also investigated the performance of an alternative procedure in
which weights and thresholds are updatedtiplicativelyrather tharadditively, following Lit-
tlestone’s ‘Winnow’ generalization of the standard perceptron learning algorithm [14]. (Indeed,
this is the primary focus of their paper.) They show that this multiplicative algorithm is in many
cases better than the additive one, in that the bound on the number of updates required can be
significantly smaller. This multiplicative algorithm can also, in an analogous way, be turned
into a consistent hypothesis finder.

Theorem 3.1 Given any sample of a k-MTF, the incremental consistent hypothesis finder for
k-MLTs will terminate to produce an output hypothekis) consistent witls. Furthermore, if
the examples; in the sample satisfijz;|| < R and if thek-MTF ¢ by which the sample points
are labelled is represented by weight vectbrand threshold vecto® with the property that
[W|?+]|©|I* = 1 and nox; lies on any of thé hyperplanes defined hy andé, then the total
number of updates (and hence cycles) required lxyat most 2? + 1) /v* where

y=min{|[(W,z;) =0, : 1 <i<m, 1 <I<k}>0.

Proof:. The proofis a variant of the proof of the perceptron convergence theorem [25, 20, 21, 2].
Clearly, since the sample is finite, there will be a weight vettband a threshold vectdd
representing such that no point of the sample lies on any of theyperplanes (because there

is flexibility to perturb the thresholds). By scaling the weights and thresholds if necessary, we
can further assume th@tV||> + ||©]|> = 1. Let W and® be a fixed choice of such vectors.
Denote byw(u) andf(u) the weight and threshold vectors afteupdates have been made,
and let the components of thesedgu) and6,(u). (Note thatw(0) andd(0) are the all-zero
vectors.) For some in the sample, thath update rule takes the form

w(u) = w(u—1)+ox
QZ(U) = Hl(u — 1) — 0.

Here,) is 1 or —1, according to whethei(xz) > h(x) or t(x) < h(x), respectively; and is,
correspondinglyp + 1 or v, wherev = h(x) andh is the current hypothesis (represented by
w(u — 1) andf(u — 1)). Let N(u) be defined as

N(u) = (W,0), (w(w),8(u)) = (W, w(u)) +(0,0(u)).

7



Then,
N(u) — N(u—1) = (W,dz) — 60,6 = 6((W, z) — ).

Now, if 6 = 1, thenl = v + 1 and, sincev = h(z) < t(z), we havet(z) > v + 1 and so
(W,z) > ©,.1 + 7, as a consequence of whisikW, z) — ©,,1) > ~. If, however,d = —1,
then! = v andt(z) < h(z) = v, so that{W, z) < ©, —~y and hencé ((W, z) — ©,,1). In both
cases, thereforéy(u) — N(u — 1) > ~. It follows that N (u) > N(0) + yu = ~yu.

Now let
L(u) = | (w(u), () I* = lw(u)|* + [|0(u)]|*.
From the fact thatV(u) = (w,w(u)) + (68,60(u)) > wuy, together with the Cauchy-Schwarz
inequality and the fact thaHt(W )| =1, we have
L(u) = [w(@)]*+ [6(u)]*

= [l(w(u), 0(u))]*

= |l(w(u), O(uw) *[(W. ©)||*

> ({(w(u), 0(u)), (W, 0)))”

= (N(w)*

> (yu)*.
But, if ¢, denotes the vector withth entry equal td and all other entrie8, then
L(u) = [lw(w)|* +[10(u)]*

|lw(u — 1) + §z|]* + ||0(u — 1) — de;||?

= Jw(u =D+ 100w = DII* + 8 [|z]* + 0% + 20 (w(u — 1), 2) — 26(0(u — 1), )
< Llu—1)+ (R*+ 1)+ 26 ((w(u —1),2) — 0(u—1)).

Because of the update rule, eithee h(z) > ¢(x), in which case
<0, l=v, and(w(u —1),z) > 0,(u—1);
orv = h(z) < t(x), and
>0, l=v+1, and(w(u —1),z) < yp1(u—1).

So, in both cases, ((w(u — 1), z) — 6;(u — 1)) < 0, and hencd.(u) < L(u — 1) + (R* 4+ 1)
and soL(u) < L(0) + (R? + 1)u = (R? + 1)u. It follows that

(yu)* < L(u) < (R*+ 1)u

8



and sou < (R* + 1)/~2, completing the proof. 0

Note that the upper bound given in Theorem 3.1 on the number of updates dependstantt on

on the precise points in the sample (through the dependengk &or the standard perceptron

(the case: = 1), the case in which only Boolean points (that is, pointd @f1}"™) have been
considered has been of particular interest historically. A counterpart to this in thé case

is to consider only points df|" (as in [22, 17]). With this restriction to a finite domain, for a
givent, the parametet can of course be bounded below independently of the sample. Thus,
one can bound the number of updates (and hence cycles) independently of the sample. It is,
however, well-known (in the cage = 1) that this bound can be exponentialrinsee [15, 5],

for instance.

This consistent hypothesis finder has an appealing on-line, incremental character, but (unlike
the method based on linear programming) it is not efficient. Even when the sample points
are restricted td0, 1}, the time taken to produce a hypothesis finder will not generally be
polynomial inm(n + 1), the size of the input. For, when= 1, the algorithm is equivalent to

the consistent hypothesis finder based on the standard perceptron learning algorithm, and this
is known not to be efficient [5]. (There is a Boolean threshold functiand a setS of n + 1
examples with the property that the only threshold function consistentivaths is ¢ itself

and, moreover, the ratio of the largest to the smallest weight in any weight vector representing
t is exponential inn. On presentation of the sample corresponding tandt, the algorithm

will necessarily make an exponential number of updates to achieve the exponential separation
between the largest and smallest weights for most choices of initial weights and thresholds.)

4 Learning multivalued multithreshold functions

We now discuss theample complexitgf learningk-MTFs in a[k]-valued version of the basic
PAC model of learning [28, 7, 3, 13, 6]. (Extensions to more general models such [&$-the
valued versions of ‘agnostic PAC learning’ [12, 2] could also be given, but for brevity we
consider only the case corresponding to the basic PAC model.)

Let H be a set of functions frolR™ to [k] and suppose that there is some probability distribution
P on the domairR™. In the ‘PAC’ model of learning [28, 7], it is assumed thalearning
algorithm L receives a sequence of points of R", each drawn independently accordingitp



and is also given the values of sort@get functiont € H on these points. Thus, the input

to the learning algorithm is samples = ((x1,t(x1)),. .., (Xm, t(zy))), for somem; and this
sample is randomly drawn, in the sense that .. . . , x,,,) is distributed according to the product
probability distributionP™. On the basis of a sample, the algorithm outputs a (representation
of a) hypothesis: = L(s) € H. Loosely speaking, the learning algorithm is regarded as being
successful (that is, it is BRAC learning algorithn if, without knowing the target function or

the distribution, a guarantee can be given that, provided the sample is long enough, then, with
high probability, the output hypothesis= L(s) closely approximates to Formally, theerror

of h with respect tad and P iserp(h,t) = P ({z : h(z) # t(x)}), and we say thak is a PAC
learning algorithm if there is a functiom, : (0,1) x (0,1) — R such that for any € H and

any probability distributionP? onR™, if m > mg(J, €) then, with probability at least— ¢ (with
respect to the product distributid®™ that governse = (z1, xs, ..., x,,)), @ Samples is such
thaterp(L(s),t) < e. Thatis,

m > mq(0,€) = Prob (erp(L(s),t) > €) < 0.

Note thatm, is independent of and P. A bound on the functiomn, is known as esample
complexity bound

We now use results from computational (or statistical) learning theory. For this, we define the
growth functionof a set of functiong? mapping fromR" to {0, 1}. Letlly : N — N be given
by
Iy (m) =max{|H|g| : S C X, |S| =m},
whereH |5 denotesH restricted to domaits. Note thatll; (m) < 2™ for all m. Following [30,

29], Blumeret al.[7] proved the following bound for the case in whiéhmaps into{0, 1} (that
is, k = 1), and in whichL is a consistent hypothesis finder:

Prob (erp(L(s),t) > €) < 2 y(2m) 27™/2,

To obtain a sample complexity bound for the case in which the functions majkjritw £ > 2,
we use thegraphsof the functions [16, 7]. Foh € H, let Gh, thegraph ofh, be the function
fromR"™ x [k] to {0, 1} defined byGh(z,y) = 1 < h(z) = yand letGH = {Gh : h € H},
the graph spaceof H. It follows from the result of Blumeet al. [7] that if L is a consistent
hypothesis finder fof/, then

Prob (erp(L(s),t) > €) < 2Tlgy(2m) 27™/2,

10



It is known [1] that the number of ways in which points can be partitioned into+ 1 sets by
k parallel hyperplanes is no more than

n+k—1 mk;—l
> (")

from which it follows that the number of ways in which a given setgpoints can be classified
n+k—1

: —1 : L

by the setH of k-MTFs is no more thag Z <mk, ) This quantity is therefore also an

7
=0

upper bound on the growth functidiy; (m) of the graph class. Using these observations, we

obtain the following sample complexity bound for learnir@/I TFs.

Theorem 4.1 Suppose thak is a consistent hypothesis finder for the clasB:¢falued multi-
threshold functions. Thehis a PAC learning algorithm for the class, and its sample complexity
is bounded above by

(0, €) = % ((n 4k —1)log, <%) +log, (%‘)) |

Proof: We have

2Tl (2m) 2772

n+k—1
2mk — 1
< 4 2—em/2

n+k—1
4 2mk o—em)/2
n+k—1 ’

where (see [7]) the last inequality is valid for > n + k. As in [4], using the fact that for all
0<a<l/nz<ar+In(l/a)— 1, choosingy = (eln2)/(4¢), and performing some easy
manipulation, we see that the probability is therefore less dhin

emln?2 4 Sk
> = _
1 _ln(5)+(n+k 1)111(61112),

from which the result follows. O

Prob (erp(L(s),t) > ¢€)

AN

11



From the bound in the proof of this theorem, an equivalent statement can be made concerning
the ‘generalization error’, for a fixed length of sample. Namely, for anyand P, for m >

n + k, and for anyd € (0, 1), the following holds: with probability at leagt— §, a random
samples is such that

erp ((L(s,1)) < % ((n +k—1)log, (%) +log, <§>) |

5 Multithreshold functions

5.1 Definitions

We now turn our attention to a class ¢, 1}-valued functions defined by parallel hyper-
planes. We define &-threshold functiory as follows. There aré parallel hyperplanes, which
divide R™ into k£ + 1 regions. The function assigns points in the same region the same value,
either0 or 1. Without any loss, we may suppose that the classifications assigned to points in
neighbouring regions are different (for, otherwise, at least one of the hyperplanes is redundant);
thus, the classifications alternate as we traverse the regions in the direction of the normal vector
common to the hyperplanes. Equivalentfyis a k-threshold function if the following holds:

there is a weight-vectar = (wy, ws, ..., w,) and a threshold vectér= (6,, 0, . . ., ;) (with

0, < 6y < --- < 6;) such that, ifly = (—o0,6,), I = [0k, 00) and, forl < s < k — 1,

I, = [0s,0511), theneither f(z) = 1 if and only if (w,z) € I, for j even,or f(x) = 1 if and

only if (w, z) € I; for j odd.

These functions have been studied in a number of papers, such as [8, 23, 26, 27], for instance.
This method of binary classification is reasonably powerful. In particular, restricting attention
to the Boolean domaif0, 1}, Bohossian and Bruck [8] observed that any Boolean function
can be realized as 2'-threshold function. (For that reason, they paid particular attention to
multithreshold functions where the number of thresholds is polynomial)in

12



5.2 Finding consistent hypotheses: some open questions

We now consider the problem of finding consistent hypotheses for the classhoéshold
functions. The fact that the classifications now alternate betweer 1, rather than take, suc-
cessively, the valuegto &, makes it difficult to adapt the linear programming and incremental
approaches to finding consisténrMTFs. We raise two open questions: first, is a procedure
based on a technique proposed by Takiyama [26] effective; and, secondly, is thez#iany
cientmeans of finding a consistent hypothesis, in the restricted problem where all examples are
assumed to be binary vectors?

An incremental method based on a procedure of Takiyama

An incremental ‘learning’ algorithm was proposed by Takiyama [26]. Although he cites some
experimental success with the method, no analysis of its effectiveness was undertaken. The
presentation of the method in [26] is very complex, but the procedure can be described much
more simply. We describe here the modification of Takiyama’s method that would be applicable
to cycling through a finite sample (in the hope of creating a consistent hypothesis). Suppose that
a samples for some multithreshold functiohis given. Then the procedure can be described as
follows. The numbera(u) for u € N constitute some prescribed sequence of positive ‘learning
rates’, and the variable indexes the updates made by the algorithm.

Input: Sample s = ((z1,t(z1),..., (xm,t(xy,)) of k-threshold function t.
Output: Weights  w1,...,w, and thresholds 0 <0y <---,0;

forall i, choose w; randomly
forall [, choose #; randomly

repeat until no updates needed in a complete cycle through S
for i:=1 to m do
let h be the current hypothesis, represented by w and 6
if h(l‘l) 7575(:6@) then
let v be such that %=1t < (4 z) < Ootlons

if (w,z) >0, then

update the weights and thresholds as follows
0y — 0y + a(u)
0, — 6, for [+#v (i.e.,, no change)

13



w — w — a(u)x;
if (w,z) <6, then
update the weights and thresholds as follows
0y — 0, — a(u)
0, — 6, for [+#v (i.e.,, no change)
w — w~+ a(u)x;
return wy,ws,...,w, and 6,...,0;.
end

Thus, given an example misclassified by the current hypothesis (represented agd6), the
procedure shifts the threshald nearest in value tdw, z;) and alters the weight vectar, so
as to make the quantityw, ;) — 6, decrease or increase, as appropriate.

For k > 2, the proof of Theorem 3.1 apparently cannot be adapted to show that this procedure
terminates (because the fact that) # ¢(x) does not imply either thatw, =) is too large or
that it is too small). We therefore raise the following open question:

Question: Does this procedure terminate for some choice of sequernieg):° ,? Thatis, is it
a consistent hypothesis finder?

Computational complexity of finding a consistent hypothesis

Let us suppose that the domain is restrictefixa }", so that we are considering tBeoleank-
threshold functions (simply referred to as Boolean threshold functions in thé: cadg. Even

if the incremental method described above is indeed, in this case, a consistent hypothesis finder,
it is not anefficientone, in the sense that the running time will not generally be polynomial in
m(n + 1), the size of the input. That this is the case follows from the observation that when

k = 1, the procedure is equivalent to the consistent hypothesis finder based on the standard
perceptron algorithm, and, as already noted, this is not a polynomial-time algorithm.

The question arises therefore whether there can be some other efficient consistent hypothesis
finder for the class of Booleakthreshold functions. In the cage= 1, there is. For, in this

case the consistent hypothesis finder faviTF based on linear programming is a consistent
hypothesis finder for Boolean threshold functions, and is known to be efficient (by using, for
example, Karmarkar’s algorithm [11], as noted in [7].)

14



More specifically, consider the cake= 2 (and, again, Boolean doma{f, 1}"). Correspond-
ing to the problem of finding a consistent hypothesis, we have the following ‘consistency prob-
lem’

TWO PARALLEL PLANE SEPARABILITY

Instance: ST C {0,1}"andS~ C {0, 1}".

Question: Are there two parallel hyperplanes such that all point§ofie between the hyper-
planes and all points &8~ do not?

If this problem is NP-complete then (assuming#PNP), there can certainly be no efficient
consistent hypothesis finder férthreshold functions. Furthermore, since a class of Boolean
functions is learnable in the standard PAC model of learning if and only if the correspond-
ing consistency problem is in RP (as shown in [24], for example), unlegs PARALLEL
PLANE SEPARABILITY is in RP, there can be no efficient PAC learning algorithm for Boolean
2-threshold functions (unlessP RP). We therefore raise the following question:

Question: IS TWO PARALLEL PLANE SEPARABILITY NP-complete?

That the answer to this question could be ‘yes’ might be suggested by the fact that the con-
sistency problem for the intersection of two halfspaces is NP-complete [9] (though, here, of
course, the halfspaces need not necessarily be defined by parallel hyperplanes). On the other
hand, for the case of single-plane separability, as already noted, the consistency problem can be
solved in polynomial time.

References

[1] M. Anthony. Partitioning points by parallel planesRUTCOR Research Report RRR-
39-2002, Rutgers Center for Operations Research, 2002. (Also, CDAM research report
LSE-CDAM-2002-10, Centre for Discrete and Applicable Mathematics, London School
of Economics.)

[2] M. Anthony and P. L. BartlettNeural Network Learning: Theoretical Foundatiofzam-
bridge University Press, 1999.

15



[3] M. Anthony and N. L. BiggsComputational Learning Theory: An IntroductioBam-
bridge Tracts in Theoretical Computer Science, 30, 1992. Cambridge University Press,
Cambridge, UK.

[4] M. Anthony, N. Biggs, and J. Shawe-Taylor. The learnability of formal concepts. In
Proceedings of the 3rd Annual Workshop on Computational Learning Thitosgan
Kaufmann, San Mateo, CA, 1990: 246-257

[5] M. Anthony and J. Shawe-Taylor. Using the perceptron algorithm to find consistent hy-
pothesesCombinatorics, Probability and Computing(2), 1993: 385-387.

[6] S.Ben-David, N. Cesa-Bianchi, D. Haussler, and P. M. Long. Characterizations of learn-
ability for classes of0, ..., n}-valued functionsJournal of Computer and System Sci-
encesH0(1), 1995: 74-86.

[7] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth: Learnability and the
Vapnik-Chervonenkis dimensiodournal of the ACM36(4), 1989: 929-965.

[8] V. Bohossian and J. Bruck. Multiple threshold neural logicAldvances in Neural In-
formation Processing, Volume 10: NIPS’199®ichael Jordan, Michael Kearns, Sara
Solla, eds), MIT Press, 1998.

[9] A. Blum and R. L. Rivest. Training a 3-node Neural Network is NP-compl&tsural
Networks 5(1), 1992: 117-127.

[10] J. Hastad. On the size of weights for threshold gaB#8M Journal on Discrete Mathe-
matics 7(3), 1994: 484-492.

[11] N. Karmarkar, A new polynomial time algorithm for linear programmi@gmbinatorica
4,1984: 373-395.

[12] M. J. Kearns, R. E. Schapire and L. M. Sellie. Toward efficient agnostic learkiag.
chine Learningl7(2/3), 1994: 115-142.

[13] M. J. Kearns and U. Vaziranintroduction to Computational Learning TheorMIT
Press, Cambridge, MA, 1995.

[14] N. Littlestone, Learning quickly when irrelevant attributes abound: a new linear threshold
learning algorithmMachine Learning2(4), 1988: 245-318.

[15] M. Minsky and S. PaperRerceptronsMIT Press, Cambridge, MA., 1969. (Expanded
edition 1988.)

16



[16] B. K. Natarajan. On learning sets and functiodsachine Learning4(1), 1989: 67-97.

[17] A. Ngom, C. Reischer, D. Simovici and |. StojmentviLearning with permutably ho-
mogeneous multiple-valued multiple-threshold perceptron®réiceedings of the 28th
IEEE International Symposium on Multiple-Valued LodEEE Press, 1998.

[18] A. Ngom, A. Obradowvt and I. Stojmenow. Minimization of multiple-valued multiple-
threshold perceptrons using genetic algorithmsioceedings of the 28th IEEE Inter-
national Symposium on Multiple-Valued LogiEEE Press, 1998.

[19] A. Ngom, I. Stojmenovi and JZunic. On the number of multilinear partitions and the
computing capacity of multiple-valued multiple-threshold perceptron®rateedings
of 29th IEEE International Symposium on Multiple-Valued LotEE Press, 1999.

[20] N. J. NilssonLearning MachinesMcGraw-Hill, New York, 1965.

[21] A. B. Novikoff. On convergence proofs on perceptronsSiimposium on the Mathemat-
ical Theory of Automatal2. Polytechnic Institute of Brooklyn, 1962: 615-622.

[22] Z. Obradovt and I. Parberry. Learning with discrete multivalued neurdosirnal of
Computer and System Sciend@s 1994: 375-390.

[23] S. Olafsson and Y. S. Abu-Mostafa. The capacity of multilevel threshold functiBB&
Transactions on Pattern Analysis and Machine Intelligeri€e(2), 1988: 277-281.

[24] L. Pitt and L. Valiant. Computational limitations on learning from examplesirnal of
the ACM 35, 1988: 965-984.

[25] F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Orga-
nization in the BrainPsychological Reviews5, 1958: 386-407.

[26] R. Takiyama. Multiple threshold perceptrdrattern Recognitiod0, 1978: 27-30.

[27] R. Takiyama. The separating capacity of a multi-threshold elen€BE Transactions
on Pattern Analysis and Machine Intelligendg 1985: 112-116.

[28] L. G. Valiant. A theory of the learnabl€€ommunications of the ACM27(11), 1984:
1134-1142.

[29] V. N. Vapnik. Estimation of Dependences Based on Empirical D&jaringer-Verlag,
New York, 1982.

17



[30] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilitieS.heory of Probability and its Applicationd6(2), 1971
264-280.

18



