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Abstract We discuss a method that employs a multilayer

perceptron to detect deviations from a reference model in

large multivariate datasets. Our data analysis strategy does

not rely on any prior assumption on the nature of the devia-

tion. It is designed to be sensitive to small discrepancies that

arise in datasets dominated by the reference model. The main

conceptual building blocks were introduced in D’Agnolo and

Wulzer (Phys Rev D 99 (1), 015014. https://doi.org/10.1103/

PhysRevD.99.015014. arXiv:1806.02350 [hep-ph], 2019).

Here we make decisive progress in the algorithm implemen-

tation and we demonstrate its applicability to problems in

high energy physics. We show that the method is sensitive

to putative new physics signals in di-muon final states at the

LHC. We also compare our performances on toy problems

with the ones of alternative methods proposed in the litera-

ture.

1 Introduction

In the study of the fundamental laws of Nature we face a num-

ber of open questions. In the past decades the field of particle

physics has produced a set of potential answers that seemed

inevitable in their simplicity. The experimental effort inspired

by these solutions is now mature and is slowly stripping them

of their initial theoretical appeal. As more and more data are

collected, the problems that confront us become sharper and

harder to solve. We know that the theories that well describe

current data are incomplete and should be extended, but our

prior beliefs on how the extension should look like and on

where to discover it experimentally become less concordant

every day. In this paper we show how to interrogate experi-

mental data in a new way, going beyond searches targeted at

one specific theoretical model.

a e-mail: marco.zanetti@pd.infn.it (corresponding author)

We consider the problem of having large multivariate

datasets that are seemingly well described by a reference

model. Departures from the reference model can be statisti-

cally significant, but are caused only by a very small fraction

of events. The significance of the discrepancy might stem

from the extreme rarity of the discrepant events in the ref-

erence model and in this case standard anomaly detection

techniques might be employed. Or the discrepancy is due to

a small excess (or even a deficit) of events in a region of the

space of physical observables that is also populated in the

reference model. Our goal is to determine if the experimen-

tal dataset does follow the reference model exactly or if it

instead contains “small” departures as described above. In

the latter case, we also want to know in which region of the

space of observables the discrepancy is localized. This prob-

lem is relevant to Large Hadron Collider (LHC) datasets that

are well described by the Standard Model of particle physics

(SM) and CMB datasets that are well described by the stan-

dard cosmological model �CDM.

Our focus here will be physics cases relevant to the

LHC. Many attempts at generalizing traditional new physics

searches based on specific models have already been made

in this context, developing what are called “model indepen-

dent” search strategies. As customary in the literature [2–

15] by model independent analysis we mean an analysis

that does not target a specific new physics model. Typically,

analysis techniques of this kind assume that a background

model is at hand. This could be obtained from simulation or

some simulation-based reweighting of a data control region.1

Recent papers (e.g., Ref. [16]) started referring to data-driven

background estimates as (background) model-independence,

1 Also in the approach we follow in the present paper, both options are
viable since we only need a reference data sample distributed as the
SM predicts. It might come from a Monte Carlo simulation or from a
control region.
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to be accompanied by (signal) model-independence for a

truly model-independent approach. We do not employ this

latter notion of model independence in this study, and we keep

the estimate of the background predictions, with the associ-

ated uncertainties, as a separated aspect (see below) from the

one of model-independence. Notice that model-independent

analyses (no matter which notion of model-independence

is adopted) do rely on the choice of the specific final state

(reconstructed variables and acceptance cuts) to which they

are applied. This obviously restricts the sensitivity only to

new physics models that contribute to the specific final state,

and reintroduces some amount of model-dependence.

Model-independent analyses typically follow the binned

histogram technique, in which one selects a set of bins (i.e.

search regions) in the space of observables and compares the

amount of data observed in each bin with the reference model

(i.e., the SM). The main problem with this approach comes

from the fact that, as previously emphasized, the data distri-

bution will be identical to the one predicted by the SM in the

vast majority of the phase space. The observed countings in

almost all bins will thus be in agreement with the SM expec-

tation, but only up to the unavoidable Poisson fluctuations.

Poisson fluctuations from non-discrepant bins do contribute

to the binned likelihood, and if there are many non-discrepant

bins their contribution will overwhelm the contribution the

likelihood receives from the few genuinely discrepant bins.

This is not an issue in a binned (or unbinned) analysis tar-

geting a specific new physics model, because the bins where

no discrepancies are expected do not contribute to the likeli-

hood (which is the ratio between the new physics and the SM

Poisson likelihoods). In the model-independent case instead,

Poisson fluctuations from non-discrepant bins easily swamp

any potential signal of new physics. Typically this can be

mitigated only by paying a high price in flexibility [2,17].

In this work we apply a new methodology to the problem,

expanding on the ideas presented in Ref. [1]. Our technique

leverages the progress that the field of machine learning has

experienced in the past few years. In particular we exploit the

flexibility of neural networks as multidimensional function

approximants [18–25]. Here we show that this idea addresses

the challenge presented above for realistic multidimensional

datasets and physically motivated putative signals. In particu-

lar we considerμ+μ− production at the LHC and we quantify

the sensitivity of our method to a resonance Z ′ → μ+μ− and

to a non-resonant signal induced by a four-fermion contact

interaction.

It should be stressed that the design of the algorithm is

purely based on the knowledge of the reference model with

the criteria described in Sect. 2. No optimization was per-

formed based on the putative new physics signals, as appro-

priate for a model-independent search strategy. We always

present the sensitivity of our method in comparison with the

“ideal” sensitivity one might obtain with a standard model-

dependent search strategy that is instead optimized for the

specific model at hand. We will also discuss how the trained

neural network can help identifying the physical origin of the

observed discrepancy.

At this stage, we assume that the reference dataset pro-

vides a perfect representation of the background distribution

in real data. In a typical analysis, this is true within the effect

of systematic uncertainties, which are controlled by nuisance

parameters. The effect of these nuisance parameters can be

accounted for in our method, by a straightforward applica-

tion of the profile likelihood ratio methodology. The practical

implementation of this extension of the method will be the

topic of a future publication [26]. In this study, we ignore this

aspect and concentrate on the more pressing issue of gener-

alizing Ref. [1] to a multivariate problem. This motivates the

choice of relatively simple and clean experimental signature:

that in fact allows introducing the new method and discussing

its strength, knowing that the underlying assumptions (e.g.,

the possibility of accessing a trustable reference sample with

larger statistics than the data sample) will be fulfilled. It is

reasonable to expect that extending this method to other final

states (e.g., dijet) might imply additional practical problems

(e.g., the need of a large reference dataset).

Our results benefit from a crucial methodological advance

that we make in this paper compared to Ref. [1]. This con-

sists in an algorithmic procedure to select the regularization

parameters of the neural network and the network architec-

ture. We take the regularization parameter to be a hard upper

bound (weight clipping) on the magnitude of the weights.

While admittedly heuristic (even if based on robust results

in statistics), we will see that this procedure uniquely selects

the weight clipping and it also gives constraints on the viable

neural network architectures.2

Machine learning techniques have recently been intro-

duced to solve problems related to the one discussed

above [27–33]. In this paper we also directly compare our

sensitivity with that of two related ideas presented in the

literature. One has the same goal, but is based on a near-

est neighbors estimation of probability distributions [32,33].

The other targets only resonant signals, with the resonant fea-

ture occurring in a pre-specified variable, but leverages in a

similar way the capability of multilayer perceptrons to iden-

tify correlations in multivariate datasets [17]. For the com-

parison we employ simple toy benchmark examples defined

in the corresponding publications. We study these examples

with our method and compare our performances with the pub-

lished results. This is a first step towards an exhaustive com-

parison of the different proposals (that also include [27–32]),

which we consider necessary at this stage given the practi-

2 While more standard validation procedures like k-folding could be
exploited, in this study we only focus on the approach described in
Sect. 2.1, specifically designed to fit the proposed methodology.
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cal difficulties involved in directly evaluating their respective

strengths and weaknesses by just reading published work.

The paper is organized as follows. In Sect. 2, after a brief

review of the basic ideas behind our approach (see Ref. [1] for

a detailed exposition), we define its detailed implementation.

We describe in particular the strategy we adopt to select the

neural network architecture and the other hyperparameters.

In Sect. 3 we compare our performances with Refs. [17,32,

33] in the context of toy examples. The rest of the paper is

devoted to μ+μ− production at the LHC. First, in Sect. 4,

we introduce the new physics signals and the details of our

simulated datasets. We also describe the dedicated analyses

that we use to estimate the ideal sensitivity. In Sect. 5 we

describe the application of our method and we extensively

study its performances. We conclude and outline directions

for future work in Sect. 6.

2 Methodology

Neural networks have already found a plethora of successful

applications in high energy physics, including jet physics

[34–58], optimized new physics searches [17,59–65], faster

detector simulations [66–71] and fits to parton distribution

functions [72], where they have been applied successfully

for decades [73]. In this work we show the power of these

techniques in the context of model-independent new physics

searches at the LHC, expanding the framework of Ref. [1].

We first choose a set of variables that describe the data,

a range for their values and the integrated luminosity of the

dataset. This is the only physics choice that we have to make,

which defines the “experiment” we want to analyze. For

instance our input space can consist of the momenta of the

two leading muons in events with at least two opposite-sign

muons within acceptance.

Once we have selected an input space of interest we gen-

erate a large reference sample that represents the SM (or,

“reference model”) prediction. This simulated dataset has

much larger statistics than the actual experimental data, we

denote with NR the number of events in this sample, while the

expected number of events is N (R) ≪ NR . We also gener-

ate Ntoy toy datasets that again follow the SM prediction, but

have the same statistics as the actual experimental dataset.

Namely, they contain a variable number of events, thrown

randomly from a Poisson distribution with N (R) expected

events. At this point we have prepared the required input for

the neural network and we can choose a specific network

architecture.

Our neural networks are fully connected, feedforward

regressors, trained to learn a likelihood ratio. The training

is carried on with a supervised procedure, taking as input

the two datasets described above: the large reference dataset

that follows the SM (reference) prediction R and a smaller

dataset that represents the experimental data D. The training

datasets are preprocessed. Input variables allowing negative

values, as η, are normalized subtracting their mean and divid-

ing by their standard deviation. The other variables, like pT ,

are simply divided by their mean. The loss L used to train

the network is

L[ f ( ·, w)] = N (R)

NR

∑

x∈R

(e f (x;w) − 1) −
∑

x∈D

f (x; w). (1)

Here x is an element of the input space (for example 5 num-

bers describing the two muons pT , rapidity and azimuthal

angular difference) and f is the output of the network as a

function of the free parameters w (weights and biases) of the

network. The values of these parameters after training will

be denoted as ŵ in what follows.

The neural network defines a composite hypothesis for the

distribution (denoted as n(x |w)) of the data, namely

n(x |w) ≡ e f (x;w)n(x |R),

where n(x |R) is the distribution (see Table 1 for a summary

of our notation) in the reference hypothesis. Our search strat-

egy is constructed as an hypothesis test between the simple

hypothesis n(x |R) and the composite (depending on the free

parameters w) alternative hypothesis n(x |w). The loss is con-

structed [1] to reproduce the maximum log-likelihood ratio

(Neyman–Pearson) test statistic t (D) for composite alterna-

tive hypothesis [74]. Namely it is such that

Min
{w}

L = −Max
{w}

{
log

[
e−N (w)

e−N (R)

∏

x∈D

n(x |w)

n(x |R)

]}
= − t (D)

2
,

(2)

when NR is much larger than the number of events in D.

The minimum of the loss at the end of training (or, more pre-

cisely, t (D)) is thus employed as the statistic of our hypoth-

esis test. Notice that after training, the output of the network

is an estimate of the log-ratio of the data distribution over

the reference distribution: f (x; ŵ) ≃ log [n(x |ŵ)/n(x |R)],

as a function of the input variables x . It can thus be used, in

case of tension between the data and the reference model, to

identify the most discrepant regions of the phase space.

Armed with the input datasets, the network and loss

described above we can analyze the data. The procedure is

rather straightforward. The neural network is trained using

the reference sample and a data sample collected by the

experiment. The loss at the end of training produces a sin-

gle value tobs for the test statistic. We then train the network

again using, instead of the experimental data, the Ntoy syn-

thetic datasets distributed according to the reference hypoth-

esis, previously described. This gives us Ntoy values of the

test statistic t that populate the distribution of the test statistic

in the reference model hypothesis: P(t |R). Comparing tobs
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Table 1 Summary of notation introduced and employed in Sects. 2 and 4

Distributions

n(x |R) Distribution of the variable x in the reference model R

n(x |NP) Distribution in the new physics model NP (signal plus background)

n(x |ŵ) Distribution of x estimated by the Neural Network (NN)

Events

N (R) Number of expected events in the reference model R

NR Number of events in the reference dataset

N (ŵ) Number of expected events estimated by the NN

Test Statistic

t (D) Test statistic computed by the NN on the Data sample D

tid(D) Ideal test statistic (requires prior knowledge of the signal)

P(t |R) Probability distribution of the test statistic t in the reference model

Normalization

∫
n(x)dx = N n(x): Events distribution∫
P(x)dx = 1 P(x): Probability distribution

with P(t |R) tells us if our dataset is consistent with the ref-

erence model. More precisely we can compute a global3 p

value as

p =
∫ ∞

tobs

dt P(t |R). (3)

We also define a corresponding Z score as

Z(p) = �−1(1 − p), (4)

where �−1 is the quantile of a Normal distribution with

zero mean and unitary variance, so that Z is conveniently

expressed as a number of σ ’s. The presence of a new physics

signal in the experimental dataset would manifest itself as a

large value of Z.

The discussion above concisely lays out our data analysis

strategy (see Ref. [1] for a more complete exposition), to be

put in place once the neural network architecture and the other

hyperparameters have been selected. We now describe the

criteria and the algorithmic procedure by which this selection

is made, which constitute the major methodological advance

of the present paper.

3 We stress the fact that our p-values are global. i.e., we do account for
the look-elsewhere effect in the specific analysis at hand. On the other
hand, there is a residual trial factor, induced by repeating the procedure
on multiple final states. This trial factor is difficult to quantify, and
analogous to the usually neglected trial factor of the global search effort
by an LHC experiment consisting of hundreds of searches in different
final states. We do not discuss it further here.

2.1 Hyperparameters selection

Our goal is to design an effectively model independent

search, so the construction of our method must not assume

to know anything specific about the signal that we are look-

ing for. Our selection strategy is thus purely based on the

reference model (SM) prediction, and relies on two general

criteria.

The first criterion that we adopt is flexibility. Namely we

would like the neural network to have as many parameters as

possible, free to vary in the largest possible range, in order

to be sensitive to the largest possible variety of new physics.

This has to be balanced against a second criterion, based

on the following observation. Our method is mathematically

equivalent to the Maximum Likelihood hypothesis test strat-

egy where the set of alternative hypotheses is defined by the

neural network. Hence we can rely on the classical results

by Wilks and Wald [75,76] (see also [77] for a more recent

exposition) according to which the maximum log-likelihood

ratio test statistics is distributed in the Asymptotic Limit as

a χ2 with a number of degrees of freedom equal to the num-

ber of free parameters in the alternative probability model.

From here we conclude that the distribution of our test statis-

tic on reference-model toy datasets (i.e., P(t |R)) approaches

in the asymptotic limit a χ2 with a number of degrees of

freedom given by the number of parameters of the neural

network. Clearly we should not expect this result to hold for

a finite dataset. However if it does apply, namely if the distri-

bution does resemble the χ2, we can conclude heuristically

that the dataset is sufficiently abundant for the network that
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is being fitted. If instead the distribution violates the asymp-

totic formula, it means that the test statistic is sensitive to

low-statistics regions of the dataset that are subject to large

and uncontrolled fluctuations. We can define this behavior as

“overfitting” in our context and restrict ourselves to hyper-

parameters configurations for which a good compatibility of

P(t |R) with the appropriate χ2 distribution is observed. We

will see that combining the two criteria of flexibility and of

χ2-compatibility dramatically restricts the space of viable

options.

In order to illustrate how the optimization strategy works

in practice we first need to specify our framework. We restrict

ourselves to fully-connected neural networks with logistic

sigmoid activation functions in the inner layers. The archi-

tecture is characterized by the dimensionality of the input

of each of the “L” layers, i.e. by a set of integers a0-a1-. . .-

aL−1, plus the output dimensionality that is fixed to aL = 1

in our case. So for example a 1-3-1 (L = 2) network acts

on a one-dimensional feature space (a0 = 1), has one inner

layer with three neurons (a1 = 3) and one-dimensional out-

put (a2 = 1). In this notation the total number of parameters

(weights and biases) in the network is

Npar(	a) =
L∑

n=1

an(an−1 + 1). (5)

We regularize the network by imposing an upper bound

(weight clipping) on the absolute value of each weight. In the

following we capitalize Weight Clipping when referring to

this specific use of the parameter (i.e., an upper bound on each

individual weight). The minimization of the loss function in

Eq. (2) is performed using ADAM [78] as implemented in

Keras [79] (with the TensorFlow [80] backend) with

parameters fixed to β1 = 0.9, β2 = 0.99, ǫ = 10−7 and

initial learning set to 10−3. The batch size is always fixed to

cover the full training sample. The hyperparameters we want

to determine are thus the number of layers and of neurons in

each layer (i.e., the architecture of the network), the weight

clipping parameter and the number of training epochs.

The first step of the optimization procedure consists in

choosing an initial network architecture. This can be done

heuristically by considering the dimension of the input space

and the number of events in the datasets of interest. Here

we consider for illustration a one-dimensional slice (specifi-

cally, the momentum of the leading lepton in the x direction)

of the SM di-muon dataset described in Sect. 4 with a rela-

tively low expected number of data events N (R) = 2000. The

number of events in the reference sample is NR = 20,000.

A small 1-3-1 network is a reasonable starting point in this

case. According to the flexibility criterion, the weight clip-

ping parameter should be taken as large as possible in order

to maximize the expressive power of the network. However

if we take it very large training does not converge even after

hundreds of thousands of training epochs. This is not accept-

able because reaching the absolute minimum of the loss func-

tion as in Eq. (2) is conceptually essential for our strategy.

We observe this behaviour in the upper left corner of Fig. 1,

where we plot the upper quantiles of P(t |R) as a function

of training rounds. The phenomenon is avoided by lowering

the weight clipping below a certain threshold Wmax, which

we find to be Wmax ≃ 30 in the case at hand as shown in the

figure.

The test statistic distribution P(t |R) can now be com-

pared with the χ2
Npar

distribution, with a number of degrees

of freedom equal to the number of parameters of the neu-

ral network as in Eq. (5). We have Npar = 10 for the 1-3-

1 network. The left panel of Fig. 2 displays the evolution

with the training rounds of the χ2-compatibility, defined as a

simple Pearson’s χ2 test statistic on the P(t |R) distribution

sampled with 1000 toy experiments. We see that requiring

an acceptable level of χ2-compatibility further restricts the

allowed range for the weight clipping parameter. The max-

imum weight clipping for which compatibility is found is 7

in the case at hand. Since the Weight Clipping should be as

large as possible to maximize flexibility, this is the value to

be selected.

In summary, the strategy we adopt to select the weight

clipping parameter is the following:

1. Starting from a large weight clipping, decrease it until

the evolution of the 95% quantiles of P(t |R) achieve a

plateau as a function of training epochs.

2. In the range of weight clippings below Wmax where the

plateau is reached, choose the largest Weight Clipping

value that gives a good compatibility between P(t |R)

and a χ2 distribution whose degrees of freedom are equal

the total number of trainable parameters in the network,

as shown in Fig. 2.

3. The total number of training epochs should also be fixed.

To reduce the computational burden of our procedure this

is chosen as the minimum value for which the evolution

of the χ2-compatibility has reached its plateau.

We should now explore different neural network archi-

tectures. In particular we would like to consider more com-

plex architectures than 1-3-1 to increase the expressive power

of the network. Complexity can indeed be increased, but

not indefinitely as shown in Fig. 3 for a 1-10-1 network.

A suitable Wmax can be identified below which the quan-

tiles of P(t |R) converge, but P(t |R) fails to fulfil the χ2-

compatibility criterion for any choice of the Weight Clipping

parameter. The 1-10-1 network should thus be discarded and

the optimal (largest) viable network of the 1-N-1 class sits

in the range 3 ≤ N < 10. By studying the networks in this
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Fig. 1 Quantiles of the test statistic distribution vs training epochs for different choices of weight clipping. The quantiles are obtained from 1000
toy experiments and are a plotted for a 1D example discussed in the text. The architecture of the network is fixed at 1-3-1

Fig. 2 Left: compatibility of the test statistic distribution in the ref-
erence hypothesis with a χ2 distribution with Npar = 10 degrees of
freedom (1-3-1 network). The plot was made using 100 toy experi-
ments and a 1D example discussed in the text. Note that the χ2

ν on the

y-axis measures the compatibility between the two distribution and is
not related with the χ2

Npar
that approximates reference model distribu-

tion of t . Right: the test statistic distribution for weight clipping set to
7, compared with the χ2

10

range we might uniquely select the architecture and all the

other hyperparameters that are suited for the problem at hand.

The behaviour described above for the toy one-dimensio-

nal dataset has been confirmed in other cases and it is believed

to be of general validity. Namely it is generically true that

χ2-compatibility places an upper bound on the network com-

plexity, leaving us with a finite set of options to explore.

On the other hand we cannot claim that the our selection

strategy always singles out a unique hyperparameters con-

figuration. Even in our one-dimensional example one might

extend the complexity of the network by adding also new

layers, obtaining several viable options with similar number

of parameters. Selecting one of these options would require

to introduce a strict notion of neural network “complexity”,
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Fig. 3 Compatibility of the test statistic distribution in the reference
hypothesis with a χ2 distribution with Npar = 31 degrees of freedom (1-
10-1 network) as a function of a training rounds and for different choices
of the Weight Clipping parameter. A satisfactory level of compatibility
is never reached

to be maximized. Furthermore one might consider departures

from the general neural network framework that we are con-

sidering. For instance the weight clipping might be imposed

on the norm of the weight vector at each layer rather than

on each individual weight, and/or a different weight clipping

threshold might be imposed on each layer. Even the choice of

logistic sigmoid activations and of fully-connected networks

might be reconsidered.

While this aspect should be further studied, it is probably

unnecessary to consider this extended space of possibilities.

This belief is supported by a number of tests that we per-

formed with different activation functions, training methods

and architectures. We find that the performances of our strat-

egy in terms of sensitivity to putative new physics signals

depend quite weakly on the detailed implementation of the

algorithm. Performances are very similar for all the hyperpa-

rameters configurations that are reasonably flexible and obey

the χ2-compatibility criterion. Even slight departures from

compatibility typically do not change the sensitivity appre-

ciably. Establishing this fact for a number of putative new

physics signals and for several neural network configurations

selected with our criteria would justify the choice of restrict-

ing to a single configuration. Or, alternatively, would allow

to combine the p-values obtained from different strategies

without loosing sensitivity by the look-elsewhere effect.

Before concluding this section it is worth to point out that

the compatibility with the χ2
Npar

distribution can be leveraged

to compute the p-value without generating a large number

of toy experiments

p =
∫ ∞

tobs

P(t |R)dt ≃
∫ ∞

tobs

χ2
Npar

(t)dt. (6)

This considerably reduces the computational burden of eval-

uating the global significance. However one should keep in

mind that P(t |R) ≃ χ2
Npar

(t) is an approximate statement,

which we can only test at a statistical level given by the num-

ber of toys that we generated. However in cases where gener-

ating a sufficient number of toy samples is unfeasible, as for

example the high significance models discussed in Sect. 3,

we will be obliged to report estimates of the p-value obtained

with this approximation.

We stress that our hyperparameter selection strategy is not

based on an a priori assumed new physics model, hence it

is not optimal to detect any specific signal. In particular, the

network we select with our method might not be expressive

enough to be fully sensitive to complex new physics signals.

However we will see this is not a problem for the BSM sce-

narios studied in this paper.

3 Comparison with related work

In the previous section we have introduced all the ingredients

needed to implement our data analysis strategy. In this section

and in Sect. 5 we test its performances on a series of examples.

This section is devoted to comparisons with other ideas that

have related goals.

Machine learning has recently seen a surge of popular-

ity following the latest developments in deep learning and

computer vision. A number of works proposing anomaly

detection strategies for LHC datasets has appeared in the

literature in the past few years [27–33]. This effort is still rel-

atively recent and the field has not fully matured yet. Ongoing

efforts (LHC Olympics [81,82] and DarkMachines [83]) are

establishing benchmarks for common comparison.

We take a step towards making the comparison between

different strategies more transparent by testing our method-

ology on some toy examples present in the literature. We

consider three examples: two incarnations of a method that

has the same goal, but a very different estimation strategy

for the test statistic and a third method that has a narrower

scope, but a similar technical approach to the problem, based

on multilayer perceptrons trained as classifiers.

The first strategy that we compare with is the nearest

neighbors approach of Refs. [32,33]. This is a truly model-

independent approach4 that aims at reconstructing the true

probability distributions for the data and the reference model,

using a nearest neighbors technique [84–86]. A comparison

to this method is instructive because it allows us to test a

completely different approach to the estimation of the likeli-

hood.

We first study the performance of our algorithm on a two-

dimensional example, considered in Ref. [33], comprised of

4 Note that in reality one always needs an alternative hypothesis
to obtain a significance. Our use of the term model-independent is
explained in the previous section and in Ref. [1].

123



89 Page 8 of 21 Eur. Phys. J. C (2021) 81 :89

Fig. 4 Top: test statistic distribution for the signal and background
models considered in [33], obtained with our analysis technique. The
plot displays our sensitivity obtained using the toy samples (Z ) and the
χ2 approximation of P(t |R) (Z2

χ ). The significance quoted in Ref. [33]

is 2.2σ for NP1 and 3.5σ for NP2. Bottom: test statistic distribution for
the signal and background models considered in [32], obtained with our
analysis technique

events extracted from Normal distributions. The reference

model is a two-dimensional Gaussian with mean 	μ = (1, 1)

and covariance matrix 
 = 12×2. The number of expected

events in the reference model is N (R) = 20,000.

We consider two different putative new physics (NP) mod-

els:

• NP1: the data have mean 	μ = (1.12, 1.12) and covari-

ance matrix 
 = 12×2. The number of events predicted

is the same as in the reference model: N (NP1) = 20000.

• NP2: the data have mean 	μ = (1, 1) and covariance

matrix 
 = ((0.95, 0.1), (0.1, 0.8)). Again, N (NP2) =
20000.

The results are shown in Fig. 4 (top) for a 2-5-1 network

with weight clipping 1.2 and 150,000 epochs of training. We

generated 1000 toy SM samples and 300 data samples dis-

tributed according to the new physics hypothesis. The lowest

significances that we find, using the χ2 approximation (6) for

the reference model test statistic distribution, are Zχ2 = 19σ

for NP1 and Zχ2 = 24σ for NP2. The nearest neighbor

approach of [33] finds Z = 2.2(3.5)σ for NP1(NP2) for

5 nearest neighbors and 1000 permutations used to estimate

the test statistic distribution in the reference hypothesis.

An alternative implementation of the nearest neighbors

approach was proposed in Ref. [32]. The following two-

dimensional problem is considered:

• Reference model (R): the data have mean 	μ = (0, 0) and

covariance matrix 
 = 12×2. The number of expected

events is N (R) = 10,000.

• New Physics (NP): a signal component with 	μ =
(1.5, 1.5) and covariance matrix 
 = 0.1 12×2 is present

in addition to the background (reference) one. The

expected signal is N (S) = 500 and the total number of

expected events is N (NP) = N (S) + N (R) = 10,500,

with the remaining 104 events generated by the reference

model.

For a 2-5-1 network, weight clipping equal to 1.35 and

150,000 epochs, the results of our method are displayed in

Fig. 4 (bottom). We generated 1000 toy SM samples and

300 NP samples. The median significance, obtained with a

χ2 approximation of the test statistic, is 20σ , while Ref. [32]

quotes between 5 and 16σ for the nearest neighbors approach

depending on the cut on their discriminating variable. We

can conclude that both approaches are sensitive to the simple

problem at hand.
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Fig. 5 Test statistic distribution for the signal and background models considered in [17,87], obtained with our analysis technique. The figure
refers to the 3D toy example discussed in v1 and v2 of [17,87]

The other idea that we compare with is the bump hunter

technique in Ref. [17,87]. This approach does not have the

same goal as ours, as it requires prior knowledge of the signal

showing up as a peak in a pre-specified variable. It is further

assumed that the background distribution of the other vari-

ables used in the analysis is the same in the peak and in the

sideband regions. Clearly we have a price to pay in sensitivity

for signals that satisfy these assumptions, since we discard

this knowledge. On the other hand the approach in [17,87] is

much less effective on (or blind to) signals that do not satisfy

them. Given these differences, it is instructive to check what

is exactly the price that we are paying on resonant signals

compared to this refined bump hunter.

We test our strategy on a three-dimensional toy example

(see [17,87]) defined by:

• Reference model: the three variables m, x and y are uni-

formly distributed in the ranges |m| < 2, |x | < 0.5 and

|y| < 0.5. The number of expected events is N (R) =
10,000.

• New Physics (NP): there are N (S) = 300 signal events

with variables uniformly distributed in the ranges: |m| <

1, |x | < 0.1 and |y| < 0.1 and N (R) = 10,000 events

distributed as the reference model, for a total number of

expected events N (NP) = N (S) + N (R) = 10,300.

Our results are shown in Fig. 5 for a 3-5-1 network with

weight clipping 3.4 and 150,000 epochs of training. As in

the previous examples, we generated 1000 toy SM samples

and 300 NP samples.

We obtain a median significance of 8.1σ , to be compared

with the 10.8σ claimed in Ref. [17,87] for the optimal choice

of the neural network discriminant threshold. In the compar-

ison it should be taken into account that 10.8σ is a local

significance, based on prior knowledge of the peak position

and width. The degradation due to the need of scanning over

the peak position and width (inherent of the bump hunter

approach) and over the neural network threshold (specific of

this strategy, see Ref. [87]) should be quantified for a bet-

ter comparison with our 8.1σ significance, which is instead

global. However such a refined comparison is unnecessary

in this benchmark example because no quantitative meaning

should be attached to the asymptotic estimates of such high

levels of significance. We can only conclude that our method

is sensitive to this toy problem in spite of not being optimized

for (and hence limited to) the detection of resonant signals.

4 Benchmark examples

In the previous sections we have introduced our methodology

and compared our data analysis strategy with two alternative

ideas present in the literature. The comparisons involved toy

examples that can not be directly mapped on cases of physical

interest.

The natural next step is to study the performances of our

strategy on more realistic datasets and new physics exam-

ples. We choose to study LHC di-muon production and to

consider two well-known new physics scenarios. In this sec-

tion we describe the signal and background samples used for

the analysis. The results of our study are presented in the

next section. We consider two distinct possibilities for how

new physics can manifest itself a resonant signal, represented

by a Z ′ decaying to μ+μ−, and a smooth signal given by a

contact interaction that we call “EFT”. The samples used to

study our performances are:

SM di-muon The reference sample and the SM toy data

are composed of SM Drell–Yan events: pp → μ+μ−. All

events were generated with MadGraph5 [88], showered

with Pythia6 [89], simulating proton-proton collision at√
s = 13 TeV with an average of 20 overlapping collisions

per bunch crossing. The events were further processed with

Delphes 3 [90]. We use the default CMS detector card.

We run the Delphes particle-flow algorithm, which com-

bines the information from different detector components to
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Fig. 6 Transverse momenta of the two leading muons for a SM DY sample and our mock data samples containing a Z ′ decaying to muons (upper
panel) or new physics events from the contact interaction in Eq. 7 (lower panel). The samples are described in Sect. 4

derive a list of reconstructed particles. The five kinematical

variables relevant for the analysis are the pT ’s and η’s of the

two leptons and their �φ. These are given as input to the

neural network after preprocessing. The integrated luminos-

ity of the dataset, corresponding to the number of expected

events in the toy SM (and BSM) samples are varied to study

the performances of the algorithm as discussed in Sect. 5.

Z′ to di-muon We study a new vector boson with the same

couplings to SM fermions as the SM Z boson. We gener-

ate events for three different masses: m Z ′ = 200, 300 and

600 GeV. The signal manifest itself as a narrow resonance

at the LHC: ŴZ ′ ≃ ŴZ m Z ′/m Z . The events are generated

using the same software and detector cards as the reference

model events described above. The number of events in the

data sample and the signal to background ratio N (S)/N (R)

are varied to study the performances of the algorithm and

are discussed in Sect. 5. The input variables distribution for

three representative signal points are shown in Figs. 6 and 7.

EFT We consider a non-resonant BSM effect due to the pres-

ence of a dimension-6 4-fermion contact interaction (see e.g.

[91])

cW

�2
JL

a
μ JL

μ
a , (7)

where JL
μ
a is the SU(2)L SM current and � is conventionally

set to 1 TeV. We generate di-muon events with the same

tools described above (supplemented with a MadGraph5

model for the EFT operator obtained by FeyRules [92])

by varying cW in order to study the performances of the

algorithm as discussed in Sect. 5. The distribution of the

input values for three representative values of cW are shown

in Figs. 6 and 7.

In Sect. 5 we will extensively study the sensitivity of our

method to the BSM scenarios described above. For a mean-

ingful presentation of the results, and in order to compare

the performances on different scenarios, we need an absolute

measure of how much a given BSM hypothesis is “easy” to

detect with a given integrated luminosity. As in Ref. [1], this

measure is introduced by the notion of “ideal significance”,

described below.

4.1 The ideal significance

The ideal significance is the highest possible median Z -score

(Z id) that any search specifically targeted to a given BSM

scenario in a given experiment could ever obtain. By the

Neyman–Pearson lemma, it is obtained using the “ideal” test
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Fig. 7 Pseudo-rapidities and �φ of the two leading muons for a SM Drell-Yan sample and our mock data sample containing a Z ′ decaying to
muons (upper panel) or new physics events from the contact interaction in Eq. 7 (lower panel). The samples are described in Sect. 4

statistic

tid(D) = 2 log

[
e−N (NP)

e−N (R)

∏

x∈D

P
n(x |NP)

n(x |R)

]
, (8)

The ideal significance can be reached only in a fully model-

dependent search where the exact knowledge of both the new

physics distribution n(x |NP) (see Table 1) and the reference

distribution n(x |R) are available. This knowledge is avail-

able, in principle, for the BSM scenarios under examination.

However computing n(x |NP)/n(x |R) is cumbersome. An

estimate for it sufficiently accurate to serve as a reference of

performance in the present paper (hence quoted as Zref ) is

readily obtained as follows.

Z′ to di-muon The signal shows up as a resonant peak in

the di-muon invariant mass mll around the Z ′ mass m Z ′ . A

simple cut-and-count strategy in a suitably designed interval

mll ∈ [mmin, mmax] around m Z ′ should provide a reasonable

estimate of the ideal reach. The ideal significance is thus

estimated as

Zref = Z
[
1 − CDF[Pb](s + b)

]
∼ s√

b
,

where

{
s = fsig N (S)

b = fbkg N (R)
. (9)

In the equation, CDF[Pb] denotes the cumulative of the

Poisson distribution with mean “b” while fsig and fbkg are

respectively the signal and background fractions in the mass-

window

fsig ≡
∫ mmax

mmin

dmll

d P(mll |S)

dmll

,

fbkg ≡
∫ mmax

mmin

dmll

d P(mll |R)

dmll

.

The signal fraction is estimated with a Monte Carlo sam-

ple consisting of 16,000 signal-only events. The background

is computed by fitting a Landau distribution to the tail of a

SM sample with 1.6 million events. The boundaries of the

mass-window [mmin, mmax] are selected by optimizing the

significance and reported in Table 2 together with the corre-

sponding signal and background fractions.
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Table 2 Mass-window, signal and background fractions for the estimate of Z id in Eq. (9)

m Z ′ N (S) N (R) [mmin, mmax] fsig fbkg

200 GeV 40, 60, 80 20 · 103 [185, 215] 0.62 9.0 × 10−4

300 GeV 20, 30 20 · 103 [278, 322] 0.72 2.3 × 10−4

25, 35 20 · 103 [279, 321] 0.71 2.2 × 10−4

600 GeV 6, 10 20 · 103 [554, 656] 0.77 2.4 × 10−5

15 20 · 103 [549, 662] 0.83 2.8 × 10−5

In order to validate Eq. (9) as a reasonable estimate of Z id

we compared it with the truly “ideal” significance obtained

with the Neyman-Pearson test performed on the mll variable.

We fitted the background Monte Carlo data using two Landau

distributions (one for 250 GeV ≤ mll < 600 GeV, the

other for mll ≥ 600 GeV) and a Normal distribution for

the Z ′ peak. This allowed us to compute the test statistic in

Eq. (8) and in turn the ideal significance by toy experiments.

Good agreement with Eq. (9) was found. Notice however that

the comparison was possible only in configurations with low

enough Zref . For cases with Zref � 4, which we do consider

in Sect. 5, validation is unfeasible and we exclusively rely on

Eq. (9).

EFT Also in this case, the di-muon invariant mass is the most

relevant discriminant. Since the excess is spread over the

entire spectrum, the ideal significance is estimated through

a likelihood ratio (Neyman–Pearson) test on the binned mll

distribution. The number of expected events in each bin is

quadratic in cW

ni (cW ) = N (R)(αi + βi cW + γi c
2
W ), (10)

with coefficients determined from Monte Carlo simulations

at varying cW , reported in Table 3. The test statistic is the

log-ratio for the Poisson distributed observed countings “oi ”

in each bin

t (D) =
∑

i∈bin

2

[
ni (0) − ni (cW ) + oi log

ni (cW )

ni (0)

]
, (11)

and the reference significance is evaluated from the distribu-

tion of t in the SM (cW = 0) extracted from toy experiments.

5 Results on benchmark examples

In this section we study the sensitivity of our data analysis

strategy to the physics examples discussed in the previous

section. Our main results are:

1. In the examples we studied, in all cases where the esti-

mate of the ideal significance exceeds 5σ , the probability

of finding a 2σ tension for the SM using our approach

is p(α = 2σ) � 20% and grows to p(α = 2σ) � 40%

if we exclude the Z -boson peak from the input data by

a cut on the invariant mass. The probability of finding a

3σ tension is p(α = 3σ) � 7% and p(α = 3σ) � 20%

including or excluding the Z -peak, respectively (Fig. 8).

2. For any given “experiment” (i.e., at fixed luminosity and

input space), the observed significance mostly depends

on the ideal significance of the putative signal, while it

weakly depends on the type of signal (Fig. 9).

3. The neural network output correctly reconstruct the data

to reference likelihood-ratio, finding a good approxima-

tion to the properties of the signal in the space of input

variables, for all the signals that we consider (Fig. 10).

4. In the examples that we have studied, where the observed

significance is not close to saturating the reference signif-

icance, the observed significance increases linearly with

luminosity, as opposed to the
√

L growth of the reference

significance. Both significances increase linearly with the

number of signal events as expected (Fig. 11).

Properties “1” and “2” make our technique ideally suited

to identify an unexpected new physics signal. Because of

“3”, if a tension is observed in the data the sensitivity to the

signal can be increased with a dedicated analysis on new data,

selected using the likelihood ratio learned by the network.

As stated in “2” above, Zobs essentially depends only on

the ideal significance (approximated by Zref ) for a given

experiment. However in a different experiment (e.g., if we

change the luminosity) the relation between Zobs and Zref

changes. The relation becomes more favorable at high lumi-

nosity because of point “4”.

Let us now turn to an extensive description of the items

above, and of our findings on a few technical points relevant

to the implementation of the algorithm. For all the results

in this paper the minimization of the loss function is per-

formed using ADAM [78] as implemented in Keras [79]

(with theTensorFlow [80] backend) with parameters fixed

to: β1 = 0.9, β2 = 0.99, ǫ = 10−7, initial learning rate

= 10−3. The batch size is always fixed to cover the full train-

ing sample. Network architecture, size of the weight clipping

and number of training rounds were selected following the
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Table 3 The coefficients of the polynomial fit in Eq. (10)

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5
[60,148] GeV [148, 296] GeV [296, 444] GeV [444, 592] GeV [592, 740] GeV

α (9.93 ± 0.03)10−1 (0.3%) (4.95 ± 0.03)10−3 (0.6%) (4.01 ± 0.02)10−4 (0.5%) (8.5 ± 0.2)10−5 (2.3%) (2.64 ± 0.02)10−5 (0.8%)

β (7.0 ± 0.5)10−4 (3.5%) (5.06 ± 0.04)10−4 (0.8%) (1.52 ± 0.02)10−4 (1.3%) (6.7 ± 0.3)10−5 (4.4%) (3.37 ± 0.05)10−5 (1.5%)

γ (1.21 ± 0.07)10−5 (5.8%) (2.28 ± 0.07)10−5 (3.0%) (2.20 ± 0.07)10−5 (3.1%) (1.96 ± 0.02)10−5 (1.0%) (1.703 ± 0.005)10−5 (0.29%)

Bin 6 Bin 7 Bin 8 Bin 9 Bin 10
[740, 888] GeV [888, 1241] GeV [1241, 1594] GeV [1594, 1947] GeV [1947, 2300] GeV

α (9.84 ± 0.05)10−6 (0.5%) (7.59 ± 0.07)10−6 (0.9%) (1.4 ± 0.2)10−6 (14%) (3.6 ± 0.7)10−7 (19%) (1.10 ± 0.03)10−7 (0.8%)

β (1.85 ± 0.01)10−5 (0.5%) (2.30 ± 0.01)10−5 (0.4%) (6 ± 1)10−6 (17%) (2.2 ± 0.6)10−6 (27%) (1.34 ± 0.09)10−6 (1.5%)

γ (1.432 ± 0.005)10−5 (0.3%) (2.90 ± 0.01)10−5 (0.3%) (1.6 ± 0.2)10−5 (13%) (1.09 ± 0.05)10−5 (4.6%) (6.769 ± 0.001)10−6 (0.01%)

Fig. 8 Probability of finding a α = 2σ, 3σ, 5σ evidence for new physics using our technique as a function of the reference significance of the
signal, for the Z ′ model described in Sect. 4. (Left) Including the Z -peak in the data. (Right) Without the Z -peak

procedure described in Sect. 2. Where not specified other-

wise, the results were obtained with a 5-5-5-5-1 network and

3 × 105 training rounds, using 100 data samples and 100 toy

reference samples. The median observed significance plotted

in the Figures and its 68% C.L. error were obtained approx-

imating P(t |R) with a χ2 distribution with as many degrees

of freedom as free parameters in the network as discussed in

Sect. 2. We always consider a five-dimensional input space

composed of the pT ’s and η’s of the two leptons and their

�φ. The range of the input variables and their distribution

for three representative signal points are shown in Figs. 6 and

7.

Sensitivity The first goal of our study is to show that our tech-

nique is sensitive to realistic signals. By realistic we mean

having N (S)/N (R) ≪ 1, i.e. a small number of signal events

compared to the total size of the sample, and ideal signifi-

cances of order a few σ ’s. These choices reproduce signals

that we might have missed at the LHC so far, if not targeted

by a dedicated search. The best way to illustrate the per-

formances of a model-independent strategy is to report the

probability it has to identify a tension with respect to the

SM if a putative new physics effect is present in the data.

This measures the chances that the analysis has to produce

an interesting result. In the left panel of Fig. 8 we show

the probability of finding evidence for new physics at the

α = 2σ, 3σ and 5σ levels given a reference significance for

the signal. We consider for illustration the Z ′ signal model

with m Z ′ = 300 GeV described in the previous section, but

similar or better performances are obtained for other masses

and for the case of the EFT. The two plots here presented are

obtained by fixing the luminosity while the ratio N (S)/N (R)

is varied.

On the left panel of the figure, and in the results that follow

if not specified otherwise, we applied our algorithm to the

entire dataset which includes the SM Z -boson peak. This

choice was made in order to challenge our analysis strategy

in a situation where the dataset is dominated by the peak,

where no new physics effect is present. On the other hand

the peak would be excluded in a realistic application of our

method to the di-muon final state because it is hard to imagine

new physics appearing on the Z peak not excluded by LEP

and because detailed analyses of the Z resonant production

could be performed separately. If we exclude the Z -peak from

the input data, with a cut mll > 95 GeV (whose efficiency
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is 10%), the performances of our analysis improve as shown

on the right panel of Fig. 8.

Another way to quantify the sensitivity is to report the

median significance obtained for different new physics sce-

narios, still as a function of the ideal significance. The result is

shown in Fig. 9, with the error bars representing the 68% C.L.

spread of the observed significance distribution. The study

was performed for a given experimental setup, namely by

fixing N (R) = 2×104 (and NR = 5 N (R)), and varying the

signal fraction or the EFT Wilson coefficient cW as shown

in the legend. We observe, similarly to Ref. [1], a good level

of correlation between our sensitivity and the ideal one and

a weak dependence on the nature of the new physics. This

correlation was sharper in the examples studied in Ref. [1],

however it should be taken into account that the present study

relies on approximate (see Sect. 4) estimates of Z id and that

high values of Zobs are also approximate, being estimated

with the Asymptotic χ2 formula (see Sect. 2.1).

Likelihood Learning It is instructive to study directly what

the network has learned during training. The network should

learn approximately the log-ratio between the true distribu-

tion (n(x |T), see Table 1) of the data and the reference model

distribution n(x |R). We should thus be able to get informa-

tion on the nature of the discrepancy by inspecting the likeli-

hood ratio learned by the network as a function of the physical

observables chosen as input or any of their combinations. In

the case of a Z ′ signal, for instance, we would like to see

a bump in the invariant mass distribution as learned by the

network.

In Fig. 10 we plot the distribution ratio learned by the

network as a function of the invariant mass of the dimuon

system. In the figure we also show the true likelihood ratio

used for the generation of the events and its estimate based

on the specific data sample used for training. The signals are

the Z ′ with a 300 GeV mass with N (S)/N (R) = 2 × 10−3,

N (R) = 2 × 104 and NR = 105 and an EFT signal with

the same N (R) and NR and cW = 10−6. Notice that mll is

not given to the network, the input variables being the muon

pT ’s, rapidities and �φ.

The ratios in the figure were obtained in the following

way. The yellow “ideal” likelihood-ratio was obtained by

binning the invariant mass of a large data sample, containing

one million events, and of the reference sample and taking

the ratio. The red likelihood-ratio pertaining to a specific toy

was obtained in the same way, replacing the large data sam-

ple with the relevant toy. Finally, the ratio as learned by the

network was obtained by reweighting reference sample by

e f (x,ŵ), where f is the neural network output after training,

binning it and taking the ratio with the reference.

The network is doing a pretty good job in reproducing a

peak or a smooth growth (for the Z ′ and the EFT, respec-

tively) in the invariant mass. Therefore if one had access to

a new independent data set, distributed like the one used for

training (i.e., following n(x |T)), one could employ the neural

network f (x, ŵ) (trained on the first dataset) as discriminant

(for instance, by a simple lower cut), and boost the signifi-

cance of the observed tension.

In the studies presented so far we have chosen as input to

the network five independent kinematic variables that char-

acterize the di-muon final state under examination, paying

attention not to include the invariant mass mll which is essen-

tially the only relevant discriminant in the new physics sce-

narios under investigation. This choice was intended to max-

imize the difficulty of the network task, reproducing the real-

istic situation where, since the actual signal is unknown, the

most discriminant variable cannot be identified and given to

the network. However it is interesting to study the potential

improvement of the performances that could be achieved with

a judicious (but model-dependent) choice of the input vari-

ables. The first test we made was to present mll to the network

in addition to the five variables pT 1,2, η1,2 and �φ. This led

to no substantial improvement of the performances suggest-

ing that the neural network is already learning to reconstruct

mll sufficiently well from the five variables and does not need

the sixth one. The second test was to trade the variable �φ for

mll , considering an alternative five-dimensional parametriza-

tion of the phase-space. Notice that �φ has no discriminating

power whatsoever because the new physics scenarios under

examination emerge in 2 → 2 scattering processes where the

muons are back-to-back in the transverse plane up to show-

ering and detector effects, as it is the case for the SM. The

�φ distribution is thus (see Fig. 7) strongly peaked at π and

identical in the SM and in BSM. Replacing it with mll , which

is instead the most discriminant one, is thus the strongest test

we can make of the robustness of our approach against change

of input space parametrization. For the m Z ′ = 300 GeV sig-

nal with N (S)/N (R) = 10−3 and N (R) = 2 × 104, whose

significance was Zobs = (0.9+1.3
−0.9)σ , replacing �φ with mll

increases the observed significance to Zobs = (2.3+1.4
−1.1)σ .

Luminosity and signal fraction In the left panel of Fig. 11

we show our performances for the Z ′ model with m Z ′ =
300 GeV as a function of N (R), i.e. as a function of the

integrated luminosity “L” of the dataset. The observed sig-

nificance shown in the plot is the median over 100 data sam-

ples with its 68% C.L. error. The signal fraction is fixed to

N (S)/N (R) = 10−3, the size of the reference sample is

NR = 5N (R) and we increase N (R) from 104 to 105. Inter-

estingly, in the regime where these tests are performed, the

observed significance increases linearly with the luminosity

Zobs ∼ L , as opposed to the
√

L growth of the reference sig-

nificance. This can be explained by the fact that our analysis

technique benefits from having enough statistics in the data

to accurately reproduce the likelihood ratio. So increasing L
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Fig. 9 Sensitivity (Zobs) to Z ′ → μ+μ− for m Z ′ = 300 GeV and the EFT signal. We show the sensitivity as a function of the reference significance
Zref

Fig. 10 Comparison between the ideal invariant mass distribution for the Z ′ and EFT signals and the distribution reconstructed by the network
and realized in the toy sample taken as input. The probability distribution of the data sample is normalized to the reference one

Fig. 11 Sensitivity (Zobs) to Z ′ → μ+μ− for m Z ′ = 300 GeV. We show the sensitivity as a function of Luminosity (left panel) and signal fraction
(right panel). For reference we plot the reference significance Zref and a polynomial fit to the sensitivity

does not only make the signal more abundant and easier to

see as in standard model-dependent analyses, but it also helps

the learning process to reconstruct the most powerful (like-

lihood ratio) discriminant to detect it. Note however that at

some point this behaviour must change and match the usual√
L scaling; this is expected to happen for very large sig-

nals corresponding to very large Zref , somewhat beyond the

regimes typically relevant for new physics searches.

Increasing the signal fraction N (S)/N (R) at fixed lumi-

nosity has the only benefit of increasing the ideal significance

and its estimate. So both Zobs and Zref increase linearly with

the signal fraction as show in the right panel of Fig. 11. This

study was performed on the m Z ′ = 300 GeV sample with
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Fig. 12 (Left) Observed significance as a function of the statistical error on the reference sample in the m Z ′ = 300 GeV case. (Right) Optimized
weight clipping as a function of reference size NR

N (R) = 2×104, NR = 105 as for the study of the luminosity

in the same figure.

(In)Sensitivity to data selection. As discussed in the Intro-

duction, traditional model-independent strategies based on

countings in bins suffer from the presence of regions in the

phase space that are insensitive to new physics, because of

uncorrelated Poisson fluctuation in the corresponding bins.

In our approach this effect is greatly reduced, because the

smoothness of the neural network protects it from follow-

ing the bin-by-bin statistical fluctuations [1]. One particular

implication of this fact is that we expect our sensitivity to

depend weakly on the presence or on the absence of selection

cuts that eliminate signal-free regions of the phase space. This

is illustrated by studying the dependence of the observed sen-

sitivity on: 1) a cut on the pT of the leading muon and 2) a cut

on the invariant mass of the di-muon system. The 300 GeV

Z ′ model, with NR = 105 and N (S)/N (R) = 1 × 10−4

(before selection) is considered for this investigation.

We find that the pT cut does not alter our sensitivity. For

instance the median Zobs remains at 1σ after a pT > 75 GeV

selection, in spite of the fact that the cut rejects 96% of the

background and only 5% of the signal. The selection on the

invariant mass instead slightly increases our sensitivity. For

example mll > 95 GeV (that rejects 90% of the background

and nothing of the signal) increases the median significance

to Zobs = 1.4σ .5 We have observed this phenomenon already

in Figs. 8 and 9.

Reference size and optimal weight clipping An accurate

knowledge of known processes in the phase space of interest

is crucial for the success of any new physics search. There-

fore the size NR of the Reference Sample should be taken as

5 To face the reduced amount of training data, a less complex neural
network is used for this study: the 5-5-5-5-1 architecture is replaced by a
5-5-5-1. Also in this case the weight clipping and the number of training
rounds are optimized following the procedure described in Sect. 2.1.

large as possible, compatibly with the computational price

for training. To give an idea of the needed reference sample

size, we study the performances of our method as a function

of NR/N (R). The result on the left panel of Fig. 12 is reas-

suring: the sensitivity is very stable as a function of this ratio

up to NR/N (R) ≈ 1. Below this value the statistical error

on the reference sample in the signal region becomes siz-

able. If we define ε ≡ 1/
√

NR(278 ≤ m ≤ 322), i.e. count-

ing only events in the invariant mass window populated by

the signal (see Sect. 4) then the first point in the left panel

of Fig. 12, where Z is degraded, corresponds to ε ∼ 1/2.

However this holds for a specific signal (m Z ′ = 300 GeV

N (S)/N (R) = 2 × 10−3 and N (R) = 2 × 104), in gen-

eral we expect that a degradation of the performances might

be observed if NR is not well above N (R), because of the

result shown on the right panel of Fig. 12. The plot shows

the evolution with NR/N (R) of the weight clipping param-

eter, selected with the criteria of Sect. 2. The Weight Clip-

ping becomes stable for NR/N (R) � 10, but it abruptly

drops for smaller values of this ratio. Small Weight Clipping

reduces the flexibility of the neural network, which is thus

less suited to identify complex new physics signals. Employ-

ing Reference samples with NR/N (R) � 10, slightly above

the benchmark NR/N (R) = 5 we employed here, is thus

recommended.

6 Conclusions and outlook

We have discussed a new physics search strategy that is

“model-independent” (i.e., not targeted to a given new

physics model), with the alternative hypothesis needed for

hypothesis testing being provided by a neural network. This

approach was proposed in Ref. [1]. In this paper we made

progress on its implementation and on the study of its per-

formances.
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The main methodological advance, described in Sect. 2.1,

consists of a strategy to select the hyperparameters associated

with the neural network and its training, prior to the exper-

iment, and without relying on assumptions on the nature

of the putative new physics signal. It is crucial to identify

one such strategy in order to avoid the look-elsewhere effect

from the ambiguities in the choice of the hyperparameters.

The one we propose is heuristic, but convincing, and reduces

the ensemble of hyperparameters choices to a manageable

level. Progress might come on this aspect from a more sharp

notion of neural network “flexibility” (or capacity). Notice

however that the concrete impact of the hyperparameters on

the sensitivity to new physics signal has been observed to

be extremely limited in all the examples we studied. Even if

no systematic study has been performed, this suggests that

residual ambiguities in the hyperparameters selection could

be ignored.

It is not easy to quantify the performances of a model-

independent search strategy. The assessment unavoidably

relies on the selection of putative new physics models that are

potentially present in the data, which we can try to make as

broad and varied as possible. Once this choice is made, one

way to proceed is to compare the sensitivity to other model-

independent strategies. This is what we did in Sect. 3, finding

that our approach compares favorably to other ideas recently

proposed in the literature. This comparison is however highly

incomplete because it is based on a few toy problems, which

are not representative of realistic LHC datasets and where

new physics is extremely easy to see with our method. This

is a second direction in which further work is needed.

We also need to quantify the performances in absolute

terms. To this end, the most indicative quantity is arguably

the probability to observe a tension with the SM if the data

follow the new physics distribution. That is, the probabil-

ity for our analysis to produce an interesting result. This is

shown in Fig. 8 for different levels of observed tension and

as a function of the ideal median significance of the putative

new physics signal. The latter quantity, defined in Ref. [1]

and in Sect. 4, serves as an objective measure of how “easy-

to-detect” the new physics scenario is. Notice that the ideal

significance is not the target of our method. The ideal sig-

nificance can be reached, because of the Neyman–Pearson

lemma, only in a fully model-dependent search where all the

details of the new physics scenario are known. It cannot be

obtained with any model-independent approach. With this

in mind, one can still compare the observed and ideal sig-

nificance directly as in Fig. 9. The picture displays a good

correlation between the ideal and observed significance in

a given experiment and a weak dependence on the type of

signal that is responsible for the discrepancy. This behavior

might have a deep explanation, which is worth trying to iden-

tify. Yet another direction for future work is the assessment

of the performances presented for more complex final states

than dimuon and for more exotic putative signals.

All the items listed above are worth investigating. How-

ever the most pressing aspect to be explored in view of

the application of our strategy to real data is the inclu-

sion of the systematic uncertainties in the reference (SM)

Monte Carlo. This is conceptually straightforward because

our method is based on the Maximum Likelihood approach

to hypothesis testing, and systematic uncertainties are easily

included in that framework as nuisance parameters. All steps

needed to turn likelihood maximization into a training prob-

lem are straightforwardly repeated in the presence of nui-

sance parameters, as mentioned in Ref. [1]. The final outcome

is simply that training should be performed against a refer-

ence Monte Carlo sample where the nuisance parameters are

set to their best-fit values for the dataset under consideration.

The concrete implementation of the algorithm in the pres-

ence of nuisance parameters thus requires two steps. The first

one is to fit the nuisance parameters under the SM hypothe-

sis to the observed data, including auxiliary measurements.

Since this first step is the same as in any other experimental

analysis, it should not pose any specific issue. Implement-

ing the second step is instead problematic because it would

require running the Monte Carlo with the nuisance param-

eters set to the observed best-fit value. Doing so for many

toy SM datasets would be computationally very demanding

or unfeasible. Potential solutions are either to obtain the ref-

erence sample by reweighting (which will require fitting the

dependence on the nuisance of the SM likelihood possibly

with a neural network) or to employ a reference sample with

benchmark nuisance and correct the test statistics by some

approximation of the ratio between the best-fit and the bench-

mark SM likelihood. It is important to verify if and how these

solutions work in practice.

Before concluding it is worth outlining that the problem

we are addressing is of rather general relevance in data anal-

ysis. The methods we are developing could thus find appli-

cations outside the specific domain of new physics searches

at collider. In abstract terms, the problem can be phrased in

terms of two distinct datasets, each of which can be of natural

or artificial origin. The first set of data, obeying the “Refer-

ence” probability model, must be more abundant than the

“Data” because it has to provide both the Reference dataset

used for training and the Reference-distributed toy data used

to compute the test statistic distribution. In these conditions

are met, ours is a strategy to tell if the two datasets are thrown

from the same statistical distribution or not, which could be

useful in different domains of science. Still remaining in the

context of particles physics, other potential applications of

our strategies are the comparison of different Monte Carlo

generators and data validation.
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Appendix: Effects of reference sample’s mis-modelling

For this technique to be applied to a New Physics search on

real data one needs to carefully match the reference sample

to the data. Possible sources of mis-modelling need to be

studied and corrected.

The method presented in this work aims at catching dis-

crepancies between the data and the reference, i.e. the best

possible description of the SM predictions. At this stage, no

distinction is made upon the source of such discrepancies.

Therefore a similar response is expected to effects which

arise from systematic errors affecting the reference sample

and those originated from New Physics phenomena. In the

case systematics uncertainties are not properly assessed and

coped with, the method would likely lead to type I errors,

e.g. false positives.

As already mentioned in Sect. 6, the method can indeed be

extended to include and treat systematic uncertainties as nui-

sance parameters; the details about this procedure are being

worked out and will be properly documented in a future pub-

lication [26]. In this appendix we verify the aforementioned

hypothesis about how a bias in the reference sample would

impact the final result.

The benchmark examples addressed in Sects. 4 and 5

are again considered, introducing this time an artificial mis-

modelling. In order to represent a realistic systematic uncer-

Fig. 13 Test statistic distributions for toys generated accordingly to
the Standard Model, in the case of −0.1% (yellow), 0.5% (red) and
−0.5% (green) mis-calibration of the momentum scale

tainty, a mis-calibration of the muon momentum scale is

assumed; the relative error is typically of the order of 0.1%,

see for instance [93]; still, larger values are also consid-

ered in the following, to encompass the cases with final state

objects measured with worse accuracy than muons. The mis-

calibration is applied separately to the central (|η| < 1.2)

and the forward (1.2 < |η| < 2.4) pseudorapidity regions;

while the effects are treated as fully correlated, the magnitude

in the forward region is assumed three times larger than in

the central part. Furthermore, as the decay of the Z boson to

muons is usually exploited as a “candle” for in situ calibra-

tion, those events are excluded from the analysis, selecting

the cases where the mass of the lepton pair is larger than 100

GeV.

The response of our test statistic to artificially injected

bias is checked both for toys generated according to the Stan-

dard Model and for toys containing New Physics. As far as

the former are concerned, mis-calibrations of the momen-

tum scale of −0.1% and ±0.5% have been tested (with those

values referring to the central pseudorapidity region): as can

be seen from the plot in Fig. 13, a mis-modeling at the per

mil level is not revealed by the algorithm, whereas for larger

biases higher values of the test statistics are found and thus a

smaller p-value; as expected, the method yields a false posi-

tive.

Testing toy datasets including New Physics effects against

a mis-modelled reference sample results in the test statistic

distributions shown in Fig. 14. We consider a Z ′ signal (plot

on the left) similar to what used for previous tests, corre-

sponding to a reference significance of about 10σ , yielding

an observed significance of 4σ when tested against the unbi-

ased reference sample. If a mis-calibration of ±0.5% on the

momentum scale is introduced, the discrepancy between the

reference sample and the New Physics toys increases, lead-

ing to larger values of the test statistics. The same happens

when an EFT signal (with cW = 10−6 TeV−2) is injected
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Fig. 14 Test statistic distributions for toys generated with New Physics signals: Z ′ on the left, a EFT signal on the right. The colours of the
histograms represent respectively the cases of no mis-modelling (yellow), 0.5% (red) and −0.5% (green) mis-calibration of the muon momentum
scale

and compared to the reference sample: the mis-modelling of

the latter enhances the significance of the signal.

In conclusion, systematic errors in the description of the

SM reference sample lead to type I errors; in the case New

Physics is present in the data, the corresponding signal is not

hidden by the mis-modelling (i.e. we do not incur into false

negatives), on the contrary its significance increases.
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