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Learning Multiview Face Subspaces and Facial Pose
Estimation Using Independent Component Analysis

Stan Z. Li, XiaoGuang Lu, Xinwen Hou, Xianhua Peng, and Qiansheng Cheng

Abstract—An independent component analysis (ICA) based ap-
proach is presented for learning view-specific subspace representa-
tions of the face object from multiview face examples. ICA, its vari-
ants, namely independent subspace analysis (ISA) and topographic
independent component analysis (TICA), take into account higher
order statistics needed for object view characterization. In con-
trast, principal component analysis (PCA), which de-correlates the
second order moments, can hardly reveal good features for charac-
terizing different views, when the training data comprises a mix-
ture of multiview examples and the learning is done in an unsu-
pervised way with view-unlabeled data. We demonstrate that ICA,
TICA, and ISA are able to learn view-specific basis components un-
supervisedly from the mixture data. We investigate results learned
by ISA in an unsupervised way closely and reveal some surprising
findings and thereby explain underlying reasons for the emergent
formation of view subspaces. Extensive experimental results are
presented.

Index Terms—Appearance-based approach, face analysis, inde-
pendent component analysis (ICA), independent subspace analysis
(ISA), learning by examples, topographic independent component
analysis (TICA), view subspaces.

I. INTRODUCTION

A
PPROXIMATELY 75% of the faces in home photos are

nonfrontal [1], and, therefore, it is important for a face

recognition system to be able to deal with faces of varying poses.

There are two types of pose variations: those due to in-plane ro-

tation and those due to out-of-plane rotation. This paper is con-

cerned with the latter type of variation, which is more difficult

to analyze and cope with. We have two objectives: The first is

to derive a view-specific subspace (view subspace in brief) rep-

resentation from a training set of multiview face examples such

as those shown in Fig. 1. The second is to design an algorithm

for estimating out-of-plane rotations.

Much research has been done in dealing with view and illu-

mination changes [2]–[15]. It has been found that distributions
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Fig. 1. Multiview face examples.

of appearances in linear subspaces such as those based on prin-

cipal component analysis (PCA) under perceivable variations

in viewpoint and illumination are highly nonlinear, nonconvex,

complex and perhaps twisted [16]–[20]. The principal compo-

nent analysis (PCA) based techniques [21], [22], which decor-

relate the second order moments, can hardly capture variations

due to pose changes. Such variations are related to higher order

statistics.

Talukder and Casasent [23] proposed a maximum discrim-

inating feature (MDF) neural network to extract nonlinear fea-

tures of high-dimensional data which optimally discriminate be-

tween multiple classes. The weights of the neural network are

obtained in closed-form, so that the network does not have prob-

lems associated with iterative neural network solutions. A com-

parison of this nonlinear feature technique with other nonlinear

techniques that use higher-order statistical information, such as

nonlinear PCA, kernel PCA and neural nets, is discussed. Based

on the nonlinear MDF features, a modified k-nearest neighbor

classifier could be used for facial pose estimation [24], [25].

The use of geometrical features or neural networks for pose

estimation has also been investigated for robotics and target

recognition. Khotanzad and Liou [26] represent three-dimen-

sional objects by a set of rotation invariant features derived

from the complex orthogonal pseudoZernike moments of their

two-dimensional (2-D) perspective images, and then obtain the

pose parameters, i.e., aspect and elevation angles of the objects,

by a two-stage neural network system.

In this paper, we present independent component analysis

(ICA) [27], [28] based methods for learning view subspaces

from multiview face examples, and thereby performing view-

based face classification [29]–[32]. ICA and its variants, namely

independent subspace analysis (ISA) [33] and topographic in-

dependent component analysis (TICA) [34], take into account

higher order statistics required to characterize the view of ob-

jects, and are suitable for the learning of view subspaces.

Two types of learning algorithms are presented: supervised

and unsupervised. For the unsupervised case where a mixture of

multiview face examples are without the view labels, we show
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that applying ICA to view-unlabeled training data yields emer-

gent view-specific basis components of faces; ISA and TICA

moreover are able to discover view-based grouping of the basis

components, with TICA producing additional view-based or-

dering between the groups. We then analyze how the above

unsupervised ISA learns view subspaces, and thereby present

a supervised ISA learning method for more effective estima-

tion of facial poses. The analysis reveals two interesting out-

comes: 1) using face examples of a specific view, the ISA ac-

tually learns basis components of the complement subspace of

that view subspace; 2) using face examples of all but one spe-

cific view, the ISA learns basis components of the view subspace

corresponding to the excluded view. Using the view label infor-

mation, a supervised learning algorithm produces sets of basis

components which better characterize the view subspaces, and

yield higher estimation accuracy for pose estimation. These are

supported by extensive experiments.

The rest of the paper is organized as follows. Section II

introduces the concepts of ICA, ISA and TICA. Section III

presents ICA-based methods for unsupervised learning of view

subspaces. Section IV presents the use of learned view-sub-

space representation for view-based face classification.

II. ICA-BASED IMAGE MODELING AND SUBSPACE LEARNING

A. ICA

ICA [27], [28] is a linear transform which makes linear

mixtures of random variables as statistically independent as

possible. It not only decorrelates the second order statistics

but also reduces higher-order statistical dependencies [28]. It

extracts independent components even if their magnitudes are

small whereas PCA extracts components having largest mag-

nitudes. When performed on image patches randomly sampled

from natural images, ICA produces some interesting results.

Olshausen and Field [35] obtain spatially localized, oriented,

bandpass basis functions comparable to those in certain wavelet

transforms. Bell and Sejnowski [36] find that independent

component of natural scenes are edge-like filters. Lee, Lewicki,

and Sejnowski [37] derive an ICA model to represent a mixture

of several mutually exclusive classes each of which is described

as a linear combination of independent non-Gaussian densities.

It is found that the two different class of images have different

types of basis functions. In image analysis applications, ICA

has also been used for face recognition and texture analysis

[38]–[42], as a hopefully better method than PCA. In [42], ICA

is used for the unsupervised learning of face representations; it

is shown experimentally that the learned ICA representations

were superior to representations based on PCA for recognizing

faces.

In ICA-based image modeling, a gray-level image

, where is the pixel location, is

represented as a linear combination of basis functions

(1)

where are the combining coefficients. We

restrict to be an invertible linear system, so that the equation

above could be inverted by using the dot-product

(2)

where the is the inverse filter.

The crucial assumption made in ICA is that the are

nongaussian, and mutually independent random variables. The

latter assumption means that the joint distribution of can be

factorized as

(3)

where are densities of . The ICA learning problem is to

estimate both the basis functions and the realizations of

the , for all and , using a sufficiently large set of training

images ; so that for any given sample from

the training set, information about one of the s gives as little

information as possible about the others. In other words, the s

are as independent as possible.

There are several approaches for formulating independence

in the ICA model [43] such as minimum mutual information,

maximum neg-entropy; a very popular approach is the max-

imum likelihood [44], [45]. Given an ICA model in (1), and

the density of in (3), the density of the observation , or

the likelihood of the model, can be formulated as

. Given training im-

ages, , the logarithm likelihood can

be derived as

(4)

where is the coordinate of in the axis.

The ICA algorithm leads to sparse coding equivalent to a fac-

torial representation. In other words, the probability distribu-

tions of the projection coefficients of a sample on the basis com-

ponents (feature directions) are sparse, i.e., the density functions

are uni-modal and peaked at zero with heavy tails. A sparse dis-

tribution leads to super-Gaussianity. Consider a random zero-

mean variable . The fourth cumulant of the distribution of ,

also called kurtosis, is defined as

(5)

Kurtosis can be considered a measure of the non-Gaussianity of

. Distributions of positive kurtosis are called super-Gaussian,

whereas those of negative ones are called sub-Gaussian.

B. ISA

The independent subspace analysis (ISA) is an extension of

ICA proposed by Hyvärinen and Hoyer [46]. In ISA, the model

is still in the form of (1), but the independence assumption

about is relaxed, as compared to ICA. The collection of

are divided into a number of groups. The within a group

are dependent on each other, but those in different groups are

independent.

Denote the collection of the indices of in group

by . For each , the basis components
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span the th ISA subspace, and is the

projection of on that subspace. The norm of the projection is

given by .

According to the invariant feature subspace theory [47], [48],

the norms of the projections on these subspaces represent some

higher-order, invariant features. The ISA combines the principle

of invariant feature subspace into multidimensional ICA [49] in

order to find some invariant features. An invariant feature sub-

space can be embedded in multidimensional ICA by assuming

that for each , the joint probability distribution of the coeffi-

cients is spherically symmetric, i.e., dependent only

on the norm of the s. Although the exact nature of the invari-

ance has not been specified in a subspace model, it will emerge

from the input data as the maximization is performed in ISA.

Given an ISA model as in (1), the logarithm of the likelihood

of the observations can be formulated as

(6)

where is the squared norm of the projection of

on the th ISA subspace, and are some known density func-

tions (often assumed to be exponential) of the norm. This model

specifies the prior information on their independence.

As in ICA, in ISA learning is also chosen to be a super-

Gaussian distribution [46]. When it is exponential,

, we have and the log likelihood

as

(7)

where we have assumed that is an orthogonal matrix so that

, and . Maximizing the above likelihood

is equivalent to minimizing the following energy with respect to

(cf. Equation(6) in [46] )

(8)

Learning ISA subspaces can be implemented by using a gradient

descent algorithm [46]. Minimizing in (8) with respect

to results in groups of ISA basis components.

C. TICA

Topographic independent component analysis (TICA) pro-

posed by Hyvärinen and Hoyer [34] is a further extension to

ICA. In TICA, the observed variable is also generated as a

linear transformation of the components as in

(1), where is the dimension of . In contrast to ICA, the com-

ponents are no longer independent but mutually energy-cor-

related according to the generative model where is

a random variable that has the same distribution as given that

the energy . The s are mutually independent and the en-

ergy variable is generated by where

s are nonnegative higher-order independent components, is

some nonnegative scalar nonlinearity, is a neighborhood

Fig. 2. Average faces in 19 views of 0 ; 10 ; . . . ; 180 .

Fig. 3. Feature points and bounding rectangles for two face examples of view
around 40 and 90 .

function expressing the proximity between the th and th com-

ponents. The neighborhood function can be defined through a

one-dimensional or 2-D neighborhood system, as in self-orga-

nizing maps [48]. Thus, components which are close to each

other in the 2-D topographic map, i.e., those within a neighbor-

hood, are not assumed to be independent; they are allowed to be

correlated in their energies.

Denote the set of indices of the components neighboring to

component by , the log-likelihood function for the TICA

model can be approximated by

(9)

where the function has a similar role as the log density func-

tion of the independent components in classic ICA and could

be chosen as many heuristic functions. Learning a TICA model

can be achieved by maximizing the log-likelihood. TICA can be

considered as the generalization of the model of ISA. The like-

lihood in (6) can be expressed as a special case of the likelihood

(9) with a neighborhood system.

III. UNSUPERVISED LEARNING OF VIEW SUBSPACES

In this section, we compare and analyze the performance of

different unsupervised learning methods, i.e., PCA, ICA, ISA

and TICA, in deriving basis components of view subspaces. A

multiview face database made at Microsoft Research Asia is

used in the following experiments on unsupervised and super-

vised view-subspace learning. There are a total of about 20 000

face examples, half for training and half for test. The view range

is partitioned from 0 (right-side view) to 180 (left-side view)

into 19 interval views, each of which spans about 10 as shown

in Fig. 2. Due to the symmetry, only one side from 0 to 90

is used, consisting of the ten views. The coordinates of some

feature points are manually marked for each face, so the loca-

tions of the corresponding points in different view groups are

different. The face is then cropped according to the marked

points. Fig. 3 illustrates two examples. There are 600 to 2000

original face examples for each view, more frontal view face ex-

amples than nonfrontal ones. After these steps, a total of 1000
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Fig. 4. (Left) Basis components learned by PCA and classic ICA algorithms
in an unsupervised way using view-unlabeled multiview examples. PCA
components (sorted by descending eigenvalues) present little view-specific
information. ICA components are view specific, but there is no ordering
between them because they are independent.

labeled face examples are obtained for each of the ten views

in training set and test set.

The face images are then preprocessed by illumination cor-

rection (by fitting a plane to the image surface and then sub-

tracting it from the image), mean value normalization, and then

histogram equalization. Such preprocessing helps but is not cru-

cial to the result. Whitening and dimensionality reduction of the

input data is then performed using PCA, as a common practice

in ICA, ISA and TICA learning, from 400 to dimen-

sions. The whitening makes ICA/ISA/TICA computation easier

and the dimensionality reduction not only reduces the computa-

tional cost but also removes artifacts to some extent to prevent

over-fitting. After these, the actually input to our view-sub-

space learning algorithms is a vector of 150 dimensions.

A. ICA

In facial pose estimation, one hopes to find basis functions

for each view subspace. Here, ICA, ISA and TICA methods

are applied to these datasets to learn view-specific subspaces.

Fig. 4 shows the basis components learned by PCA and ICA al-

gorithms in the unsupervised way. The ICA basis components

are view specific, whereas the PCA basis components do not

present view-specific information. According to the model of

ICA, the projections of facial data onto different basis compo-

nents are independent of each other. This may be interpreted

as one component spanning that particular subspace. As such,

ICA cannot group basis components with similar views learned

to form view subspaces.

B. ISA

The ISA learning method is able to produce groupings of

basis component where each group is view specific and consti-

tutes a subspace of that view. Fig. 5 shows the basis components

learned by ISA. Indeed, the learned ISA basis components are

Fig. 5. Two sets of basis components learned by unsupervised ISA,
corresponding to different initializations. The components are view specific
and each column of the components in an ISA map constitute a view subspace;
however, the columns are un-ordered by view because the subspaces are
independent.

Fig. 6. (Left) Estimated probability density functions and (right) normalized
kurtosis of 150 s s learned by ISA.

view specific, and explicit view-based grouping of these com-

ponents are formed in the ISA map. Each column constitutes a

view subspace.

The unsupervised ISA learning algorithm assumes that the

coefficients s have sparse distributions. Then the learned basis

components should actually have sparse distributions if the ISA

model really fits the multiview facial data. Fig. 6 shows the es-

timated probability density functions and normalized kurtosis

for the 150 ISA coefficients.

All the density functions are uni-modal and peaked at zero with

heavy tails; and all the kurtosis are positive. So the probability

distribution of all the components are super-Gaussian, which is

consistent with the a priori assumption used in the derivation of

the ISA learning algorithm.

Although the ISA method learns view groupings, different

ISA view groups are independent of each other, and, therefore,

a view-specific ordering between the groups is not readily avail-

able in the the ISA map.

C. TICA

Using TICA learning of view subspaces, we hope to find such

a map in which not only the th column of components in the

map constitute the bases for the th view, but also the columns

are automatically ordered by view. To make basis components

for adjacent views correlated with each other, we define a neigh-

borhood in the map such that all components in the and

th columns are neighbors to those in the th column;
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Fig. 7. Two sets of basis components learned by unsupervised TICA
algorithms with different initializations. Each column of the components in an
TICA map constitute a view subspace, and the columns are view ordered due
to the dependencies between neighboring columns.

Fig. 8. (Left) Estimated probability density function and (right) normalized
kurtosis of each of the 150 s learned by TICA.

there should be no neighboring relations beyond that. This is

done using the following neighborhood function

if and are in directly adjacent columns

else.
(10)

Fig. 7 shows two maps of basis components learned by unsu-

pervised TICA algorithms with two different initialization and

order of training samples. The TICA basis components in one

column belong to the same view group as in the ISA case; in

addition to the view grouping, an ordering by view are automat-

ically formed in the TICA result due to the modeling of depen-

dency between neighboring view subspaces. In contrast, there

is no such ordering in the ISA basis components because the

model of ISA assumes different view subspaces are mutually

independent.

According to the TICA model, the probability distribution of

should also be super-Gaussian, as in the ISA case Fig. 8 shows

that the 150 TICA coefficients have positive kurtosis and are

also super-Gaussian.

D. How View Subspaces are Learned?

Now, how does the formation of view subspaces emerge in

ICA-based learning; in other words, how do they learn “repre-

sentative” subspaces of facial views from the view unlabeled

data? We make a case study using ISA.

Fig. 9. Top row: Basis components of one single-view subspace learned by
using a training set consisting of all but the frontal view. Middle block: Basis
components ofL = 9 view subspaces learned from frontal view faces only; they
are of all but the frontal view. Bottom row: Basis components of the complement
subspace to the subspace spanned by the basis components shown in the middle.
They are of the frontal view missing in the middle block.

Two experiments are performed to analyze the underlying

mechanisms of ISA learning. First, we use a training set con-

sisting of face examples of all but frontal view, and obtained an

ISA result by minimizing (8) with

. When we visualize each basis component by image, we

find that all basis components are of frontal view, as shown

in the top row of Fig. 9. In other words, the result

consists of basis components of frontal view subspace.

In the second experiment, on the other hand, we use a training

set consisting of face examples of the frontal view only and set

. The learned ISA result is shown

in the middle block of Fig. 9, the th row of which shows the

th set of basis components , . As can

be seen from the figure, the learned basis components are all but

the frontal view. So we can take the learned result

as basis components of the nine view subspace from 0 to

80 .

To further investigate properties of the ISA subspace spanned

by the basis components in the middle block, we compute the

orthogonal complement subspace (i.e., its basis components) to

the subspace, shown in the bottom row of the figure. We see that

the basis components of the complement subspace is exactly of

the frontal view.

The answer to the question can be found through analyzing

the minimization of the energy function (8). Let be the PCA

subspace of the data points in the original input data space. Be-

cause minimizing (8) forces the basis components ( ,

) to be as orthogonal as possible to the input data,

the ISA subspaces can be considered as approximately or-

thogonal to the PCA subspace . A more detailed explanation

will be given in the next sub-section.

To summarize, the formation of a view subspace can not be

obtained directly by ISA learning algorithm using training data

of that view. There are two ways for learning basis components

of the th view subspace: 1) using training face examples of
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Fig. 10. Basis components learned by using s-ISA. Each row consists of basis
components for one view subspace. These components appear more sensible
than those learned by u-ISA.

views (all but view ) to derive (the number of

elements in the set ) basis components of the th view and

2) using training face examples of view only to derive

sets of basis components, which can be considered as

the basis components of all but the th view subspace, and then

calculate basis components orthogonal to all the derived

components as the basis of the th view subspace.

This suggests a supervised way of ISA learning (s-ISA) in

which the training face examples of a view are used to derive

the basis components of that view subspace directly without

the need for the calculation of the complement subspace. The

s-ISA assumes that view label is known for every training ex-

ample. One view subspace is learned by using the training ex-

amples of that view only. The components, thus, learned appear

to be clearer and more sensible than those learned by using the

unsupervised method (Fig. 10). It is shown in [32] that when

the basis is orthonormal, the s-ISA method is equivalent to the

view-based PCA method of [50].

IV. POSE CLASSIFICATION IN VIEW-SUBSPACES

The learned view subspaces provide a basis for pose

estimation. The activity of an input image in view subspace

is defined as the norm of the projection of onto (the th

view subspace)

(11)

where (for ) are the orthogonal basis compo-

nents of the view subspace . The activity corresponds to the

response of a complex cell in mammalian primary visual cortex

(V1) [46].

The pose estimation is performed by classifying the input

into one of the view groups according to a principle called

maximum view subspace activity (MVSA). This is done as fol-

lows: An image is projected onto each view subspace and the

subspace activity defined in (11) is then computed. This gives

Fig. 11. (Solid lines) Pose estimation error distributions of the unsupervised
TICA and (dashed lines) unsupervised ISA for (left) the training and (right) test
sets.

Fig. 12. Hinton diagrams showing the accuracies of pose estimates on the
training and test data sets for u-ISA (two on the left) and s-ISA.

. Then a sample is classified using the MVSA

criterion: it belongs to the th view if . The

MVSA criterion assumes that the training data of a specific view

has larger activity in its own view subspace than in other view

subspaces.

Now, we give a comparison between unsupervised ISA

and TICA in facial pose estimation. A good representation of

view subspaces should take into account the intrinsic correla-

tion among view subspaces with similar view. ISA assumes

that different view subspaces are independent of each other;

while TICA can model this kind of correlation between view

subspaces by introducing independency between neighboring

components in different view subspaces. In this sense, TICA

seems to be a more advantageous model than ISA in unsuper-

vised learning of view subspaces. The distributions of pose

estimation errors of the two methods for training and test

data sets is shown in Fig. 11. The results show that these two

methods have similar performance for pose estimation, which

is reasonable since neither of the two unsupervised algorithms

takes full advantage of the view label information of the training

data.

The pose estimation accuracies of u-ISA and s-ISA are

demonstrated in Fig. 12 through Hinton diagrams of confusion

matrices (c-matrices). The block size of an entry in a

c-matrix represents the (normalized) number of samples whose

ground truth view label is and classified into the th view

subspace. The left-most column corresponds to the frontal view

for the ground truth, and right-most to the side view. The top

row corresponds to the frontal view subspace, and the bottom

row is for the side view subspace. The ideal case should be

such that the “diagonal” elements of the c-matrix are all ones

whereas other elements are all zeros.

Although the applications of ICA-based methods here are

for view subspace learning, it would be interesting to consider

whether the ICA-based methods would apply to the more gen-

eral problem of unsupervised object categorization (e.g., [51]).
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V. CONCLUSION AND DISCUSSION

The contributions of the paper are the following. First, we

presented an ICA-based approach for learning view subspaces.

Second, we provided explanations for the emergent formation

of view subspaces in the unsupervised ISA (u-ISA) learning.

Third, in the probe of the reasons, we found a surprising phe-

nomenon that u-ISA actually derived basis components which

were approximately orthogonal to the PCA space determined by

the training data, in the sense that the basis components pointed

toward regions where the data points were sparse.
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