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LEARNING, MUTATION, AND LONG RUN EQUILIBRIA 
IN GAMES 

BY MICHIHIRO KANDORI, GEORGE J. MAILATH, AND RAFAEL ROB 

We analyze an evolutionary model with a finite number of players and with noise or 
mutations. The expansion and contraction of strategies is linked-as usual-to their 
current relative success, but mutations-which perturb the system away from its deter- 
ministic evolution-are present as well. Mutations can occur in every period, so the focus 
is on the implications of ongoing mutations, not a one-shot mutation. The effect of these 
mutations is to drastically reduce the set of equilibria to what we term "long-run 
equilibria." For 2 x 2 symmetric games with two symmetric strict Nash equilibria the 
equilibrium selected satisfies (for large populations) Harsanyi and Selten's (1988) criterion 
of risk-dominance. In particular, if both strategies have equal security levels, the Pareto 
dominant Nash equilibrium is selected, even though there is another strict Nash equilib- 
rium. 

KEYWORDS: Evolutionary game theory, evolution, bounded rationality, learning, Markov 
chains, strict equilibria, risk dominance, equilibrium selection. 

1. INTRODUCTION 

WHILE THE NASH EQUILIBRIUM CONCEPT has been used extensively in many 
diverse contexts, game theory has been unsuccessful in explaining how players 
know that a Nash equilibrium will be played. Moreover, the traditional theory is 
silent on how players know which Nash equilibrium is to be played if a game 
has multiple equally plausible Nash equilibria. Introspective (eductive) theories 
that attempt to explain equilibrium play "directly" at the individual decision- 
making level impose very strong informational assumptions and so are widely 
recognized as having serious deficiencies (see, for example, Binmore (1987, 
1988)). 

As a consequence, attention has shifted to "evolutionary" explanations of 
equilibrium, motivated by the work of biologists in evolutionary game theory (in 
particular, the seminal work of Maynard Smith and Price (1973), see also 
Maynard Smith (1982)).2 Two features of this approach distinguish it from the 
introspective approach. First, players are not assumed to be so "rational" or 
"knowledgeable" as to correctly guess (anticipate) the other players' choices. 
Second (and instead), an explicit dynamic process is specified describing how 
players adjust their choices over time as they learn (from experience) about the 

'This paper has benefited from the comments of In-Koo Cho, Dean Foster, Drew Fudenberg, 
Jacob Glazer, Christopher Harris, Michael Woodford, Peyton Young, and many seminar audiences, 
as well as from an editor and three anonymous referees. Financial support from the NSF is 
gratefully acknowledged by the first and second authors (SES-9108351 and SES-8908451). 

2Maynard Smith and Price (1973) introduced the notion of an evolutionary stable strategy (ESS), 
a notion of stability against mutations. Subsequent work (such as Taylor and Jonker (1978)) has 
studied when an ESS is an attractor of the replicator dynamic (in which the rate of growth in the 
fraction of the population playing a particular strategy is equal to the deviation of that strategy's 
fitness or payoff from the average fitness or payoff). The biological literature is surveyed in Hines 
(1987). 
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other players' choices. Therefore, this approach tries to explain how an equilib- 
rium emerges, based on trial-and-error learning (instead of introspective-type 
arguments). The evolutionary approach is surveyed by van Damme (1987) and 
Mailath (1992). Many papers have explored this approach, including Friedman 
(1991), Fudenberg and Maskin (1990), Nachbar (1990), and Binmore and 
Samuelson (1992). The work of Nelson and Winter (which culminated in their 
book (1982)) should also be mentioned for its emphasis on the importance of 
evolutionary ideas in explaining economic change. 

The purpose of the present paper is to extend these ideas and-more 
importantly-to add a new perspective on the problem of equilibrium selection. 
Specifically, we follow the pioneering work of Foster and Young (1990), who 
were the first to argue that in games with multiple strict Nash equilibria,3 some 
equilibria are more likely to emerge than others in the presence of continual 
small stochastic shocks. In the present paper, we introduce a discrete frame- 
work to address this issue,4 and develop a general technique to determine the 
most likely, or long run, equilibrium (this concept is essentially the stochastically 
stable equilibrium of Foster and Young (1990)). We then apply this technique to 
the class of symmetric 2 x 2 games, and show that, for coordination games, the 
long run equilibrium coincides with the risk dominant equilibrium (see Harsanyi 
and Selten (1988)).5 We show this to be the case independent of all but the most 
crude features of the dynamics. Thus, our framework provides a link between 
the evolutionary approach and the risk-dominance criterion.6 

Our specification of dynamics draws heavily on the biological literature. In 
that literature, animals are viewed as being genetically coded with a strategy and 
selection pressure favors animals which are fitter (i.e., whose strategy yields a 
higher reproductive fitness-or payoff-against the population). The focus 
there has been on the concept of evolutionary stable strategy (ESS) due to 
Maynard Smith and Price (1973) and its relationship to various dynamics. Selten 
(1991) provides a nontechnical discussion of the degree to which this literature 
is suited to the study of social phenomena. 

While our model can be interpreted in like manner, we intend it more as a 
contribution to the growing literature on bounded rationality and learning. 
Accordingly, the hypotheses we employ here reflect limited ability (on the 
players' part) to receive, decode, and act upon information they get in the 
course of playing games. 

In particular, we consider the situation where a group of players is repeatedly 
matched to play a game. The following three hypotheses form the basis of our 
analysis. (i) Not all agents need react instantaneously to their environment (the 

3And so multiple evolutionary stable strategies. 
4Moreover, the stochastic shocks are based on the micro-structure of the game. 
5See page 46 for a definition. If the game is a coordination game with zeroes off-the-diagonal (or 

-more generally, if the two strategies have identical security levels, i.e., payoffs from miscoordination), 
then the risk dominant equilibrium coincides with the Pareto dominant equilibrium. 

6This is only shown for the symmetric 2 x 2 case. It is not clear that a similar link exists for the 
more general case. 
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inertia hypothesis); (ii) when agents react, they react myopically (the myopia 
hypothesis); and (iii) there is a small probability that agents change their 
strategies at random (the mutation, or experimentation hypothesis). We regard 
these as descriptions of boundedly rational behavior; we argue below that they 
can also be justified as rational behavior under some circumstances. We first lay 
out the general motivations of the three hypotheses, and then discuss some 
specific interpretations. 

The logic underlying these hypotheses is as follows. A strategy in a game is, in 
general, a complicated object, specifying what actions one should take given 
various contingencies one is able to observe. However, players' observations are 
imperfect, their knowledge of how payoffs depend on strategy choices may be 
tenuous,7 and changing one's strategy may be costly. The presence of inertia is 
then suggested by the existence of such uncertainties and adjustment costs.8 In 
turn, to the extent that there is substantial inertia present, only a small fraction 
of agents are changing their strategies simultaneously. In this case, those who do 
move are justified in acting myopically: they know that only a small segment of 
the population changes its behavior at any given point in time and, hence, 
strategies that proved to be effective today are likely to remain effective for 
some time in the future. Thus, taking myopic best responses is justified as being 
fully rational when players have a high discount rate compared to the speed of 
adjustment. 

The myopia hypothesis also captures a second aspect of learning which we 
feel is important; namely, imitation or emulation. Here the idea is that the 
world is a complicated place and agents cannot calculate best responses to their 
stage environment. People learn what are good strategies by observing what has 
worked well for other people. The myopia assumption amounts to saying that at 
the same time that players are learning, they are not taking into account the 
long run implications of their strategy choices. Thus, agents act as if each stage 
game is the last.9 

Mutation plays a central role in our analysis. With some small probability, 
each agent plays an arbitrary strategy.10 One economic interpretation is that a 
player exits with some probability and is replaced with a new player who knows 
nothing about the game and so chooses a strategy at random (as in Canning 
(1989)). 

The model admits a variety of interpretations, with differing types of bounded 
rationality. The first interpretation is that players gradually learn the strategy 

7Lipman (1991) argues that bounded rationality can be usefully modeled through the observation 
that knowing a fact is distinct from knowing the logical implications of that fact. 

8Not changing a strategy when a player is uncertain may, of course, be even costlier. However, it 
seems plausible that uncertainty leads to inertia (for example, the status quo plays a distinguished 
role in the Knightian decision theory of Bewley (1986)). 

9At the risk of repeating ourselves, we are interested in agents learning their optimal one-shot 
action, not their optimal repeated game strategy. 

10Fudenberg and Kreps (1989) also use repeated experimentation in their model of learning. 
However, the role experimentation plays in that model is very different from that in Foster and 
Young (1990) and here. 
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distribution in the society. At any given moment, a small fraction of the 
population is exogenously given opportunities to observe the exact distribution 
in the society, and take the best response against it. An important aspect of 
bounded rationality in this interpretation is the assumption that uninformed 
players do not change their strategy choice (i.e., these players remain at the 
status quo), even though they may receive partial knowledge of the current 
strategy distribution through random matching. Although such "cautious" be- 
havior might be inconsistent with Bayesian rationality, it seems to capture a 
certain aspect of observed behavior (see footnote 8). 

The second interpretation is that players are completely naive and do not 
perform optimization calculations. Rather, players sometimes observe the cur- 
rent performance of other players, and simply mimic the most successful 
strategy. Note that in the first interpretation, players are able to calculate best 
replies and learn the strategy distribution of play in society. In the second 
interpretation, players are less sophisticated in that they do not know how to 
calculate best replies and are using other players' successful strategies as guides 
for their own choices. While the first aspect of learning (i.e., learning other 
players' strategy choices) is certainly an important aspect of bounded rationality 
(and the focus of much recent work, e.g., Fudenberg and Kreps (1989)), the 
second aspect (learning the optimal choice) is also important. For example, the 
central hypothesis in economics that agents optimize has been justified by an 
appeal to natural selection (or, rather, market selection; see Alchian (1950) and 
Friedman (1953)).11 

In the third interpretation, players are rational with perfect foresight, but 
there is significant inertia. For example, a strategy may be a choice of technol- 
ogy (capital equipment) and, if the cost of new equipment is large enough, a 
player will change his/her strategy only when the existing equipment needs 
replacing. If the opportunity to change a strategy occurs infrequently, a myopic 
best reply to the current strategy distribution may be justified as fully rational. 
Section 2 discusses an example which can be interpreted along these lines. 

We formalize these ideas in a model with a finite population of players in 
which players are repeatedly matched within a period to play a stage game. We 
only impose a weak monotonicity condition reflecting the inertia and myopia 
hypotheses on the dynamics, which describe the intertemporal changes in the 
number of players playing each strategy. Individual behavior is then perturbed 
by independent shocks. This yields "Darwinian" dynamics with a stochastic 
component. The novelty of the approach comes from the focus on the behavior 
of the system in the long run, where a non-negligible number of mutations can 
occur. In contrast, the early literature on evolutionary games (Maynard Smith 
and Price (1973), Taylor and Jonker (1978)) concerns the stability of equilibria 

11Of course, maximizing utility and maximizing wealth are not the same thing. Blume and Easley 
(1991) show that, in the context of a financial asset market, the market may not select for agents 
who optimize. 
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against mutations which are one-shot small perturbations of equilibria. For a 
given rate of mutation, we first note that there is a unique stationary distribu- 
tion on the number of players playing each strategy, and that this distribution is 
achieved in the long run irrespective of the initial condition. We then character- 
ize the limit of this distribution as the rate of mutation goes to zero for 2 x 2 
symmetric games (we call this limit the limit distribution and its support, the set 
of long run equilibria). When the game has two symmetric strict Nash equilibria, 
the limit distribution places probability one on the equilibrium that satisfies (for 
large populations) Harsanyi and Selten's (1988) criterion of risk-dominance.12 
In particular, if both strategies have equal security levels, the limit distribution 
places probability one on the Pareto dominant Nash equilibrium, even though 
there is another strict Nash equilibrium. This result requires only the weak 
monotonicity condition, and so is independent of the precise specification of the 
Darwinian dynamic. 

This is to be contrasted with Foster and Young (1990), where the stochasti- 
cally stable equilibrium depends on additional details of the dynamics, such as 
the speed of adjustment. The main difference in the formulations of the two 
models is in the source of the randomness (i.e., the introduction of mutations). 
We introduce randomness at the individual player level by independent muta- 
tions. Foster and Young (1990), on the other hand, applying the techniques of 
perturbed dynamical systems in Freidlin and Wentzell (1984), consider a model 
with a continuum population in which a Brownian motion reflects aggregate 
randomness in the population (without generating this randomness at the 
individual level).13 Independent individual mutations yield a stochastic process 
that is qualitatively different from the one in Foster and Young (1990), and one 
where the long run equilibria depend only on the likelihood of "large jumps" 
across the basins of attraction of the deterministic dynamics. Since the likeli- 
hoods depend only on the payoff structure of the game (in particular, on the 
relative sizes of the basins of attraction), our predictions are independent of 
finer details of the deterministic dynamic. In contrast, gradual small movements 
play a crucial role in Foster and Young (1990), and therefore their results are 
not independent of the speed of adjustment.14 

The balance of the paper is organized as follows. In the next section, we give 
a brief heuristic discussion. The general model is laid out in Section 3, and in 
Section 4 the limit distribution (as the rate of mutation becomes small), is 
characterized (Theorem 1), and applied to the case of dominant strategies. 
Section 5 considers 2 x 2 coordination games, demonstrates the independence 

12in general games, the limit distribution may imply a limit cycle rather than an equilibrium. See 
Section 6 for an example. 

13 There are some technical difficulties in Foster and Young (1990) (see Fudenberg and Harris 
(1992)). Fudenberg and Harris (1992) maintain the Brownian motion formulation of Foster and 
Young (1990), but consider a different kind of perturbation; namely, they perturb the populations 
playing each strategy, rather than perturbing the population share (as in Foster and Young). 

14For more detail, see Section 8. 
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of the limit distribution to all but the coarsest properties of the deterministic 
dynamics, and connects our theory to the risk-dominance criterion. We analyze 
games with a unique symmetric Nash equilibrium in mixed strategies (i.e., the 
game has no pure symmetric Nash equilibria) in Section 6. For these games, a 
little more structure is needed on the deterministic dynamics to obtain a limit 
distribution which mimics the symmetric Nash equilibrium. Section 7 discusses 
the behavior of the expected time until the predicted state is observed. The 
robustness of our results are examined in Sections 8 and 9. 

2. AN INFORMAL DISCUSSION OF THE MODEL 

We illustrate the nature of our analysis by means of an example, which 
concerns the choice of computer systems in a small community. Consider a 
dormitory of ten graduate students, each of whom is using one of the two 
computer systems, s1 or s2. The students are randomly meeting each other, and 
whenever two students meet, they can collaborate by writing a paper or 
exchanging software. So the matching is fruitful if and only if they are using the 
same computer. If we assume computer s1 is superior to s2, this induces the 
following 2 x 2 game with common interest: 

II 
S1 S2 

Sl 2,2 o,o 

52 -0,0 1, . 

The game has two pure strategy equilibria, E1 (sl, sl) and E2 (s2, s2). Note 
that the former is the unique Pareto efficient outcome in the game. There is 
also a third equilibrium in mixed strategies, which puts probability 1/3 on 
strategy s1. This implies that if more than one third of the population (4 or more 
in this case) are using s1, the best response in the random matching game is also 
s1. We assume that the students occasionally have opportunities to change their 
computers, when, for instance, they finish writing papers or their machines 
break down. Assume also that their main concern is the payoffs in the near 
future, so that they choose the best response against the current strategy 
distribution whenever they have opportunities to adjust their strategy. This 
induces "Darwinian" adjustments, in which the student population is gradually 
moving towards a situation in which all play a best response to the population. 
In this setting, it is clear that the final outcome crucially depends on the initial 
condition: If at least four students are initially using computer s1, then all 
students eventually end up using s1 (equilibrium E1 is realized). Otherwise, the 
final outcome is E2. The dependence of the final outcome on the initial 
condition has attracted much attention of economic historians, and is sometimes 
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called "path dependence" (Arthur (1984) and David (1988)). The main point of 
the present paper, however, is to show that, in some situations, this indetermi- 
nacy is resolved in a very particular direction if stochastic shocks are present. 

Suppose that each student leaves the dormitory with probability 8 in each 
period. If a student leaves, a newcomer enters, and the newcomer is an 
s1-computer user with probability m E (0, 1). The number m can be interpreted 
as the fraction of s1-users in the outside world; our prediction does not depend 
on its specific value, as long as that value is strictly between zero and one. This 
adds a stochastic element or "mutation" to the basic adjustment process 
described above. With mutations, it is clear that the system perpetually fluctu- 
ates between the two equilibria E1 and E2. For example, even though all the 
players are initially using S2' in the long run it is possible that at least four 
students mutate to sl, and whenever this happens the society moves from E2 to 
E1 by means of the Darwinian adjustments. Likewise, E1 is also upset in the 
long run, when there are at least seven mutations towards S2. The interesting 
thing to note here is that upsetting the good (or efficient) equilibrium E1 is more 
difficult than upsetting the bad equilibrium E2, because the former requires more 
mutations than the latter (seven versus four). As we will see below, this implies 
that the system spends most of the time at the good equilibrium, when the 
mutation rate is small. 

Suppose, for the sake of intuition, that we can think of the choice between 
two equilibria as being determined by a two-state Markov chain, with two states 
given by E and E2, ignoring all intermediate states.15 As a result of mutation, 
there is nonzero probability of transition from E1 to E2, denoted p, and from 
E2 to E1, denoted p'. The argument in the previous paragraph suggests that the 
orders of p and p' are 87 and 84 respectively, so p/p' -> 0 as 8 -O 0. Simple 
computation shows that the unique stationary distribution over E and E2 is 
(p'/(p + p'), p/(p + p')). Therefore, as 8 -> 0, the stationary distribution tends 
to (1,0 ), i.e., the Pareto dominant equilibrium receives probability 1 in the limit. 
Since the stationary distribution can be viewed as the vector of relative propor- 
tions of time spent on each state,16 this shows that the system spends most of 
the time on E in the long run, if the mutation rate is small. In fact, when the 
mutation rate is .1, our numerical analysis in Section 7 shows that on average it 
takes 78 periods to upset the bad equilibrium E2, while upsetting the good 
equilibrium E1 takes about 100,000 periods. Therefore, in this situation, we 
think it reasonable to expect that the students are using the superior computer 
s1 most of the time.17 

15This assumption is employed in this section to provide a rough intuition for the reader's 
convenience and is not assumed in the main body of the paper. However, there is a deterministic 
adjustment rule which allows us to use a two state Markov chain: the best response dynamic in 
which all players play the best response to last period's population. See footnote 23. 

16That is, the stochastic process is ergodic. For more detail, see Section 3. 
17This argument hinges on the "irrationality" of mutants in picking initial strategies. However, as 

Matsui and Rob (1991) show, this result is actually strengthened when (a certain type of) rationality 
is incorporated into the mutants' decision making. 



36 M. KANDORI, G. J. MAILATH, AND R. ROB 

On the other hand, the above illustration indicates the limits of our approach. 
It should be clear from the above argument that upsetting each equilibrium 
takes an extremely long time if the population size is sufficiently large and the 
mutation rate is sufficiently small. For example, while many people have argued 
that the current design of computer keyboards, known as QWERTY, is ineffi- 
cient, it has been widely used for a long time.'8 Given the large number of 
typewriter/computer users, we cannot expect that QWERTY will be replaced 
with a more efficient design by independent mutations of individual users within 
any reasonable amount of time. Therefore, in terms of expected time to upset 
the "bad" equilibrium, we believe that our analysis is most relevant to the case 
of a small number of players.'9 On the other hand, in terms of the proportion 
spent in each equilibrium, our analysis applies to any number of players. 

The above argument based on the two state Markov chain is of course only 
suggestive. The state space is much larger, and the probabilities of transition are 
functions of the myopic adjustment rule and mutation rates at the individual 
level. The result however does carry over. For 2 X 2 games of common interest 
in which the costs of miscoordination are the same in both equilibria, the limit 
distribution puts probability one on the Pareto dominant equilibrium. In gen- 
eral, the limit distribution puts probability one on the risk dominant equilibrium 
(which need not be Pareto dominant when the costs of miscoordination in the 
two equilibria differ-see page 46). 

This result should be contrasted to the recent literature (e.g., Aumann and 
Sorin (1989), Anderlini (1989), and Matsui (1991)) on eliciting coordination on 
the Pareto dominant equilibrium. The need for more complicated devices such 
as a communication stage before the stage game is played is explained by their 
focus on the Pareto dominant equilibrium, rather than the risk dominant one. 

To conclude this section, we briefly relate our work to simulated annealing 
(see Kirkpatrick, Gelatt, Vecchi (1983) for an introduction). Simulated anneal- 
ing is an optimization algorithm which introduces randomness into the calcula- 
tions in order to prevent the system from becoming stuck in a local optimum 
that is not a global optimum and then evaluates solutions as the randomness 
("temperature") is reduced. While there is a similarity between our work and 
simulated annealing (in that both introduce randomness and then examine the 
results from taking limits as the degree of randomness goes to zero), the role of 
the randomness is very different. Loosely, randomness in simulated annealing 
introduces regions of the "parameter space" which have not yet been searched. 

18See Dixit and Nalebuff (1991, Ch. 9) for more detail and other interesting examples of path 
dependence. 

19For more discussion of this subject, see Section 7. A related issue is the rate of convergence to 
the stationary distribution from arbitrary initial distributions. Ellison (1991) observes that, as the 
number of players increases, this rate of convergence decreases. Ellison (1991) compares the rates of 
convergence in a neighborhood model, in which each player is matched only with his neighbors, with 
the model analyzed here (under the best reply dynamic). He argues that when the population is 
large, a neighborhood model need not require "unreasonable" lengths of time for the stationary 
distribution to be viewed as a plausible description. 
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In contrast, in the model studied here, agents are behaving optimally in any 
equilibrium and randomness facilitates coordination on a particular equilibrium, 
which need not be Pareto dominant. 

3. THE MODEL 

We consider a situation where a finite number of players are repeatedly 
matched to play a stage game and adjust their behavior over time. In this paper, 
we focus on 2 x 2 symmetric games, although the analysis naturally extends to 
more general cases. Consider a group of N players (N an even number) who 
are going to play the 2 x 2 symmetric game, 

S II 

S1 a, a b, c 

S2 c,b d,d 

where S = {sl, s2} is the set of pure strategies of the game and a, b, c, and 
d - 9t. For our purposes, there are three types of generic 2 x 2 symmetric 
games: games with a dominant strategy equilibrium ((a - c)(d - b) < 0), coordi- 
nation games (a > c, d > b), and games with a unique symmetric equilibrium 
which is in mixed strategies (a < c, d < b). 

We assume that actions are taken in discrete time, t = 1,2,. At the 
beginning of period t, each player chooses his pure strategy for the period (this 
is part of the inertia hypothesis). Let zt be the number of players adopting 
strategy s, at time t. This defines the state of the dynamical system, and the 
state space (the range of zt) is Z = {0, 1, ..., N}. We assume that ri(zt), the 
average payoff of a player with strategy si, is given by 

(z -1) (N-z)b, and 
(N-i1) +(N-i1) 

z (N-z - 1) 
7(Z) =(N- i)c + (N- 1) 

There are two models of matching which generate the above payoffs. The first 
specifies that each player is matched with each of the remaining players exactly 
once (as in a tournament). The second postulates that there are an infinite 
number of random matches within period t, so that each player's average payoff 
in that period is equal to the expected payoff. The only feature of the within 
period matching that we use are the values for w1(z) and 72(Z)- Players' actions 
are assumed to be fixed within a period. 

We assume that better strategies are better represented in the population in 
the next period. That is, we assume the underlying deterministic dynamic, 

(1) Zt+l = b(zt) 
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has the following "Darwinian" property: 

(D) sign (b(z) - z) =sign (71(z z)- 72(Z)) for z =AO, N.20 

Note that (D) does not restrict b for z = 0 or N. Biologists typically assume 
b(O) = 0 and b(N) = N, i.e., extinct strategies stay extinct (apart from mutation). 
An alternative assumption, more plausible in our case, is b(O) > 0 if wr1(O) > 
72(O), and b(N) < N if wr,(N) < r2(N). Our qualitative results do not depend 
upon which we assume, and we will, in general, assume b(O) > 0 if wr1(O) > Tr2(O) 
(and b(O) = 0 if wr1(O) < wr2(0)), and b(N) < N if w1(N) <w2(N) (and b(N) = N 
if 7r1(N) 7r2(N)). 

Assumption D is very weak and any reasonable dynamics specified on Z will 
satisfy it.21 The Introduction described three scenarios for which (D) holds. The 
replicator dynamics studied in evolutionary game theory also satisfy (D). 

One particular deterministic dynamic that we will use is the best reply 
dynamic, denoted B. This dynamic is given by the rule: 

(N, if7r1(z) > 72( Z)' 

B(z) = [z, if 71(z) =72(Z), 

0 if r1(z) < 
wT2(Z). 

If the stage game is one of coordination (i.e., a > c, d > b), then the dynami- 
cal system (1) has either two or three steady states (e.g., for the game in Section 
2, the steady states are 0, N, and, if N/3 is an integer, N/3), and the 
asymptotic behavior of the system may depend on the initial condition (z0). 
Such indeterminacy is resolved if we introduce some noise ("mutations") into 
the system. Now assume that each player's strategy "flips" with probability E in 
each period (i.i.d. across players and over time). What we have in mind are the 
following stories. With probability 2E, each player dies and is replaced with a 
successor at each moment of time (so that the size of the population remains 
fixed). The newcomer does not know anything about the game, and he simply 
takes each strategy with equal probability (our results do not change as long as 
the ratio of the initial adoption probabilities is bounded in the limit). Alterna- 
tively, we may assume that each player "experiments" every once in a while with 

20This form of the Darwinian property assumes that players, after observing the behavior of their 
N - 1 opponents, include their own behavior to calculate the overall distribution. An alternative 
would be to specify that players who chose 52 in period t switch only if irl(zt + 1) > Tr2(zt) (i.e., an 
52 player realizes that when choosing s1, the number playing s, goes up), and that players who 
chose s1 in period t switch only if -1(zd) <ir2(zt - 1). This formulation is a little more complicated 
since irl(Zt + 1) > 7r2(zt) and l1(Zd) < 72(Zt - 1) can hold simultaneously. Assuming b(z) >z if 
Trl(z + 1) > 'Tr2(z) and Tr1(z) > Tr2(z - 1) and b(z) < z if Tr1(z + 1) <T72(Z) and 'r1(z) < 72(Z - 1) 
only results in minor changes (see footnote 29). 

21The innocuous assumption for games with more than two strategies is to require that only the 
best strategy be better represented. For the case of two strategies, this of course coincides with (D). 
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exogenously fixed probability.22 This yields the nonlinear stochastic difference 
equation: 

(2) Zt+ i = b( zt) + xt - yt, 

where xt and yt have the binomial distributions: 

xt ~ Bin (N - b(zt), E) and yt ~ Bin (b(zt), E). 

The dynamical system (2) defines a Markov chain on the finite state space 
Z = {o, 1, ..., N}. The transition probabilities are given by 

Pij = Prob (zt+1 = jIlz = , 

and P =[pij] is the Markov matrix. Note that, under our assumptions, all 
elements in the matrix P are strictly positive.23 It is well known, then, that the 
Markov chain has a unique stationary distribution. Let AN -{q RN+1l I 0 
for i = 0,1,..., N and Ejqj = 1} be the N-dimensional simplex. A stationary (or 
invariant) distribution is a row vector / = ( 0, A1, * , yN) E AN satisfying 

(3) ,uP = ,u. 

We sometimes write ,d(E) to emphasize the dependence of ,u on E. When P is 
strictly positive, not only does there exist a unique stationary distribution, but it 
also has the following nice properties: 

STABILITY: For any q E aN, qPt -* as t -* oo. 

ERGODICITY: For all initial states zo, 
T 

T- E Xi(zt) /-*i almost surely as T oo, 
t= 1 

where 

xi( Zt ) ={( 0 otherwise. 

22In the model studied here, it may be required that the experimenter not change the strategy 
chosen, even if it yields a lower payoff than the previous strategy choice. A more satisfactory 
specification would allow any experimenter to immediately switch back to that player's previous 
strategy if that generated a higher payoff. Note that this is true of the best response dynamic B(-) in 
which all players choose the best response to last period's population. We do not see any difficulty 
in extending the results of this paper to cover the more complicated specification (now a state is the 
number playing the first strategy as well as the number of mutations in each direction). 

23If b( ) is given by the best reply dynamic and the game is a coordination game, then we can 
model this as a two-state Markov chain: Let Si denote the basin of attraction of si. If z, E Sl, then 
b(zt) = N, so that the probability that the system moves from zt to any state in S2 is independent of 
zt. Similarly for movements from zt E S2 to any state in Sl. Letting Ei denote the state in which all 
players are choosing si, we thus have a two-state Markov chain, with states {E1, E2} and transition 
probability Pr(EI -- Ej) given by the probability that the system moves from El to Sj. This 
observation underlies one of the examples in Canning (1992). 
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Stability is a standard fact about aperiodic irreducible Markov chains. Asymp- 
totically, independent of the initial condition, the strategy distribution in the 
society is given by ,u. By introducing stochastic shocks to the dynamical system, 
we have obtained uniqueness and global stability. Ergodicity is an immediate 
implication of ,ui > 0 and the Strong Ergodic Theorem.24 The stationary distri- 
bution can be interpreted as the proportion of time that the society spends on 
each state. A standard reference for this material is Karlin and Taylor (1975). 

We examine the long run behavior of the system when the probability of 
mutation is small. To this end, we introduce the concept of the limit distribu- 
tion. 

DEFINITION 1: The limit distribution ut* is defined by 

= lim ,uc(E), if it exists. 
e-O 

Existence and uniqueness of the limit distribution will be shown in the next 
section. If the limit distribution places positive probability on the strategy 
configuration z E Z, z is called a long run equilibrium. Formally, let C(q) be 
the carrier of probability distribution q E AN; C(q) = {i E ZIqi > 0}. 

DEFINITION 2: The set of long run equilibria is C(1* ).2S 

4. CHARACTERIZATIONS OF THE LIMIT DISTRIBUTION 

In principle, we can calculate the limit distribution, for each c, by explicitly 
writing down the closed form for pij and then solving the equation uP = , for 
,u, but the procedure is rather complicated. The following characterization of 
stationary distributions due to Freidlin and Wentzell (1984), however, enables 
us to skip explicit calculations and drastically simplifies the analysis.26 The 
characterization utilizes trees, or directed graphs, connecting the states in the 
state space Z. A z-tree h on a finite set Z is a collection of ordered pairs of (or 
arrows between) elements of Z, denoted (i -*j), such that every state in Z\{z} 
is the initial point of exactly one arrow and from any state in Z \ {z} there is a 
sequence of arrows leading to z. We will say that state j is the immediate 

24If the initial distribution is ,, then the Markov chain is a stationary stochastic process and the 
Strong Ergodic Theorem implies the time averages converge almost surely to Ai. To prove that the 
same is true for other initial distributions it is enough to do this for all initial distributions Sz, where 
az puts probability one on state z E Z. Let A c Z' be the set of sequences {zj} such that 
T-'E,Xi(z,) +,- gi. Let - and 6z be the probability distributions induced on Z' by the transition 
matrix P and the initial distributions , and Sz, respectively. Then 5z(A) = 5(A Iz) = 9(A)/1z = 

0, since 9(A) = 0. 
25Since we are dealing with a finite Markov chain with a unique stationary distribution for every 

positive mutation level, this is equivalent to Foster and Young's (1990, p. 228) notion of stochasti- 
cally stable: They define a state s to be stochastically stable if the asymptotic distribution exists and 
assigns positive probability to every neighborhood of s for arbitrarily small noise levels. 

2 The characterizations of limit distributions are extensively studied by Freidlin and Wentzell 
(1984) in continuous time-continuous state space models. What follows is basically a discrete version 
of their analysis. 
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FIGURE 1 

successor of state i in tree h if (i j) E h. Thus, a z-tree is a directed graph on 
Z such that each state except z has a unique successor and there are no closed 
loops. Denote the set of z-trees by Hz. Figure 1 shows all 0-trees when the state 
space is Z = {0, 1, 2}. 

To obtain the stationary distribution ,u, we first construct a vector q which is 
proportional to ,u. For each z-tree, calculate the product of transition probabili- 
ties along the tree, and then take the summation of the products for all z-trees. 
This defines a number qz: 

(4) qz= E F Pi1. 
heHz (i-*j)eh 

For the example in Figure 1, qo =P20P10 +P21P10 +P12P20. Let q be this 
constructed vector, q (qo, . . ., qN). The following result (Freidlin and Wentzell 
(1984, Chapter 6, Lemma 3.1)) is key. Since its proof is simple, we present it for 
the readers' convenience. 

LEMMA 1: The vector q is proportional to ,u. 

PROOF: For given state z, consider the set of directed graphs on Z, denoted 
Gz, such that (i) each state i has a unique successor, j, i = j, and (ii) there is a 
-unique closed loop, and it contains state z. For each g E Gz, calculate the 
product of transition probabilities along g and then take the summation of all 
the products over g e Gz. A moment's reflection shows that the resulting 
number is expressed as 

L qkpkz E qzpzl, 
ko=z lI=z 

and the right hand side is equal to (1 - pzz)qz This yields Ekqk pkz = qz, which 
shows qP = q. Q.E.D. 

Since A* = lim, . qz(E)/Ejqj(E), the states which receive positive weight 
under ,u* are those states for which qz(E) converges to zero at the lowest rate.27 
If such a state is unique, the limit distribution assigns probability one to that 
state. Let vz be the rate at which qz converges to zero, i.e., qz = O(EVz). From 
(4), the rate at which qi converges to zero is determined by the rate at which the 
probability along the slowest z-tree goes to zero. Let cij be the speed of 

27If there is a state z such that qz(c) does not converge to zero, then the rate of convergence of 
qz(e) to zero is the lowest possible, namely 0. 
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convergence of Pij to zero as E tends to zero, i.e., pi1 = O(Ecij). Thus, vz = 
mm minh E- Hz E(i -j) EhCij- 

For an arrow (i -* j), we can interpret cij as the cost of a transition from i to 
j. Any transition of the form (i -* b(i)) is costless (ci b(i) = 0), because Pi b(i) iS 
bounded away from 0 as E -O 0; in fact, Pi b(i) -* 1 as E -O 0. The cost of the 
transition (i -*j) can be interpreted as the degree of mutation needed to transit 
from i to j. Since, in the absence of mutation, b(i) is the state reached from i, 
at least Ib(i) - I mutations are needed to reach j. While more mutations will 
also work, as long they are offsetting, the number of mutations most likely to 
reach j is the minimal number, Ib(i) - I . This mQtivates the next lemma. 

LEMMA 2: cii = I b(i) -i i l. 

PROOF: Follows from considering the leading term of 

min{j,N-b(i)) b(i ) N-b(i) 

k =max{(j -b(i), 0) i1 

Xc b(i)+2k-i( 1 )N+j-b(i)-2k Q.E.D. 

A z-tree is a "map," indicating how to reach z from every other state without 
passing through any state more than once. The total cost of transition from all 
states to z according to the z-tree h is then E(i j)ehCij c(h). Lemma 3 states 
that vz is the cost of transition along that z-tree which minimizes costs, and we 
call it the cost of transition to state z. Given Lemma 2, vz is determined as 
follows: 

LEMMA 3: vz= minhEH= E(i-j)EhIb(i) -j. 

We can now determine the limit distribution ,*. Each element of q is a 
polynomial of E, 

N 

qz= E az( v) v. 
v=0 

Note that some of the coefficients az(v) may be equal to 0. Clearly, vz= 
min {vIaz(v) = O}. (If qz does not converge to 0, then az(O) = 0 so that vz = 0.) 
Let v* = minz vz and define a* = (ao(v*),..., aN(v*)). Then we have the 
following theorem. 

THEOREM 1: The limit distribution ,u* exists and is unique. In particular, 

(5) ,*= a*z(a*) 

and the set of long run equilibria is given by 

(6)A C( ,*) 
= 

Argminz= z vz. 
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PROOF: First observe that a* > 0. Straightforward calculation of 
lim,rn ,q,(E)/(Eiqi(E)) verifies (5) and (6). The uniqueness follows from the 
uniqueness of ,d(E) for E > 0. Q.E.D. 

A straightforward application of these results is provided by considering 
games with a dominant strategy, (a - c)(d - b) < 0. Suppose that s, is a 
dominant strategy. Then, VN = 0, since every state must eventually transit to N 
under b satisfying (D). Consider z * N. Note that every z-tree must have a path 
from N to z, and that the "cheapest" way to do this is in one step (N -> z), 
since the cost of the transition (N -* z') and then.(z' -* z) is N - z' + b(z') - z 
> N - z (by (D), z' < b(z')). Then the lowest cost z-tree is {(z' -b(z')): 
z' = z, N} U {(N -* z)}, since the only costly transition is (N -* z), and so vz = 

N - z > 0. Thus N is the only state with lowest rate of convergence to zero, and 
so the limit distribution puts probability 1 on that state.28 We have proved the 
following theorem. 

THEOREM 2: Suppose the stage game has a dominant strategy. For any popula- 
tion size N 2 2 and any adjustment process satisfying (D), the limit distribution 
puts probability one on N if s1 is the dominant strategy and on 0 if S2 is the 
dominant strategy. 

5. COORDINATION GAMES 

In this section, we study coordination games, i.e., a > c, d > b, and, as a 
normalization, a 2 d. In this case, E1 (s1, s1) and E2 (s2, S2) are strict Nash 
equilibria. The game is described as being one of common interest when a > d, 
in which case E1 Pareto dominates E2. In such games, if players could 
coordinate, they would presumably coordinate on E1. In the absence of explicit 
coordination, however, it is not obvious that E1 will be played. The riskiness of 
s, relative to S2 is also then relevant. 

Suppose that a > d and the two strategies have identical security levels (i.e., 
b = c). It seems natural that players will play the best equilibrium E1. Players 
have a common interest in playing E1 and in case of possible confusion on 
which strategy to play, the first strategy is no riskier than the second. This 
conjecture turns out to be true in our model of the dynamic evolutionary 
process. 

Let z* E 91 be the critical level of population for which the following is true 
(z* need not be an integer): 

sign(1(Z) - 72(Z)) = sign(z - z*). 

The two states 0 and N have basins of attraction under b given by {z < z*} and 

28The argument still applies if we require the extinction hypothesis of b(O) = 0 and b(N) = N. In 
this case the cost of the N-tree is 1, since one mutation is required to shift the state from the 
unstable steady state into the basin of attraction of the stable steady state. It is still true that the cost 
of any 0-tree is at least N 2 2 > 1. 
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{z > z*} respectively. The relative sizes of these basins of attraction is a crucial 
factor in the determination of the limit distribution. Calculation shows that 
z * = [N(d - b) + a - d ]/(a - c + d - b). Essentially, z * corresponds to the 
mixed strategy equilibrium, which puts probability y = (d - b)/(a - c + d - b) 
on strategy si. However, z* is not exactly equal to yN because players with 
strategies s, and S2 face slightly different strategy distributions due to the 
finiteness of the population. As the reader can easily verify, the difference 
between z* and yN vanishes as the population size becomes large. The 
following theorem shows that the equilibrium with the larger basin of attraction 
is selected in the long run. 

THEOREM 3: Suppose the stage game is a coordination game and z* = N/2. 
For any population size N 2 2 and any adjustment process satisfying (D), the limit 
distribution puts probability one on N if z* < N/2, and on 0 if z* > N/2.29 

Before we prove Theorem 3, it might be helpful to provide some intuition. 
Consider a case with six players (Figure 2). The law of motion according to the 
Darwinian dynamic b( ) is indicated by the arrows. In this example, the critical 
level z* is between 2 and 3, and state 6 has the larger basin of attraction 
{3, 4, 5, 6} than state 0 ({0, 1, 2}). We claim that the easiest way to upset equilib- 
rium state 0 is to have just enough mutations to escape from its basin of attraction. 
More precisely, the following 6-tree (Figure 3), which indicates a particular way 
to achieve the other equilibrium state 6 by an immediate jump 0 -O 3, turns out 
to be of minimum cost among all 6-trees. The numbers in parentheses indicate 
the costs of transition cij (the number of required mutations), and the total cost 
of this tree is 3, which is exactly equal to the size of the basin of attraction of 
state 0. The fact that this is the least cost 6-tree is explained as follows. 
Consider another 6-tree shown in Figure 4, which represents a gradual move- 
ment towards state 6, rather than the immediate jump depicted in Figure 3. The 
cost of this tree is 4 rather than 3, which indicates that the gradual transition is 
less likely than the immediate jump. Note that after achieving state 2, the 
selection pressure pushes the state back to 1, so we need two mutations rather 
than one to achieve state 3. This is the source of the inefficiency of the tree in 
Figure 4, and the same argument shows that any gradual transition is more 
costly than the immediate jump described in Figure 3. Therefore we conclude 
that the cost of transition to state 6, v6, is 3. By the same token, the minimum 
cost 0-tree is given by immediate jump from 6 to 2, which requires four 
mutations. So the cost of transition to state 0, vo, is 4. It is easy to see that any 
other nonequilibrium states have larger costs of transitions than one of those, so 
the conclusion is that state 6, which has the larger basin of attraction, achieves 

29For coordination games, the condition in footnote 20 can be simplified to b(z) > z if z > zt+ 1 
and b(z) <z if z <z , where Trl(zt + 1) =Tr2(zt) (note that (N - l)-lzt = y). Note also that 
N- Iz* - ztI - 0 as N -?? o. If the deterministic dynamic satisfies the condition in footnote 20 
(rather than (D)), then the limit distribution puts probability one on N if zt - 1 < N/2, and on 0 if 
zt > N/2. The proof is the same as that of Theorem 3. 
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the minimum cost of transition among all states. According to our analysis in 
Section 4 (equation (6) in Theorem 1), this is the unique long run equilibrium. 

PROOF OF THEOREM 3: Since the case of z* > N/2 is just a relabelling of 
z* < N/2, we only consider z* < N/2. We will show that minz E Z vz is uniquely 
achieved by z = N. Since we have a finite population, we need the following 
integers around z*: 

a = min {z E ZI 1(Z) > wr2(z)}, and 

,1 = max {Z E ZeZI1(z) <w72(Z)}. 

Note that ,B < z* <a ?N/2. 
We first determine the value of vN. Recall that for a tree h, the cost of 

transition along the tree is given by 

c(h) = E cij. 
(i-Ej)Eh 

For any N-tree h, define the path connecting states 0 and N, 

h' = {(i -j) E hli = O or i is a successor of O}, 

and let h" = h \h'. Then c(h) = c(h') + c(h"). By the Lemma in the Appendix, 
the minimum of c(h') over all paths in Z from 0 to N is achieved by 
h* = {(z -> a)} u {(z'-* b(z'))Iz' = bm(a) for some m ? 0}, where bm( ) is the 
m-fold iteration of b(*) and bo(z) = z. Recall that, by (D), for any z ? a, 
bm(z) = N for sufficiently large m. 

Thus, a is a lower bound of c(h) for any N-tree h. This lower bound, 
however, is exactly achieved by the N-tree 

{(O--a)} U{(z-*b(z))10<z<N}, 
if z* is not an integer, and by 

{(O? z*), (z* > ca)} U {(z b(z))Iz = O, z*, N}, 
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if z* is an integer (and so equals a - 1), so that VN = a. In either case, the most 
efficient N-tree involves just enough mutations to upset E2. 

Next, consider the value of vz for a < z < N. The same type of argument 
shows that a path connecting states 0 and z provides a lower bound a for vz. 
However, there is no way to achieve this bound because there is an additional 
cost of transition from any state z' > z to z. Hence we have vz > a for 
a? <z <N. 

By a symmetric argument, we have that vz > N - ,B for 0 < z < ,B, and when 
z is an integer (so that it is a possible state), v * > N - z *. Since ,B, z * < N/2 
and a < N/2, we conclude vz > VN = a for all z * N. Q.E.D. 

The sign of z* - N/2 is a function of the risk characteristics of the coordina- 
tion stage game. If c is large relative to b (so that s, is riskier than S2), then 
z* > N/2 and E2 is the long run equilibrium. It is easy to check that z* < N/2 
if and only if a(l - 2N-1) - c d(1 - 2N-1) - b. Note that this reduces to 
a 2 d when b = c (and in particular that the population size becomes irrelevant). 
Harsanyi and Selten (1989) have proposed a notion of risk dominance to 
capture the risk characteristics of a game. For the coordination game, E1 risk 
dominates E2 if a - c > d - b and E2 risk dominates E1 if a - c < d - b. This 
discussion then yields the following: 

COROLLARY 1: Suppose the stage game is a coordination game and z* 0 N/2. 
If N 2 2(a - d)/(a - c - d + b), the unique long run equilibrium is the risk 
dominant equilibrium. 

COROLLARY 2: Suppose the stage game is a coordination game and its two 
equilibria have identical security levels (b = c) and a > d. For all N> 2, the 
unique long run equilibrium is the Pareto efficient equilibrium. 

We now turn our attention to the case z* = N/2, which includes games of 
pure coordination such as: 

II 
S1 S2 

Si 1, 1 0,0 

52 0 0,0 1, 1 . I 2I 

In this game, there are two pure strategy equilibria, E1 = (sl, s1) and E2 = 

(s2, s2), which are Pareto efficient. 

THEOREM 4: Suppose the stage game is a coordination game and z* = N/2. 
For any N 2 4 and any adjustment process satisfying (D), the long run equilibria 
are E1 and E2. Furthermore, the limit distribution places probability 1/2 on each 
of them. 
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PROOF: Arguments identical to those in the proof of Theorem 3 show that 
VO = VN = N/2 + 1 and v, > N/2 + 1 for all z / 0, N/2, N. The cost minimizing 
z*-tree is {(O -0 z*), (N -* z*)} U {(z -* b(z))Iz = 0, z*, N}, with cost N. Thus, 
the long run equilibria are E1 and E2. 

Sine the cost minimizing 0- and N-trees are unique and have the same 
structure, it is easy to see that the limit distribution must put equal probabilities 
on 0 and N. Q.E.D. 

It is worth emphasizing that the limit distribution is symmetric (puts equal 
probability) on states E1 and E2, irrespective of the precise nature of b(-). In 
particular, bQ ) can be highly asymmetric in how it behaves on the basin of 
attractions of E1 and E2. 

The interpretation of the above result is as follows. The society stays in the 
neighborhood of, say, E1 for a long time if the initial configuration of strategies 
is close to it. Every once in a while, E1 is upset by a large number of deviations 
and society moves to the other equilibrium E2, and so on. Asymptotically, half 
the time will be spent in each equilibrium. 

The limit equilibrium has the flavor of a correlated equilibrium in which 
agents are using history to coordinate their actions. An outside observer should 
predict the state in any period by looking at the history of play. If all (or most) 
agents had played s1 last period, then this is a good indication that the same 
will occur in the current period. While this prediction is sensible from an 
outsiders' standpoint, players are not carrying out this calculation. On the 
contrary, players are simply following their learning (behavioral) rules. 

We conclude this section with a comment about the behavior of the stationary 
distribution as N becomes large for fixed E. For simplicity, restrict attention to 
the best reply deterministic dynamic.30 As mentioned in footnote 23, we can 
analyze the system as a two state Markov chain. Let p be the transition 
probability from E1 to E2 and p' be the transition probability from E2 to E1. 
Suppose z* <N/2. Intuitively (and as suggested by the numerical example in 
Section 7), we might expect similar results, that is, that the stationary distribu- 
tion will asymptotically place probability one on E1. The following line of 
argument, while not a proof, is suggestive: Observe that p = Pr (j ? N - z*) and 
p'= Pr(j] z *), where j Bin(N, 8) is the number of mutations. Now argue 
that p/p' goes to zero as N goes to infinity by first approximating p and p' by 
their respective cumulative probabilities from the standard normal distribution, 
and then applying l'Hopital's rule. 

6. GAMES WITH NO SYMMETRIC PURE STRATEGY EQUILIBRIUM 

In this section we explore the behavior of the stochastic dynamics for the 
remaining case, a < c and d < b. In this case, there is a unique symmetric Nash 

30This is an interesting question in general, but significantly more difficult, since the state space 
itself is changing with N. 
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equilibrium, in which s, is played with probability y (b - d)/(c - a + b - d) 
and 52 with the complementary probability 1 - y. 

Consider first the case of y = 1/2 and suppose that the speed of adjustment 
is fast-that is, the adjustment rule is given by the best reply dynamic B( ). In 
this situation, the long run equilibrium does not correspond to the mixed 
strategy equilibrium: the limiting distribution puts probability 1/2 on state 0 
and probability 1/2 on state N (this is easily confirmed using our earlier 
arguments). Suppose the process is originally in state 1. Under B( ), the state 
next period is N, at which point the system oscillates between 0 and N (because 
B(O) = N and B(N) = 0), until a mutation moves the process to state N - 1 
(with highest probability), at which point the process jumps to state 0 and so 
on.31 Since B(N/2) = N/2, once in state N/2 the process remains there until a 
mutation occurs, after which either 0 or N will result. 

However, if the speed of adjustment is slow, the long run equilibria corre- 
spond to the mixed strategy equilibrium. Let [x]+ denote the smallest integer 
greater than or equal to x and [x]_ the largest integer less than or equal to x, 
for any x e 9I . Given a mixed strategy equilibrium with Prob (s1) = y, say that 
bQ ) is a contraction relative to yN if 

[lb(z)-yNII] + < [I z-yNI]h+ for all Z,32 

with the inequality holding strictly if yNe Z or [Iz - yN I ? 2. This assump- 
tion is best viewed as an assumption on the length of a period: periods are 
sufficiently short that only a small fraction of the population can adjust. For 
example, it is satisfied if one player can adjust at a time. 

If bQ ) is a contraction relative to 'yN, and if N is sufficiently large that 
1 < yN ? N - 1, then the limit distribution mimics the mixed strategy equilib- 
rium y. 

THEOREM 5: Suppose N 2 4 and b(Q) is a contraction relative to yN in the 
game where a <c and d <b. If 1 < yN < N - 1, the limit distribution puts 
probability 1/2 on [ yNL and probability 1/2 on [ yN]+. If yN < 1, the limit 
distribution puts probability one on 0 and if 'yN > N - 1, the limit distribution 
puts probability one on N. 

PROOF: Suppose first that yN is an integer. In this case, yN is the global 
attractor for any bQ ) which is a contraction relative to 'yN, and so trivially 
VyN= 0 (this is achieved by {(z -* b(z)): z # yN}).33 For all other z, vz 2 1. 

31If instead we assumed extinction B(O) = 0 and B(N) = N, then after state 1, the system moves 
to state N and remains in N until a mutation moves the process to state N - 1 (with highest 
probability), at which point the process jumps to state 0 and so on. 

32If b(O) = 0 and b(N) = N, then this is only required for z 0 0 or N. 
33If b(O) = 0 and b(N) = N, the argument needs to be adjusted as follows. If yN is an integer, 

V,yN = 2, which is achieved by {(O -+ 1), (N -- N - 1)) U {(z -+ b(z)): z A 0, yN, N). For all other z, 
vz > 3. If yN is not an integer, then both [yNI- and [yN]I have identical minimum transition 
costs: v -yN]-= V[yN] = 2, and the only [yN]--tree to achieve V[N] is {(O -* 1), (N- N - 1)) u {(z 
-+ b(zA: z A [yN], 0, N). The remainder of the argument is identical to the case b(O) = N, 

b(N) = 0. 
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If yN is not an integer, then both [yNI- and [yN]I have identical minimum 
transition costs: V[,N] = V[yN]+= 0. All other states have higher transition costs. 
Furthermore, the only [yN]-tree to achieve v[,N] is {(z -* b(z)): z [yN , 
since b([yN]+) = [yN]-. Since essentially the same tree achieves v[N]+, both 
states receive equal probability in the limit distribution. 

The cases of yN < 1 and yN > N - 1 are handled similarly. Q.E.D. 

7. EXPECTED WAITING TIMES: HOW LONG IS THE LONG RUN? 

In this section we return to the class of coordination games and investigate an 
alternative measure of how likely a particular staite is to be observed. The 
ergodic property is a strong statement about the behavior of time averages. 
Thus, if the limit distribution places probability one on state N in the coordina- 
tion game, for small rates of mutation the proportion of periods spent in that 
state is close to one. Note, however, that the state 0 is also an attractor of b( ) 
and so, conditional on being in that state in period t, for low rates of mutation 
we should expect to remain there for a long period of time. 

In order to make this precise, we will restrict attention to the best reply 
deterministic dynamic, bQ ) = B(Q). This particular deterministic dynamic makes 
it hardest for the process to leave the 0 state, since it requires a simultaneous 
mutation from 0 to leave its basin of attraction under B(0). 

With this particular dynamic, we can view the Markov chain as having two 
states, E1 and E2, with transition matrix (see footnote 23): 

El E2 

E2 P 1 i-p' 

Note that as E -* 0, p, p', and p/p' -* 0. 
Suppose it is period t = 0. Let a- be the number of periods before the state 

E1 is first observed. The argument in the first paragraph of this section concerns 
E(31 lzo = E2) = E(Q 11 al 2 1). It is easy to evaluate this expression: E(QI 11 ? al 2 
1) = Et 2 1tp'(1 - p')t- 1 = pEt 2 1d{ - (1 - p')t}/dp' = 1/p'. Thus we see that as 
F -* 0, the expected duration in E2, conditional on starting in E2, goes to 
infinity. 

However, this is the "worst case" scenario and it may not properly capture 
the average behavior of the process. Consider the following thought experiment: 
the process has been ongoing for a large period of time (so that the invariant 
distribution is a good approximation of the likelihood of being in any state) and 
an outside observer will observe the state at period r. How many periods after r 
will the observer have to wait before observing state E1? That is, what is the 
unconditional expected value of a, when the original state is chosen according 
to the invariant distribution A = (p'/(p + p'), p/(p + p'))? Now, 
Ea-1 = E(QlIa1 = O)Pr(-, = 0) + E(QIl I1 ? 1)Pr(-1 > 1) = (1/pf)x Pr(z, = 
E2) =p/[p'(p + p')]. Thus, the behavior of E?8, is determined by the rate at 
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which p/p' goes to zero, relative to the rate at which p +p' goes to zero. 
If Ea-1 converges to zero as the rate of mutation goes to zero, then E1 clearly 

captures the long run behavior of the system in our thought experiment. Not 
only does this state occur with probability one in the limiting distribution, but in 
the presence of low rates of mutation, the expected time until E1 is observed is 
close to zero, i.e., an outside observer expects to see E1 immediately. On the 
other hand, if E a goes to infinity as the rate of mutation goes to zero, then the 
situation is more complicated. While the state occurs with probability one in the 
limiting distribution, in the presence of low rates of mutation, the expected time 
until it is observed is large. That is, while there is a small probability of being in 
E2, the expected time in E2 overwhelms that sniall probability. Thus we are 
interested in the behavior of Ea-,. 

THEOREM 6: Suppose the stage game is a coordination game and that b(*) is 
given by B(0), the best response dynamic. Then, 

(i)ifz*<(N-2)/3, then limO E -1=O; and 
(ii) if z* > (N + 1)/3, then lim -0 E = oo. 

PROOF: First observe that under B(M) states other than 0 and N are only 
achieved through mutation. Let x be the smallest integer strictly larger than 
N - z * and let y be the smallest integer strictly larger than z *. The probability 
that in any period, the chain transits from any state z > z* to any state z < z* is 
of order Ex (since a minimum of x mutations are required). Similarly, the 
probability that in any period, the chain transits from any state z < z* to any 
state z > z * is of order Y. The discussion above then implies that the asymp- 
totic behavior of Ea-1 is determined by the behavior of _ ex/[Y(Ex + 8Y)] as 
E > 0. 

Now, g=(8y+82y-x)-, and note that 2y-x<y because y<x. Then the 
asymptotic behavior of 6 is the same as Ex-2y. In particular, if x > 2y, then 

-* 0, i.e., Ea-1 -> 0; and if x < 2y, then 6 -* oo, i.e., E 1a- -*- , as E -* 0. 
Finally, observe that x + y = N + 1 (or N + 2 if z* is an integer), so that 

x > 2y is implied by z * < (N - 2)/3 and x < 2y is implied by z * > (N + 1)/3. 
Q.E.D. 

NUMERICAL EXAMPLE: Consider the following special case of a coordination 
game, in which a > 1: 

II 
S1 S2 

51 a, a 0,0 

S2 Li0 1rX 

For this game, z* = (N + a - 1)/(a + 1), so from Theorem 5, the expected 
waiting time to see the long run equilibrium E1= (sl, sl) tends to zero if 
a > (2N - 1)/(N - 5), and tends to infinity if a < (2N - 4)/(N - 2). Table I 
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TABLE I 

a = THE PAYOFF FOR E1, E = MUTATION RATE, N = POPULATION SIZE, 
tl = EXPECTED DURATION OF El = l/p, t2 = EXPECTED DURATION OF E2 = 11P'l 

/42 = PROBABILITY OF E2 IN STATIONARY DISTRIBUTION. 

a e N t I t2 A2 

2 0.1 10 1.1xlo, 78 7.1x10-4 
2 0.1 20 4.6 x 109 420 9.0 x 10-8 
2 0.1 40 3.1 x 1017 54,000 1.7 x 10-13 
3 0.1 10 2.7 x 106 14 5.3 x 10-6 
3 0.1 20 3.1 x 1012 89 2.9 x 10-1 
3 0.1 40 9.1 x 1022 680 7.4 x 10-2' 
4 0.1 100 5.4 x 1061 1,200 2.3 x 10-59 

TABLE II 

a = 2, E = 0.1, N = 10, (pl(t), p2(t)) = (0, 1)Pt 

t 1 20 40 60 80 100 

,u2(t) 0.93 0.23 0.054 0.013 0.0030 0.00070 

shows the stationary distributions and the expected durations of two equilibria 
for some range of parameters. Note that for those parameter values, the 
stationary distributions closely approximate the limit distribution * = (1,0), 
and still the "wrong" equilibrium E2 = (S2, S2) is upset in relatively short time. 
For example, if a = 2 and the mutation rate and the population size are 0.1 and 
20 respectively, upsetting the wrong equilibrium takes about 420 periods, while 
upsetting the long run equilibrium takes about five billion periods. 

Table II illustrates global stability. It provides the probability of observing the 
equilibrium E2 after t periods, given that the initial position is E2. 

8. ROBUSTNESS OF THE MODEL 

The most surprising feature of our model, perhaps, is that the equilibrium 
selected in the long-run does not depend on the exact details of the adjustment 
process; it only depends on the payoff structure of the underlying game. Our 
results show (Theorem 3) that as long as the monotonicity property (D) is 
satisfied by a one-dimensional dynamic,34 the equilibrium with the largest basin 
of attraction is always selected in the long run. In turn, the sizes of the basins of 
attraction depend only on the payoff structure of the game. This is not true in 
Foster and Young (1990) or in Fudenberg and Harris (1992). In Foster and 
Young (1990) the selection of equilibria depends on a certain "potential 
function," which reflects not only information on payoffs but also details of the 
adjustment process and mutations, in their case replicator dynamics and Gauss- 
ian disturbances. Fudenberg and Harris (1992) sometimes find no long-run 
equilibria. Rather, the dynamics are nonergodic, where the population eventu- 
ally locks into one state, and never departs it thereafter. In this section, we 

34We discuss in Section 9 why the result can only be true for one-dimensional dynamics. 
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make a few remarks concerning the substantive and the modelling differences 
between the two formulations. 

As stressed earlier our construction is based on certain behavioral postulates 
at the individual player level. These postulates, the discreteness of population 
and the independence of mutations enable us to generate aggregate random- 
ness. In contrast, Foster and Young (1990) and Fudenberg and Harris (1992) 
consider a continuous-time, continuous state-space formulation, and assume 
aggregate randomness.35 It is not obvious, however, how to generate the 
particular random process (Brownian motion) they use from assumptions on 
individual behavior. In particular, in a suitable discretization of their model, 
how should individual shocks be correlated across players and how should they 
be synchronized with the timing of strategy adjustments? 

The most important difference, however, between our model and the models 
with Brownian motion is how a given equilibrium is upset by stochastic shocks. 
In our model of finite population and independent mutations, an equilibrium is 
upset by large "jumps" (from the equilibrium to the basin of attraction of the 
other equilibrium), while in the Brownian motion models have continuous 
sample paths and so gradual local movements are the only route out of the 
equilibrium. This is why details of the model like the speed of adjustment are 
unimportant in our formulation (for the symmetric 2 x 2 case), in contrast to the 
Brownian motion models. We now explore the difference in more detail. 

In a related paper (Kandori (1991)) one of us has shown that the central 
result of this paper holds in a continuous time, discrete state space formulation 
where the opportunity to adjust one's behavior arrives according to a Poisson 
process. Furthermore, that model is constructed for a generally specified speed 
of adjustment (i.e., arrival rate) and the results can be shown to hold under the 
further restriction that mutations occur only among players who are actually 
adjusting. These specifications make simultaneous mutations-at any given 
point in time-impossible, and they minimize the number of mutations within 
any positive time interval. In Kandori (1991), the most likely way to upset an 
equilibrium is to have a series of single mutations in a short time interval, which 
is quite similar to simultaneous mutations. As a result, the selection of equilib- 
ria still only depends on the relative sizes of the basins of attraction. This 
suggests to us that upsetting equilibria by large jumps is a natural consequence 
of independent mutations, and that this result does not hinge on the fine 
modelling details. As long as mutations are independent, n simultaneous 
mutations are no less likely than a series of n mutations spread over time 
(loosely speaking, their probabilities both have order En). 

3sAggregate randomness in a discrete model is the key to selecting among multiple equilibria 
since it ensures that it is always possible to transit from one equilibrium to the other. Strictly 
speaking, what is at issue here is the ergodicity of the stochastic process. While weaker conditions 
will guarantee that the process is ergodic, these assumptions do not have plausible interpretations. 
Aggregate randomness in a continuous state model, on the other hand, is not enough for ergodicity 
(see Fudenberg and Harris (1992)). 
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In contrast, the speed of adjustment does matter when random shocks that 
are spread over time are much more likely than simultaneous shocks. In that 
case, how the system behaves between random shocks (which is affected by the 
speed of adjustment) becomes a critical factor. On the basis of the above, we 
believe that this is generated by the correlation of shocks and we suspect this 
correlation to be the driving force behind the predictions in Foster and Young 
(1990) and Fudenberg and Harris (1992).36 

9. ANALYSIS OF MORE GENERAL GAMES 

In this section we illustrate a case where the long-run equilibrium depends on 
the details of the Darwinian adjustment process. Consider again the 2 x 2 game 
of pure coordination in which a > d = 1 and b = c = 0. Until this point we have 
assumed that there is a single population of players, from which players are 
randomly drawn (in particular, there is no role identification). In this section, we 
suppose that there are two separate populations of players: row players and 
column players. There are M players of each type. The state of the system at 
each date is now described by a pair of numbers, (Zr, zc), where 0 < zi < M; the 
state-space itself is a grid of points over a two-dimensional square. 

Consider now the Darwinian adjustment of row players (the same analysis 
applies to column players). See Figure 5. There is a critical value, z* =M 
(a + 1) (assume, for simplicity, that z* is not an integer), so that wr1(zc)> >w2(Z) 

if and only if zc > z*. Therefore, according to our previous specification of 
Darwinian dynamics (and applied to each population separately), the state-space 
partitions into four subregions. In two subregions, namely 1 and 3, the dynamics 
are unambiguous. That is, they point towards one of the game's two Nash 
equilibria. On the other hand, in the remaining regions, the Darwinian dynam- 
ics point in conflicting directions. Hence, depending on where one starts and on 
the relative speeds of adjustments (i.e., the speed of adjustment of row players vs. 
column players), we may end up with an equilibrium payoff of (1,1) or (a, a). 

To illustrate the effect of this, consider the extreme case where in region 2, 
column players adjust infinitely faster than row players, whereas in region 4, it is 
the row players that adjust infinitely faster. In this case the basin of attraction of 
the (1, 1) equilibrium consists of the region 1, 2, and 4, whereas the basin of 
attraction of the (a, a) equilibrium, consists of 3 alone. According to our general 
procedure we now have to compute costs of transitions between the two 
equilibria. To escape the (a, a) equilibrium one must mutate [Ma/(a + 1)] 
players (where [x] refers to the first integer exceeding x). This will bring the 
state into region 2, after which one follows the costless Darwinian dynamics. On 
the other hand, to escape the (1, 1) equilibrium one must have 2[M/(a + 1)] 

360ne way to see the existence of correlation in their models is that the sum of independent 
individual mutations is not normally distributed (under independent individual mutations, the sum 
of mutations is only approximated by a normal distribution once the sum is normalized by N)i). On 
the other hand, if the adjustment process follows a Brownian motion then the number of mutations 
in the society is normally distributed. 
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mutations. This will bring the state into region 3 (by [M/(a + 1)] mutations in 
the row players and in the column players respectively). Therefore we must 
compare [Ma/(a + 1)] and 2[M/(a + 1)]. Thus, the long run equilibrium is 
(1,1) if a < 2 and (a, a) if a > 2. 

This result is to be contrasted with the case where the Darwinian adjustment 
process exhibits equal speeds of adjustment in all regions. In that case, the risk 
dominant equilibrium (a, a) is the unique long run equilibrium. And this is 
independent of how a compares with 2. So this serves to illustrate that the 
selection of a long run equilibrium may depend on the specification of the 
Darwinian adjustment process, not just on the payoff structure of the game. 
This discussion also suggests that if a is large enough, then the results will be 
independent of the deterministic dynamics. 

REMARK: If the Darwinian adjustment process was stochastic, i.e., if each 
player was independently allowed to pick a best-response with certain probabil- 
ity per-unit time then the choice of long-run equilibrium is again independent of 
the Darwinian speed of adjustment. This holds since in that case regions 2 and 4 
both belong to the basin of attraction of the (1, 1) equilibrium and the (a, a) 
equilibrium (so there is an overlap in the state-space segmentation into basins of 
attraction). Thus, the most efficient escape routes are along the horizontal (or 
vertical) edges, generating a comparison between [M/(a + 1)] and [aM/(a + 1)] 
(as before). 
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APPENDIX 

In the claim, bm'() is the m-fold iteration of b( ) and bo(z) = z. Recall that, by (D), for any z in 
the basin of attraction of N, bm(z) = N for sufficiently large m. 

LEMMA: Let A = {0, 1. a - 1}. For all z E A, the minimum of c(h') over all paths h' in Z from z 
to N is achieved by h* = {(z - a)} U {(z' -* b(z'))Iz' = bm(a) for some m ? 0}. 

PROOF: For any path h' from z to N, define k(h') #{z' eA: 3z" e Z, (z' -* z") h'}, i.e., 
k(h') is the number of states in A which are the initial state of an arrow in h'. Define 
C(z; K) min {c(h'): h' is a path in Z from z to N and k(h') < K}. The claim asserts that 
c(h*) = C(z, K), for all K. The claim is proved by induction on K. 

Consider first the case of K = 1. For this case, z is the only state in A which can be the initial 
state of an arrow in h', so the immediate successor of z, denoted z?, lies in Z\A (i.e., zo > a). The 
cost of a path from z to N is at least zo - b(z), and this is greater than or equal to c(h*) = a - b(z). 
Hence, c(h*) = C(z; 1). 

Assume, now, that for some K, 2 < K < a, and for all z eA, c(h*) = C(z; K - 1). Fix a starting 
state z E A. Let z0 be the immediate successor of z in some path ho which is cost minimizing over 
all paths h' in Z from z to N satisfying k(h') < K, i.e., c(h0) = C(z; K). It is clear that zo< a 
(otherwise c(h?) 2 zo - b(z) > a - b(z) = c(h*)). If zo = a, then h* clearly satisfies c(h*) = C(z; K). 

Suppose, therefore, z0 < a. By the induction hypothesis, we have c({(z?0 -)} u {(z' -* b(z')) I z' = 

bm(a) for some m 2 1}) = C(z?, K - 1). This implies that c(h#) = c(h?), where 

h# = { (z z0)) U { (z -*a)) U {(z' -- b(z'))Iz'= bm(a) for some m 2 1}. 

We now show that c(h#) ? c(h*), which will prove the claim. Note that condition (D) implies 
b(z?) < zo. First, suppose zo < b(z), which implies b(z?) < b(z). Then c(h#) = b(z) - zo + a - 
b(z?) > a - b(z?) > a - b(z) = c(h*). Next, if b(z) < z?, then c(h#) = - b(z) + o - b(z?) = 

c(h*) + z0 - b(z0) > c(h*), and the claim is proved. Q.E.D. 
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