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Abstract We present a machine learning approach for
model-independent new physics searches. The correspond-
ing algorithm is powered by recent large-scale implemen-
tations of kernel methods, nonparametric learning algo-
rithms that can approximate any continuous function given
enough data. Based on the original proposal by D’ Agnolo and
Waulzer (Phys Rev D 99(1):015014, 2019, arXiv:1806.02350
[hep-ph]), the model evaluates the compatibility between
experimental data and a reference model, by implement-
ing a hypothesis testing procedure based on the likeli-
hood ratio. Model-independence is enforced by avoiding
any prior assumption about the presence or shape of new
physics components in the measurements. We show that our
approach has dramatic advantages compared to neural net-
work implementations in terms of training times and com-
putational resources, while maintaining comparable perfor-
mances. In particular, we conduct our tests on higher dimen-
sional datasets, a step forward with respect to previous stud-
ies.

1 Introduction

Experimental observations and convincing conceptual argu-
ments indicate that the present understanding of fundamen-
tal physics is not complete. Our theoretical formulation of
the fundamental laws of Nature, the Standard Model, has
been predicting with extremely high precision an impressive
amount of data collected at past and ongoing experiments.
On the other hand, the Standard Model does not provide
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answer to a multitude of questions including the origin of the
electroweak scale, the mass of neutrinos, the flavour struc-
ture in the quark, lepton and neutrino sectors, and is unable to
account for observed phenomena like the origin and the com-
position of the dark matter of the baryon asymmetry in the
Universe. Further, it does not provide a microscopic descrip-
tion of gravity. These considerations guarantee the existence
of more fundamental laws of Nature waiting to be unveiled.
In order to access these laws, we must search the experimen-
tal data for phenomena that depart from the Standard Model
predictions.

Currently, the most common searching strategy is to test
the data for the presence of specific new physics models, one
atthe time. Each search is then optimized to be sensitive to the
features specific of the considered new physics scenario. This
approach is in general insensitive to sources of discrepancy
that differ from those considered. There is therefore a strong
effort in developing analysis strategies that are agnostic about
the nature of potential new physics and thus complementary
to the model-dependent approaches described above [2—-13].
Ideally, this type of analysis should be sensitive to generic
departures from a given reference model. In practice, this is
a challenge given the complexity of the experimental data in
modern experiments and the fact that the new physics signal is
expected to be “small” and/or located in a region of the input
features which is already populated by events predicted by
the reference model. Recently, there has been a strong push
towards developing solutions based on machine learning for
(partial or full) model-independent searches in high energy
physics [1,14-39].

In this work we present a novel machine learning imple-
mentation of the analysis strategy proposed by D’Agnolo
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et al. [1,16]. The aim of this strategy is to compute the log-
likelihood-ratio test statistics without specifying the alterna-
tive new physics hypothesis a priori. Towards this end, a neu-
ral network model was used in [1,16] to learn the alternative
hypothesis directly from the data while the log-likelihood-
ratio was maximized to get an optimal test statistics. The
strategy assumes that a sample of events representing the
Standard Model hypothesis (“reference” sample) is available
and that its size is much larger than the one of the experi-
mental data, so that the only relevant statistical uncertainties
are those of the data themselves. In the new implementa-
tion presented here, neural networks are replaced by kernel
methods, specifically a modern and efficient implementation
of kernel logistic regression [40]. Kernel methods are non-
parametric algorithms that can approximate any continuous
function given enough data. Recent large-scale implementa-
tions [40] provides fast and efficient solvers even with very
large data-sets. This is relevant since a key bottleneck of the
neural network model used in Refs. [1,16] is the extremely
long training time, even on low dimensional problems, due
to regularization considerations that limit the types of viable
architectures and training strategies. The solution we propose
solves this issue by delivering comparable performances with
orders of magnitude gain in training times, see Table 1 for the
average training times needed to process a single toy experi-
ment. We demonstrate the viability of the framework by test-
ing on particle physics datasets of increasing dimensionality,
a further step forward with respect to previous studies.

‘We note that the ideas recently proposed in Ref. [37] share
some similarities to our approach. Indeed, the authors of Ref.
[37] developed a model-independent strategy based on clas-
sifiers to perform hypothesis testing on Standard Model sam-
ples and experimental measurements. However, they imple-
ment a train-test split of the data for the reconstruction of
the test statistics and for inference. This is a major differ-
ence with respect to our approach, where the distribution
employed for the evaluation of the test statistics is the one
that best fits the very same set of data on which the test has
to be performed, in accordance with the maximum likeli-
hood philosophy. Moreover, while their approach permits to
estimate the distribution of the test statistics with a single
training of a classifier, only half of the experimental data is
used for new physics detection. A in-depth comparison with
this and other unsupervised and semi-supervised approaches
will be explored in future works.

The rest of the paper is organized as follows. In Sect. 2 we
introduce the main statistical framework at the basis of this
work, elaborating on the discussion in Ref. [1]. In Sect. 3, we
discuss the different aspects of the proposed model, in partic-
ular the underlying machine learning algorithm. In Sect. 4,
we test the algorithm on realistic simulated datasets in vari-
ous dimensions and we explicitly compare our proposal with
the neural network models in Refs. [1,16]. Finally in Sect. 5,
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we lay out our conclusions and discuss future developments.
In the appendices, we review some background material and
present other complementary experiments.

2 Statistical foundations

In this section, we reprise and elaborate the main ideas in
Refs. [1,16], tackling the problem of testing the data for
the presence of new physics with tools from statistics and
machine learning.

We start by assuming that an experiment is performed
and its outcome can be described by a multivariate random
variable x. A physical model corresponds to an ensemble of
mathematical laws characterizing a distribution for x. In this
view, we denote by p(x|0) the distribution of the measure-
ments as described by the Standard Model and by p(x|1)
the unknown true distribution of the data. Discovering new
physics will be cast as the problem of festing whether the
latter coincides with the former or not.

The distribution p(x|0) is essentially known. Although
not analytically computable in most high energy physics
applications, it can be sampled via Monte Carlo simulations
or extracted using control regions with data driven tech-
niques. In the following, we denote one such set of inde-
pendent and identically distributed random variables (i.i.d.)
by

ii.d.
So = {10, with x; " p(x|0), (1)

and the actual measured data by,

s1 = LV with xR px)). 2)

It should be pointed out that in real applications one would
also consider the uncertainties affecting the knowledge of the
reference model. Similarly to Refs. [1,16], we will assume
Np > N so that the statistical uncertainties on the reference
sample can be neglected. It should be possible to include
systematic uncertainties as nuisance parameters, as shown in
Ref. [41] for the neural network implementation. However,
we assume that the systematic uncertainties are negligible in
what follows and leave this aspect to future works.

The idea in Ref. [1] is to translate the maximization of the
log-likelihood-ratio test into a machine learning problem,
where the null hypothesis characterising one of the likeli-
hood terms is the reference hypothesis (namely the Stan-
dard Model) and the alternative hypothesis characterising
the other likelihood term is unspecified a priori and learnt
from the data themselves during the training. The test statis-
tic obtained in this way is therefore a good approximation of
the optimal test statistic according to the Neyman—Pearson
lemma.
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We define the likelihood of the data S; under a generic
hypothesis H as

—N(H)N H N N
£y, oy = SN ]"[ (x| H)
3)
o—N(H)
l_[n(x|H)
where
n(x|H) = N(H)p(x|H) 4

is the data distribution normalized to the expected number of
events

N(H) = /n(x|H)dx. 5)

As already said, p(x]0) is essentially known and well repre-
sented by the reference sample while p(x|1) is not and thus
its exact form must be replaced by a family of distributions
pw(x|1), parametrized by a set of trainable variables w. We
can write the likelihood ratio test statistics as,

Ly (S1,0)

) =21
1w (S1) LD

0)
loa | Nu-NO TT 1
o8¢ Hnw(xu) ©6)

Ry (x]1)
n(x|0)

1
= =2 [ Ny(1) = N(©0) = ) log
x=1

and optimize it by maximizing over the set of parameters
w. The original proposal in Ref. [1] suggested to exploit
the ability of neural networks as universal approximators to
define a family of functions describing the log-ratio of the
density distributions in Eq. (6)

fux) = log % ™)
As discussed below the same approach can be taken replac-
ing neural networks with other machine learning approaches,
e.g. kernel methods. Following the above reasoning, the max-
imum of the test statistic could then be rewritten as the min-
imum of a loss function L(S1, fi)

1(S1) = max 1,(S1) = —2min L(S1, fu)
w w

N(O) Jw(x) _ _
> N ) %jfw(x)

So
3

= —2 min
w

and the set of parameters w which maximizes #,,(S1)

na(x|1) = n(x|0)e/o™ ~ n(x|1) )

provides also the best approximation of the true underlying
data distribution and with it a first insight on the source and
shape of the discrepancy, if present. To obtain Eq. (8) from
Eq. (6), one needs to estimate the number of expected events
in the alternative hypothesis. This can be done using Eq. (7)
and by the Monte Carlo method, namely

Nw(l) :/nw(x“)dx:/n(_x|0)efw(x)dx
~ M S (x)
2 N ¢ (10)

Note that the loss defined by Eq. (8) is unbounded from
below. In Ref. [1] a regularization parameter is introduced
as a hard upper bound (weight clipping) on the magnitude of
the parameters w.

2.1 Designing a classifier for hypothesis testing

In this work we develop the above ideas considering a differ-
ent loss function, namely a weighted cross-entropy (logistic)
loss function. This was a possibility mentioned as a viable
alternative in Ref. [1] that we indeed show to yields several
advantages. To estimate the ratio in Eq. (9) we train a binary
classifieron S = SpU S| using a weighted cross-entropy loss

Uy, f(x)) = ao(l — y) log (1 + ef(x))
+a;ylog (1 + e—f(X)) ) (1)

where y is the class label and takes value zero for Sy and one
for §1.ay € R are arbitrary weights assigned to the examples
from the two classes that will be specified later. The classifier
is obtained minimizing an empirical criterion

N
A 1
L(fw) = % E €y, fw), 12)
i=1

over a suitable class of machine learning models f,,. If such
a models class is sufficiently rich, in the large sample limit
we would recover a minimizer of the expected risk

L(f) = / £, F)dp(x, ¥), (13)

where p(x, y) is the joint data distribution. By a standard
computation (see Appendix A), the function minimizing the
expected risk in Eq. (13) can be shown to be

plx) a;

— 1, 14
Og(p<0|x>ao) (o
that, by Bayes theorem and Eq. (4), we can rewrite as
* _ p(x|1) &a_l)

fo= (p(x|0> p(0) ao

) (n(XIl)N(O) p(l)a1>

= log .

fre) =

15)
n(x|0) N(1) p(0) ag
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From the above expression and choosing the weights so that

ai _ NO) p(©)
ap N p(1)’

Eq. (14) reduces to Eq. (9), as desired. In practice, the
above condition can be satisfied only approximately, since it
depends on quantities we do not know. Hence, we first esti-
mate the class priors using the empirical class frequencies,

p(y) ~ Ny /N with N' = Ny + N and obtain

ap _ar _ NNy
ap dap  NOYN'
Then, we approximate the number of expected events in the
alternative hypothesis with the actual number of experimen-
tal measurements N (1) &~ A/j.! The following expression of
the weights can then be used in practice,
a N

ao  N(@)'

To reconstruct the test statistics in Eq. (6), the number of
expected events in the alternative hypothesis needs to be com-
puted. Using the density ratio in Eq. (9), we have that

(16)

a7

(18)

Nw(l)zfnw(xll)dx:/n(_x|0)efw(x)dx,

19
Ny (x[1) — pfu® (19)

n(x|0)

Since the reference distribution n(x|0) is not known analyt-
ically, we can estimate the above expression using a Monte
Carlo approximation considering

Ny (1) & %g) Z efw®) (20)

xES()

Using Eq. (20), the test statistics in Eq. (6) can be written as

N () S
(S0 = =2 | = 30 (B 1) = 3 fao) | @D

XES() x€S|

recovering the original result from Ref. [1].

The main conceptual difference with respect to the orig-
inal solution in Ref. [1] lays on the computation of the test
statistic. When using the loss in Eq. (8) the test statistic can
be directly obtained from the value of the loss function at the
end of the training. When using the cross-entropy loss, each
term of the log-likelihood-ratio test is calculated separately
and then combined, see Eq. (21). This could be a problem if
the optimality of the minimization procedure is not ensured.
More precisely, in the first case the minimum found at the
end of the training is by construction the one maximizing the
log-likelihood-ratio test, while this is guaranteed only in the
asymptotic limit in the second case. On the other hand, as

' This is exact on average, since N ~ Pois(N(1)).
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noted before, the loss function in Eq. (8) is less well behaved
from a mathematical standpoint, making optimization dur-
ing training less trivial. Interestingly, both loss functions are
designed to estimate the same density ratio, and in practice
we show that they obtain comparable performances in terms
of sensitivity to new physics.

We conclude noting that the value of the test statistic
t3(S1) is a random variable itself following a distribution
p(t|H). The level of significance associated to a value of the
test statistic is computed as a p-value of the test statistic with
respect to its distribution under the null hypothesis

oo
ps, =/ p(|0)dr. (22)
1(S1)

This can be further rewritten as a Z-score
Zops(S1) = @7 (1 = pg,). (23)

where ®~! is the quantile of a Normal distribution. In this
way Z,ps 1S expressed in units of standard deviations. Fol-
lowing Ref. [1], by leveraging the possibility to sample from
the reference distribution, we choose to reconstruct p(¢|0)
by estimating the likelihood ratio test statistics on a num-
ber N,y of toy experiments run on pseudo datasets extracted
from the reference sample. The latters have the same statistics
of the actual data but do not have any genuine new physics
component.

Class imbalance. To accurately represent the reference dis-
tribution, it is preferable to consider a large reference sample,
while the number of experimental samples is determined by
the parameters of the experiment, specifically its luminos-
ity. This leads to an imbalanced classification problem and
a natural approach is to re-weight the loss using the inverse
class frequencies N, (see for instance, Ref. [42]). The true
number of expected events differ from the number of events
in the reference hypothesis by the number of expected new
physics events, i.e., N(1) = N(0) + N(S). Then, one has
that N7 ~ Pois(N(0) + N(S)). From both the experimen-
tal and theoretical points of view, it is reasonable to assume
that N(S) <« N(0). Therefore, one has that A; ~ N(0).
Hence, by using the weight in Eq. (18), besides recovering the
desired target function, we solve potential issues related with
an imbalanced dataset, while keeping the statistical advan-
tage of having a large reference sample.

2.2 Analysis strategy

The complete analysis strategy can be summarized in three
steps:

e the test statistic distribution is empirically built by run-
ning the training on N;,, = O(100) toy experiments for
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which both the training sample S; and Sy are generated
according to the null hypothesis.

e One last training is performed on the dataset of interest
S1 for which the true underlying hypothesis is unknown
and the test statistic value #(S7) is evaluated.

e The p-value corresponding to 7(Sy) is computed with
respect to the test statistic distribution under the null
hypothesis, studied at step 1.

If a statistically significant deviation from the reference data
is found, the nature of the discrepancy can be further char-
acterized by inspecting the learned density ratio in Eq. (9).
This quantity is expected to be approximately zero if no dis-
agreement is found and it can be inspected as a function of
the input features or their combinations.

Asymptotic formula Typically, for an accurate estimation
of p(¢|0), the empirical distribution of the test statistic under
the reference hypothesis has to be reconstructed using a large
number of toy experiments and this might be practically
unfeasible. If the value of 7(S;) falls outside of the range
of the empirical distribution the p-value cannot be computed
and only a lower bound can be set. Inspired by the results
by Wald and Wilks [43-45] characterizing the asymptotic
behavior of the log-likelihood test statistics, we approximate
the null distribution with a x 2 distribution. We use the toy-
based empirical estimate to determine the degrees of free-
dom of the x? distribution and we test the compatibility of
the empirical test statistic distribution with the x2 hypoth-
esis using a Kolmogorov—Smirnov test. This approximation
holds well in almost all instances of our model. We did not
explore this aspect in details but we present a counterexample
towards the end of Sect. 4. The same approximation is also
used in the neural network model of [1,16]. It is worth spec-
ifying that, in real-life scenarios, if the p-value computed in
this way would imply a discovery, one would run additional
toys to obtain an accurate empirical estimation by brute-force
exploitation of the large-scale computing resources typically
accessible by the LHC collaborations.

3 Scalable nonparametric learning with kernels
As mentioned before, a rich model class is needed to effec-

tively detect new physics clues in the data. In this work, we
consider kernel methods [40,46] of the form

N
fu ) =" wiky (x, x;). (24)
i=1

Here k, (x, x;) is the kernel function and y some hyper-
parameter. In our experiments, we consider the Gaussian ker-

nel
ko (6, x') = e~ IF=¥IF207 (25)

so that f, corresponds to a linear combination of Gaussians
of prescribed width y, centered at the input points. Such
an approach is called nonparametric because the number of
parameters corresponds to the number of data points: the
more the data, the more the parameters. Indeed, this makes
kernel methods universal in the large sample limit, in the
sense that they can recover any continuous function [47,48].
The computational complexity to determine a function as in
Eq. (24) is typically cubic in time and quadratic in space
with respect to the number of points, since it requires han-
dling the kernel matrix Ky € RN XN with entries ky (xi, x;j)
(see Refs. [40,49] for further details). These costs prevent
the application of basic solvers in large-scale setting, and
some approximation is needed. Towards this end we con-
sider Falkon [40], which replaces Eq. (24) by

M
fu) =Y wiko (x, %), (26)
i=1

where {X{,...,xXy} C {x1,...,xn} are called Nystrom
centers and are sampled uniformly at random from the input
data, with M an hyper-parameter to be chosem. Notably, the
corresponding solution can be shown to be with high proba-
bility as accurate as the original exact one while computable
with only a small fraction of computational resources [50-
55]. We defer further details to the appendices.

Algorithm training The model’s weights in Eq. (26) are
computed to minimize the empirical error (12) defined by
the weighted cross-entropy loss introduced before. Since, the
kernel model can be very rich, the search of the best model
is done considering

L(fu) + AR (fu), 27)

where the first term is the empirical risk, while R(f) is a
regularization term

R(fu) =Y wiwjky (x;, x)). (28)
ij

constraining the complexity of the model [56]. Problem (27)

is then solved by an approximate Newton iteration [40].

Hyper-parameters tuning The number of Nystrom centers
(M), the bandwidth of the Gaussian kernel o and the regu-
larization parameter A are the main hyper-parameters of the
model. The number of centers M determines the number of
Gaussians, hence it has an impact on the accuracy and on the
computational cost; studies suggests that optimal statistical
bounds can be achieved already with M = OVN) [53,57].
On the other hand, by varying the hyper-parameters o and
A, more or less complex functions can be selected. For large

@ Springer
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A or o the model simplifies and tends to be linear, while for
small values it tends to fit the statistical fluctuations in the
data.

The values of M, o and A affect the distribution of the
test statistic under the reference hypothesis. In particular we
observe that the test statistic distribution obtained with dif-
ferent choices of the hyper-parameters always fits a x 2 dis-
tribution with a number of degrees of freedom determined
empirically as explained in Sect. 2.2. More complex func-
tions cause the distribution of the test statistic to move to
higher values (see Fig. 10a).

On the M direction, a stable configuration is eventually
reached and this information can be used to select a proper
trade-off value for M (see for instance Fig. 10); conversely
there is not clear indication on how to choose the values of
o and A. The bandwidth o is related to the resolution of the
model and its ability to fit statistical fluctuations in the data.
To estimate the relevant scales of the problem and find a good
trade-off between complexity and smoothness, we look at the
distribution of the pairwise (Euclidean) distance in the refer-
ence data. We then fix o approximately as the 90th percentile
(see Appendix C and Fig. 14 for further details). Finally, A
determines the weight of the penalty term in the loss function,
which constraint the magnitude of the trainable weights, and
avoid instabilities during the training. We take A as small as
possible so that the impact on the weight magnitude is min-
imum, while maintaining the algorithm numerically stable.

Summarizing, the hyper-parameter tuning protocol is
composed by the following three steps:

e We consider a number of centers greater or equal to /A,
with the criteria that more centers could improve accu-
racy but at the cost of losing efficiency.

e We then fix o approximately as its 90th percentile of the
pairwise distance distribution.

e Wetake A as small as possible while maintaining a numer-
ically stable algorithm.

Note that we consider the algorithm numerically unsta-
ble either when the training fails to converge or when the
test statistics evaluates to NaN. Similarly to the tuning pro-
cedure introduced in Ref. [16] for the neural networks, the
outlined directives for hyper-parameters selection rely on the
reference data alone, preserving model-independence.

We tested this heuristic performing several experiments
on the toy scenario presented in Appendix C. In particular,
we verified that it gives rise to instances that demonstrate
good performances, in terms of sensitivity to new physics
clues, across different types of signal. We also verified that
the results are robust against small variations of the chosen
hyper-parameters. When applied to the final experiments pre-
sented in the following section, we followed the prescription
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given above without any fine tuning that might introduce a
bias that favors the specific dataset considered.

Assessing the algorithm performances Following Ref. [1],
in order to evaluate different models on benchmark cases it is
useful to introduce the ideal significance Z;;., i.e., the value
of the median Z-score that is obtained by using the exact
(ideal) likelihood ratio test statistics:

L(, 1)
L(-,0)
Typically, this quantity cannot be computed exactly since
the likelihoods are not known analytically. We can however
obtain an accurate estimate Zid using simulated data and
model-dependent analyses that leverage what is known about

the type of new physics in the data. We will report how Zia
has been computed for every experiment.

tia(-) = —2log (29)

4 Experiments

In this section, we apply the proposed approach to three real-
istic simulated high energy physics datasets with an increas-
ing number of dimensions. Each dataset is made of two
classes: a reference class, containing events following the
Standard Model, and a data class, made of reference events
with the injection of a new physics signal. Each case includes
a set of features given by kinematical variables as measured
by the particle detectors (plus additional quantities when
available, such as reconstructed missing momenta and b-
tagging information) that we call low-level features. From
the knowledge of the intermediate physics processes, one
can compute additional high-level features that are functions
of low-level ones and posses a higher discriminative power.>
The different features are used to test the flexibility of the
model. The pipeline for training and tuning our method is
that described in Sect. 3.

4.1 Datasets

Here, we briefly review some properties of the datasets, how
Ziq is computed and the parameters chosen for the experi-
ments. We refer the reader to Ref. [16,58] for further details.

DIMUON This is a five dimensional simulated dataset that
was introduced in Ref. [16] and it is composed of simu-
lated LHC collision events producing two muons in the final
state pp — T, at a center-of-mass energy of 13 TeV.3
The low-level features are the transverse momenta and pseu-
dorapidities of the two muons and their relative azimuthal
angle, i.e., x = [pr1, pr2, 11, N2, A¢]. We consider two

2 We borrow this nomenclature from Ref. [58].
3 Data available at https://zenodo.org/record/4442665.
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DIMUON (5d) - mz = 300 Gev, N(S) = 40

HIGGS (21d) - N(S) = 2500
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Fig. 1 Distribution of the test statistics under the null and alternative hypotheses for the DIMUON (left) and HIGGS (right) datasets

types of new physics contributions: the first one is a new
vector boson (Z') for which we study different mass values
(mz = 200, 300 and 600 GeV); the second one is instead
a non-resonant signal obtained by adding a four fermions
contact interaction to the Standard Model lagrangian

cw
—~in I, (30)

where J f , is the SU(2);, Standard Model current, the energy
scale A is fixed at 1 TeV and the Wilson coefficient cy deter-
mining the coupling strength can be chosen between three
values (cy = 1, 1.2 and 1.5 TeV~2). For both types of signal
the invariant mass of the two muons is the most discriminant
non trivial combination of the kinematic variables describing
the system so we consider it as a high-level feature. We fix
N(0) = 2 x 10* expected events in the reference hypothesis
and the size of the reference sample is Ny = 10°, unless
specified otherwise. We vary the number of expected signal
events in therange N (S) € [6, 80]. We selected the following
hyper-parameters: (M, o, A) = (2 X 104, 3, 10’6).

Following Ref. [16], the ideal significance is estimated via
a cut-and-count strategy in the invariant mass mgy distribu-
tion around mz for the resonant signal, while a likelihood
ratio test on the binned m ¢, distribution is used for the non-
resonant case.

SUSY The SUSY dataset [58] is composed of simulated LHC
collision events in which the final state is made of two charged
leptons £¢ and missing momentum.* The latter is given, in the
Standard Model, by two neutrinos coming from the fully lep-
tonic decay of the two W bosons. The new physics scenario
also includes the decay of a pair of electrically charged super-
symmetric particles ¥ * in two neutral supersymmetric parti-
cles x°%°, undetectable and thus contributing to the missing
transverse momentum, and two W bosons. The dataset has 8
raw features and 10 high-level features.

4 Data available at https://archive.ics.uci.edu/ml/datasets/SUSY.

Unless specified differently, we take N(0) = 10° and
Ny = 5 x 10° and we vary the signal component in N (S) €
[200, 650]. We selected the following hyper-parameters:
(M, o, %) = (10*,4.5,107°) when using the raw features,
increasing o to 5 when the high-level features are included.

The ideal significance is estimated by training a super-
vised classifier to discriminate between background and sig-
nal with a total of 2M examples, following the approach in
Ref. [58]. The significance is then estimated by a cut-and-
count analysis on the classifier output.

HIGGS The HIGGS dataset [58] is made of simulated events
in which the signal is given by the production of heavy Higgs
bosons H > The final state is given by a pair of vector bosons
WEWF and two bottom quarks bb for both the reference and
the signal components. The dataset has 21 raw features and
7 high-level features.

Unless specified differently, we choose N(0) = 109,
No = 5 x 10° and we vary the signal component in N (S) €
[1000, 2500]. We take the following hyper-parameters:

(M, o,2) = (10*,7, 107%) when using the raw features and
o = 7.5 when the high-level features are included.

The ideal significance is estimated as in the previous case
by using the output of a supervised classifier trained to sepa-
rate signal from background (again, following the approach
in Ref. [58]).

4.2 Results

Sensitivity to new physics We discuss here the sensitivity of
the model to the presence of new physics signals in the data.
The test statistic distribution under the reference hypothesis
is empirically reconstructed using 300 toy experiments while
100 toys are used to reconstruct the distribution of the test
statistic under the alternative new physics scenarios (see two
instances in Fig. 1). We show in Fig. 2 the median observed
significance against the estimated ideal significance with

3 Data available at https://archive.ics.uci.edu/ml/datasets/HIGGS.
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DIMUON (Sd) 7 @ SUSY (8d), N(S)=200,350,500,650
5 @ mz=200Gev, N(S) =40, 60, 80 6 B HIGGS (21d), N(S)=1000,1500,2000,2500
mz =300Gev, N(S) = 20, 30, 40
41 ® mz=600Gev,N(S)=6,10,15 5]
B c.=1.0,12,15Tev 2 N(S)=41,41,53
34 PE
%)

i

Zig
(b)

Fig. 2 Observed significance against estimated ideal significance with low-level input features

Falkon trained on low-level features only. These experiments
were performed by varying the signal fraction N (S)/N(0)
(at fixed luminosity) and the type of signal (the latter in the
DIMOUN case only). The error bars represent the 68% con-
fidence interval. As expected for a model-independent strat-
egy, the observed significance is always lower than what
obtainable with a model-dependent approach. The loss of
sensitivity is more pronounced in higher dimensions. Nev-
ertheless, we observe in all cases a correlation between the
observed and the ideal significance. In the DIMUON case,
the observe significance seems to depend weakly on the type
of new physics signal. In Fig. 3, we show explicitly, for the
7’ new physics with mz = 300 GeV, the estimated proba-
bilities to find a discrepancy of at least « for a given value
of Zig. Similar results are obtained with the other types of
signal. To test the ability of the kernel-based approach to
extract useful information from data, we show in Fig. 4 that
adding the high-level features does not significantly improve
the results, especially in higher dimensions. The plot includes

DIMUON - mz = 300Gev, 15 =N(S) =85

oa=20
~¥— a=30
~— a=50

1.04

0.8

0.6 1

P(a)

0.41

0.2

0.01

Fig. 3 Probability of finding a « = 20, 30, 50 evidence for new
physics as a function of the ideal significance
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the observed significance, with the bar showing the 68% con-

fidence interval and the grey area representing the region
Z(all) — Z(low»level) to

obs obs

Comparison with neural networks To compare the kernel-
based approach with the neural network implementation,
we considered the results from Ref. [16] for the DIMUON
dataset, while we trained the latter on the SUSY and the
HIGGS datasets. The considered neural network has 2 hid-
den layer with 10 neurons each and a weight clipping of
welip = 0.87 for SUSY, while it has 5 layers with 6 neurons
each layer and wcj;p, = 0.65 for HIGGS. Training is stopped
after 3 x 10° epochs. The results are summarized in Figs. 4
and 5. We see that, overall, the two approaches give similar
results and the degradation of the sensitivity in high dimen-
sions affects both. We notice that in the DIMUON case, the
kernel approach is slightly less sensitive, as it can be seen
from the results presented in Section 5 of Ref. [16] against
Figs. 2a and 3. However, by looking at Fig. 5 we see that,
for the HIGGS dataset, the kernel approach gives a higher
observed significance while, for the SUSY dataset, the two
methods give almost identical results. On the other hand,
the average training times, summarized in Table 1, demon-
strate an advantage in favor of the kernel approach of orders
of magnitude. This also allows efficient training on single
GPU machines and ensures high scalability for multi-GPU
systems, as shown in Ref. [40].

As an example, one would need approximately 10° toys
for a 3 sigma assessment purely based on toys. Considering
the worst case for the kernel approach, which is the DIMUON
dataset, this requires about 4.5 x 10* sec of computing time
for the kernel approach, if toys are processed in series. On a
cluster of CPUs that permits the simultaneous training of 300
toys, the neural network model requires about 5 x 10* sec.
This estimate does not take into account the multiple train-
ings needed for hyper-parameter tuning and model selection.
Alternatively, one can assess the compatibility of the distribu-
tion of the test statistics with a x> asymptotic distribution, in
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Fig. 4 Comparison of the observed significance obtained with Falkon using low level features only and all the features

Fig. 5 Observed significance

SUSY (8d)

HIGGS (21d)

with the Falkon implementation
against neural networks

(NN)
obs

z
N

5 (FLK)
Zobs

analogy to what is done at the LHC in the asymptotic regime
of the LHC test statistics, with a smaller number of toys, say
100. In this case the kernel approach takes about 4.5 x 10 sec
while the neural network model requires about 1.4 x 10* sec.
It is also worth noticing that in our experiments, although the
training of neural networks is faster on GPUs, the speedup
obtained by processing toys in parallel on a large number of
CPUs wins over the slowdown factor. Ideally, training on a
large number of GPUs would be better, however this option
was not available at the computing facility where this study
was performed.

Learned density ratio As discussed in Sect. 2, the function
approximated by using the weighted cross-entropy loss is
the density ratio given in Eq. (9). The latter can be directly
inspected to characterize the nature of the “anomalies” in the
experimental data, if found significant. We report in Fig. 6
examples of the reconstructed density ratios as functions of
certain high-level features (not given as inputs) together with
estimates of the true ratios and extrapolations from the data
used for training. The learned density ratio is constructed by
re-weighting the relevant high-level feature of the reference
sample by e/ ™) (evaluated on the reference training data),
binning it and taking the ratio with the same binned reference

a5 & 7 o 0 I 3 a
2430

sample (unweighted). The toy density ratio is computed by

replacing the numerator with the binned distribution of the

high-level feature of the toy data sample. The ideal case is

obtained in the same way but using alarge (> 1M) data sample
instead.

Size of the reference sample A larger reference sample
yields a better representation of the reference model, which
is crucial for a model-independent search. In Fig. 7a, we see
that as long as Ny/N(0) = 1, the median observed signifi-
cance is indeed stable. On the other hand, when the reference
sample is too small (My/N(0) < 1), we observe that the
correspondence between the distribution of the test statistics
and the 2 distribution breaks down, see Fig. 7b. We observe
this behavior for all the datasets. Then, it is in general a good
approach to take a reference sample as large as possible keep-
ing in consideration the computational cost of training on a
possibly very large dataset.

Resources The models based on Falkon have been trained
on a server with the specifications reported in Table 2. The
NN experiments have been performed on a CPU farm with
32 computing nodes of Intel 64 bit dual processors, for a total
amount of 712 core. The codes to reproduce the experiments

@ Springer
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Table 1 Average training times per single run with standard deviations (low level features and reference toys). Note that time measured in hours

(for NN) and seconds (for Falkon)

Model DIMUON SUSY HIGGS
FLK (449 +34)s (182 +1.2) s 22.7+04)s
NN 4.23+£0.73)h (73.1 £10) h (112+9)h
Bold values indicate the lowest for each column (lower is better)
Signal reconstruction Signal reconstruction
101
—e— Toy 1.084 —*— Toy /
—e— Learned —e— Learned
81 Ideal Ideal
—_ —~ 1.06-
o =]
X ¢ X
§ ,% 1.044
=, —
x X
c S 102
24 /
N \ 1.00 V’{
0 200 400 600 800 0.0 05 10 15 2.0 25 30 35
my(GeV) Mg

Fig. 6 Examples of reconstructed density ratios as a functions of high-level features (not given as inputs) for the DIMUON (left) and SUSY (right)
datasets with new physics components in the data. Note that the SUSY dataset is normalized

Susy (8d) - No/N(0) = 0.5, N(0) = 20000

SUSY (8d) - N(0) = 100k, N(S) =350

0.010

<Zops >
; Zobs

0.008

0.006

P(t)

0.004

—— x%(660)
[1 Reference

16

0.002

700

Fig. 7 Observed significance as a function of the size of the reference sample (left). Example of distribution of the test statistics given a small

reference sample (right)

are available at https://github.com/GaiaGrosso/Learning_
NP and https://github.com/FalkonHEP/falkonhep.

5 Conclusions

In this work we have presented a machine learning approach
for model-independent searches applying kernel-based machine
learning models to the ideas introduced in Ref. [1,16]. Our
approach is powered at its core by Falkon, a recent library

@ Springer

developed for large scale applications of kernel methods. The
focus of our work is on computational efficiency. Indeed, the
original neural network proposal suffers from long training
times which, combined with a toy-based hypothesis testing
framework, makes the use of the algorithm challenging in
high dimensional cases. Our model delivers comparable per-
formances with a dramatic reduction in training times, as
shown in Table 1. As a consequence, the model can be effi-
ciently trained on single GPU machines while possessing
high scalability for multi-GPU systems [40]. In contrast, the
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Table 2 Specifications of the machine used to perform the experiments with Falkon

(ON

CPU(s)

RAM

GPU(s)
CUDA version

Ubuntu 18.04.1

2x Intel(R) Xeon(R) Silver 4116 CPU
256GB

2x NVIDIA Titan Xp (12 GB RAM)
10.2

neural network implementation crucially relies on per toy
parallelization, hence the need for large scale resources such
as CPU/GPU clusters.

Similarly to Ref. [16], the applicability of the proposed
method relies on a heuristic procedure to tune the algo-
rithm hyper-parameters. A more in-depth understanding of
the interplay between the expressibility of the model, its
complexity and the topology of the input dataset could lead
to more performant and better motivated alternatives to the
current hyper-parameter selection. Further investigations are
left for future work. One possibility would be to find a more
principled way to relate Falkon hyper-parameters to physical
quantities. This could also allow the introduction of explicit
quantities to be optimized, opening to the possibility of apply-
ing modern optimization techniques for the selection of the
hyper-parameters.

Besides the challenges related to the algorithm optimiza-
tion and regularization, an essential development for the
application to realistic data analysis concerns the treatment
of systematic uncertainties which has not been considered
in the present work. This aspect was successfully addressed
on a recent work [41] in the context of the neural network
implementation.

A crucial step towards the understanding of this approach,
both in its neural network and kernel-based implementations,
would be an in-depth comparison with similar approaches
based on typical classifiers’ metrics, such as classification
accuracy and AUC. Preliminary results suggest that the strat-
egy based on the maximum likelihood-ratio test, presented
in Ref. [1] and further explored in this work, delivers better
performances across several types of new physics scenarios.
An extended analysis will be presented elsewhere.

Finally, the boost in efficiency provided by the model
developed in this work could extend the landscape of appli-
cability of this analysis strategy to other use cases, beyond
the search for new physics, and to other domains. In partic-
ular, the application to multivariate data quality monitoring
in real time is currently under study.
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Appendices
A Loss functions and target functions

Different loss functions determine different goals via an
associated target function f*. This is the function learned by
the model in the large-sample limit and it can be computed,
given aloss function £(y, f(x)), by considering the expected
risk

L(f) = / £, £ dp(x, ), 31)

where p(x, y) is the true joint distribution. It can be further
rewritten as

L(f) =/K(y,f(X))p(x,y)dxdy
(32)

- / p(x) dx / . F() p(oylx) dy.

@ Springer


https://zenodo.org/record/4442665#.YAGiaC9h23I
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/HIGGS
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

879 Page 12 of 16

Eur. Phys. J. C (2022) 82:879

One can then find the minimizer simply as

fr =argminf€R/£(y,f(x)) pOylx)dy, Vx, (33)

with p(x)p(y|x) = p(x,y). In the case of the weighted
cross-entropy loss, one has

€y, f(x) =ag (1 — y)log (1 T ef(x))

+ay ylog (1 + ff(x)) . (34)

with y = {0, 1}. One then simply takes the derivative and
sets it equal to zero, obtaining the following minimizer

p(llx) ay

S=le o an”

(35)

B Falkon

In this appendix, we provide more details on Falkon [40], the
algorithm powering our model. The original library includes
an implementation based on the square loss, which we do not
discuss here. The core ideas from a theoretical and algorith-
mic viewpoint are developed in Ref. [49,57,59].

The problem of minimizing the regularized empirical risk
in Eq. (27) is formulated in terms of an approximate Newton
method (see Algorithm 2 of Ref. [40]) The model is based
on the Nystrom approximation, which is used twice. First to
reduce the size of the problem, by considering solutions of
the form shown in Eq. (26). Then, it is again used to derive
an approximate Newton step. At every step, preconditioned
conjugate gradient descent is run for a limited number of iter-
ations with a decreasing sequence of regularization parame-
ters A, down to the desired regularization level. We choose
k = 1 in our experiments, as we did not observe any benefit
in selecting more values. The preconditioner plays here the
role of approximate Hessian. Given (x;, y,-)l’.":1 selected uni-
formly at random from the dataset and let 7" be the Cholesky
decomposition of K,,,, then the approximate Hessian H has
the form

- 1 ~
H=—TD{TT + M, (36)
m

Gaussian in the tail

Gaussian in the bulk

where Dy € R is a diagonal matrix s.t. the i-th element is
the second derivative of the loss £”(y;, f(x;),) with respect
to the first variable. To preserve efficiency, this matrix is never
built explicitly but we build it in terms of Cholesky decom-
position: let A be the Cholesky decomposition of Eq. (36),
we compute
p=71"'A"" A '=PPT.

Then conjugate gradient is applied to solve the precondi-
tioned problem at time k

PT(KJkaKnnl +)\kI)P:3 = PTKI;rmgk’

where g € R” such that (gr); = I'(f(x;), y;). With this
strategy, the overall computational cost to achieve optimal
statistical bounds is O(n/nlogn) in time, and in O(n) in
memory, making it suitable for large scale problems.

C 1D example

We consider here a simple univariate toy scenario taken from
Ref. [1]. We use this example to present explicitly all the steps
discussed in Sects. 2 and 3.

Data. We know here explicitly both the reference and the true
data generating distributions. The former is an exponential
n(x]0) = N(0) 8 e 5. (37)
The latter is given by the reference distribution combined
with a signal component and reads as

n(x|1l) = n(x]0) + n(x|S)

(38)
= N(0)p(x]0) + N(S) p(x]9),

where p(x|S) is the distribution of the signal alone and N (S)
is the expected number of signal events. We consider three
types of signals, two that are localized in a region of the input
feature (resonant) and one that is not (non-resonant). They
are given by the following expressions (see also Fig. 8):

Non-resonant

—— Reference
Data

104 4

10 4

—— Reference
Data

—— Reference
Data

1044

0.6 0.8 1.0 0.0 0.2

X

0.0 0.2 0.4

Fig. 8 True univariate densities
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Fig. 9 Euclidean pairwise distance

e A Gaussian distribution centered in the tail of the expo-
nential background

1 2 a
n(x[Sy) = N(Sl)—e(X—M) /20 ,
V2mo (39)

1 =08, o=0.02, N(S1) =10,
e A Gaussian distribution centered in the bulk of the expo-
nential background

1 292
n(x]S2) = N(Sp) ——=—e"712"/27",
V2o (40)
w2 =02, o =002 N(S) =90,
e A non-resonant signal given by
n(x|S3) = N(S3)256x%e%,  N(S3) = 90. (41)

We select a large reference sample of size Ny = 2 x 107
and an expected number of background events N (0) = 2 x
103. The size of the data sample is then N7 ~ Pois(N(y)),

134

—— 0=0.3,A=1071°

71 —— 0=0.2,A=10"10
64 —— 0=0.3,A=10"8
6 560 10‘00 15b0 20‘00 25‘00 3600
M
(a)

1.3850 |10

1.3848 1

1.3846

1.3844

Avg loss

1.3842 A

Avg test statistics

1.3840

1.3838 - . . . , .
4 8 12 16 20
CG iterations

Fig. 11 Average loss and test statistics as functions of the number of
conjugate gradient iterations (reference toys)

with N(1) = N(0)+ N (S) when the data sample is generated
according to the true data distribution.

Model tuning In Fig. 9 we show the distribution of the
pairwise distances from which we select the bandwidth as
approximately the 90th percentile. In this case, it corresponds
too &~ 0.3.

In Fig. 10a we show that the test statistics averaged over
twenty independent runs (with reference data only) reaches
a plateau at M ~ 500 ~ /Nj. This suggests that the esti-
mated distribution of the test statistics under the null hypoth-
esis does not change if more centers are selected. On the other
hand, larger values of M might increase the sensitivity of the
model to new physics, at the expense of efficiency in training
times and memory. By looking at the average training time,
as reported for instance in Fig. 10b, we fix M = 3000. Fig-
ure 10a also shows that the value of the test statistics increases
for more complex models (smaller o and/or 1). Finally, we
take A = 107 !0 because the training would show occasional
instabilities at smaller values. In Fig. 11, we show the average
loss and test statistics as functions of the conjugate gradient
iterations of the algorithm.

0=0.3,A=1071°

w
)
——

@ 251
22 II
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Fig. 10 a Average test statistics as a function of the number of Nystrom centers. b Average training time as a function of the number of Nystrom

centers

@ Springer



879 Page 14 of 16

Eur. Phys. J. C (2022) 82:879

0.12 _— )(2(9-58)
[ Reference
[ Data

tobs: 28.44
=) Zops: 3.04
o 0.06

Empirical p-values

0.0 0.2 0.4 0.6 0.8

x? p-values

(a) Distribution of the test statistics under the null (b) Empirical and X2 null djstributions’ integrated

and alternative hypotheses (non-resonant signal).

to p-values.

Fig. 12 a Distribution of the test statistics under the null and alternative hypotheses (non-resonant signal). b Empirical and x 2 null distributions,

integrated to p-values

Signal Reconstruction

Ideal
2504 — Learned
e Toy

0.2 0.4 0.6 0.8
X

Signal Reconstruction

Ideal

8 { —— Learned
e Toy
—~ 6
=3
X
=
c
=
= 4]
X
C

0.2 0.4 0.6 0.8

Fig. 13 Reconstructed density ratios. Non-resonant signal (left) and Gaussian in the tail (right)

Model training and results We first reconstruct the distri-
bution of the test statistics under the null hypothesis p(z]0).
We train the algorithm on N,y = 300 toy reference samples
(N(S) = 0). In this simple scenario, we use our complete
knowledge of the problem to reconstruct the distribution of
the test statistics under the alternative hypothesis p(¢|1) by
performing multiple experiments with N;,ys = 100 toy data
samples with injection of new physics events. The recon-
structed distribution for the non-resonant case is shown in
Fig. 12a. We can see from Fig. 12b that the test statistics with
reference data follows a x2 distribution with 9.58 degrees
of freedom (determined with a Kolmogorov—Smironov test).
The median observed significance for the three cases is
Zops = (2.43,2.82,3.04). The average training time for a
single reference toy is t;,4i, ~ 2.11s. In this case we can
compute the ideal test statistics exactly using the true distri-
butions as follows

@ Springer

. S n(x|S)
tia(S) = 2[ N(S)+Zlog(1+n(x|0))} 42)

xes

This quantity is then evaluated on a large number (10M) of
reference examples to accurately reconstruct p(¢|0) and on
300 data samples for each type of signal. This was done in
Ref. [1] and the resulting values are Z,-d =(4.7,4.1,44).In
this examples, we lose approximately 1.60 of sensitivity on
average.

We can also inspect the learned density ratio to charac-
terize the potential new physics clues. In this 1D case, this
amounts to simply look at where exp( f;; (x)) deviates signif-
icantly from one. We show some examples in Fig. 13. They
are obtained by showing the ideal (exact) likelihood ratio,
the ratio between the (binned) toy and reference samples and
the learned functions.
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Fig. 14 Observed significance at varying kernel bandwidth

Finally, Fig. 14 shows that the results are stable around

the selected bandwidth o across the different types of new
physics signals.
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