

Learning Node Replacement Graph
Grammars in Metabolic Pathways

Jacek P. Kukluk

Dept. of Computer Science and Engineering

University of Texas at Arlington
Jkukluk@gmail.com

Chang Hun You, Lawrence B. Holder,
and Diane J. Cook

School of Electrical Engineering and Computer Science
Washington State University

changhun@wsu.edu, holder@wsu.edu, cook@eecs.wsu.edu

Abstract— This paper describes graph-based relational,
unsupervised learning algorithm to infer node replacement
graph grammar and its application to metabolic pathways.
We search for frequent subgraphs and then check for overlap
among the instances of the subgraphs in the input graph. If
subgraphs overlap by one node, we propose a node
replacement graph grammar production. We also can infer a
hierarchy of productions by compressing portions of a graph
described by a production and then inferring new productions
on the compressed graph. We show learning curves and how
the learning process changes when we increase the size of a
sample set. We examine how computation time changes with
an increased number of nodes in the input graphs. We
inferred graph grammars from metabolic pathways which do
not change more with increased number of graphs in the input
set. It indicates that graph grammars found represent the
input sets well.

Keywords: Biological Data Mining, Graph Grammars,

Metabolic Pathways

1. Introduction
 A biological network, containing various biomolecules
and their relationships, is a fundamental way to describe
bio-systems. Multi-relational data mining finds the relational
patterns in both the entity attributes and relations in the data.
A graph consisting of vertices and edges between these
vertices is a natural data structure to represent biological
networks. This paper describes graph-based relational,
unsupervised, learning algorithm to infer node replacement
graph grammar and its application to metabolic pathways.
 Genomics and proteomics, main areas in
molecular-level research, have studied the function and
structure of macro molecules in organisms, and produced a
huge amount of results. However, proteins and genes can play
their roles only in harmony with the whole cytoplasmic
environment. Molecular-level understanding is definitely a
fundamental step, but it is not the final step. A biological
organism is a system which is not just composed of various
objects, but also has dynamic and interactive relationships
between them and therefore a systems-level understanding is

important. Relationships in biological networks include
chemical reactions, enzyme activities and signal
transductions. The patterns of these relationships can be
studied with graph grammars and provide better
understanding of biological networks and systems.
 Noam Chomsky [1] pointed out that one of the main
concerns of a linguist is to discover simple grammars for
natural languages and study those grammars with the hope of
finding a general theory of linguistic structure. While string
grammars represent language, we are looking for graph
grammars that represent graph properties and can generalize
these properties from finite graph examples into generators
that can generate an infinite number of graphs. String
grammars can be inferred from a finite number of sentences
and generalize to an infinite number of sentences. Inferring
graph grammars will generalize the knowledge from the
examples into a concise form and generalize to an infinite
number of entities from the domain. A graph grammar can be
the most important feature to distinguish a biological network
from another or can be the common property to group of
several biological networks. Graph grammar can be used as a
rule to construct a new biological network.
 We study the inference of node replacement graph
grammars. We search for frequent subgraphs and then check
for overlap among the instances of the subgraphs in the input
graph. If subgraphs overlap by one node, we propose a node
replacement graph grammar production. We also can infer a
hierarchy of productions by compressing portions of a graph
described by a production and then inferring new productions
on the compressed graph. We validate the approach in
experiments. We show the graph grammars found in
metabolic pathways and analyze learning curves of the
algorithm

2. Metabolic Pathways
 A cellular system is represented by three kinds of
biological networks, such as metabolic pathway,
protein-protein interaction and gene regulatory pathway [10].
Our research is currently focused on the metabolic pathways.
The metabolic pathway is defined as a network of
biochemical reactions catalyzed by enzymes. Biochemical

reaction is a process of interconversion between two
biochemical compounds (substrate and product) catalyzed by
an enzyme. The metabolic pathway is a complex network of
various biochemical processes and their relationships. A
fundamental step to study metabolic pathways is the
identification of structures covering a variety of biomolecules
and their relationships. Dynamics and control methods of
metabolic pathways should be also considered, because
biological systems are interactive and well-controlled
optimized systems. However, our current research is focused
on identifying the structure. Our ultimate goal is to make a
blueprint for systems-level understanding and its application
based on an understanding of the structure, dynamics and
control of a biological network. The KEGG PATHWAY is a
widely known database which contains information on
various kinds of pathways including pathway image files [7].
The KEGG PATHWAY database has 47,141 pathways
generated from 314 reference pathways (on February, 2007).
The KEGG PATHWAY has two types of pathways: reference
pathway and organism-specific pathway. The reference
pathway is a standard pathway which is manually generated
by biologists and biochemists based on accumulated
experimental results. The organism-specific pathway is
automatically generated based on organism-specific genes
and reference pathways. It has five fundamental categories of
pathways: Metabolism, genetic information processing,
environmental information processing, cellular processes and
human diseases. Recently, drug development has been added
as a new category. This database contains not only various
information on pathways, but also plentiful information of
their components as linked databases. It also has the KGML
(KEGG Markup Language) as an exchange format for KEGG
metabolic pathways, based on XML. There are three major
elements in KGML: Entry, Relation and Reaction Entry
represents various biomolecules in the metabolic pathway,
such as enzyme, gene and compound. Relation is a
relationship between two or more enzymes, genes and other
pathways. Reaction is a biochemical reaction between two or
more compounds catalyzed by one or more enzymes. Detailed
information on KGML is described in [8].

3. Related Work
 There are several graph-based data mining approaches
applied to biological networks. Pathway Miner [9], a
graph-mining approach on metabolic pathways, proposes a
simplified graph representation consisting of enzyme
relationships. It allows for avoiding the NP-hard subgraph
isomorphism problem and finding frequent patterns quickly.
Mining coherent dense subgraphs uses correlation of graphs,
which represent biological networks [4]. This approach
compresses a group of graphs into two meta-graphs using
correlated occurrences of edges for efficiently clustering.
This method also deals with the interaction between proteins
and gene products from microarray analysis. Probabilistic

framework [12] builds a Markov model using a graph of
metabolic pathway with microarray data, and estimates
parameters by EM algorithm. This approach finds the
biologically significant paths and patterns from glycolysis
pathway.
 A vast amount of research has been done in inferring
grammars. These analyses focus on string grammars where
symbols appear in a sequence. We are concerned with graph
grammars, which can represent much larger classes of
problems than string grammars. Only a few studies can be
found in graph grammar inference.
 Jeltsch and Kreowski [5] did a theoretical study of
inferring hyperedge replacement graph grammars from
simple undirected, unlabeled graphs. They start the process
from a grammar which has all the sample graphs in its
productions. Then they transform the initial productions into
productions that are more general but can still produce every
graph from the sample graphs.
 Oates, Doshi, and Huang [14] discuss the problem of
inferring probabilities of every grammar rule for stochastic
hyperedge replacement context free graph grammars. They
assume that the grammar is given. Given a structure of a
grammar S and a finite set of graphs E generated by grammar
S, they ask what are the probabilities θ associated with every
rule of the grammar.
 In terms of similarity to string grammar inference we
consider the Sequitur system developed by Nevill-Manning
and Witten [13]. Sequitur infers a hierarchical structure by
replacing substrings based on grammar rules. The new,
compressed string is searched for substrings which can be
described by the grammar rules, and they are then compressed
with the grammar and the process continues iteratively.
Similarly, in our approach we replace the part of a graph
described by the inferred graph grammar with a single node
and we look for grammar rules on the compressed graph and
repeat this process iteratively until the graph is fully
compressed.
 Jonyer et al.’s approach to node-replacement graph
grammar inference [6] starts by finding frequently occurring
subgraphs in the input graphs. They check if isomorphic
instances of the subgraphs that minimize the measure are
connected by one edge. If they are, a production S→ PS is
proposed, where P is the frequent subgraph. P and S are
connected by one edge. Jonyer’s method of testing if
subgraphs are adjacent by one edge limits his grammars to
descriptions of “chains” of isomorphic subgraphs connected
by one edge. Since an edge of a frequent subgraph connecting
it to the other isomorphic subgraph can be included to the
subgraph structure, testing subgraphs for overlap allows us to
propose a class of grammars that have more expressive power
than the graph structures covered by Jonyer’s grammars. For
example, testing for overlap allows us to propose grammars
which can describe tree structures, while Jonyer’s approach
does not allow for tree grammars.

4. Definitions
 We give the definition of a graph and a graph grammar
which is relevant to our approach and the implemented
system. The defined graph has labels on vertices and edges.
Every edge of the graph can be directed or undirected. The
definition of a graph grammar describes the class of grammars
that can be inferred by our approach. We emphasize the role
of recursive productions in the name of the grammar, because
the type of inferred productions are such that the non-terminal
label on the left side of the production appears one or more
times in the node labels of a graph on the right side. This is the
main characteristic of our grammar productions. Our
approach can also infer non-recursive productions. The
embedding mechanism of the grammar consists of connection
instructions. Every connection instruction is a pair of vertices
that indicate where the production graph can connect to itself
in a recursive fashion.

A labeled graph G is a 6-tuple, ()LEVG ,,,,, ηνμ= ,

where
V - is the set of nodes,

VVE ×⊆ - is the set of edges,
LV →:μ - is a function assigning labels to the nodes,

LEv →: - is a function assigning labels to the edges,

}1,0{: →Eη - is a function assigning direction property to

edges (0 if undirected, 1 if directed).
L - is a set of labels on nodes and edges.

A node replacement recursive graph grammar is a tuple
()PGr ,,, ΓΔ∑= , where

∑ - is an alphabet of node labels,
Δ - is an alphabet of terminal node labels, ∑⊆Δ ,
Γ - is an alphabet of edge labels, which are all terminals,
P - is a finite set of productions of the form),,(CGd ,

where Δ−∑∈d , G is a graph, C is an embedding mechanism
with a set of connection instructions, VVC ×⊆ , where V is
the set of nodes of G . A connection instruction Cvv

ji
∈),(

implies that derivation can take place by replacing iv in one

instance of G with jv in another instance of G . All the

edges incident to iv are incident to
j

v . All the edges incident to

j
v remain unchanged.

A substructure S of a graph G is a data structure which
consists of: (1) graph definition of a substructure SG which is a
graph isomorphic to a subgraph of G, (2) list of instances (I1,
I2, …, In) where every instance is a subgraph of G isomorphic
to SG.

A recursive substructure recursiveSub is a data structure
which consists of:

(1) graph definition of a substructure SG which is a graph
isomorphic to a subgraph of G

(2) list of connection instructions which are pairs of integer
numbers describing how instances of the substructure can
overlap to comprise one instance of the corresponding
grammar production rule.

(3) List of recursive instances (IR1, IR2, …, IRn) where every
instance IRk is a subgraph of G. Every instance IRk
consist of one or more isomorphic copies of SG,
overlapping by no more than one vertex in the algorithm
for node graph grammar inference and no more than two
vertices in edge grammar inference.

.
In our definition of a substructure we refer to subgraph

isomorphism. However, in our algorithm we are not solving
the subgraph isomorphism problem. We are using a
polynomial time beam search to discover substructures and
graph isomorphism to collect instances of the substructures.

5. Graph Grammar Inference Algorithm
An example in Figure 1 shows a graph composed of

three overlapping substructures. The algorithm generates
candidate substructures and evaluates them using any one of
the learning biases, which are discussed later. The input to our
algorithm is a labeled graph G which can be one connected
graph or set of graphs. G can have directed or undirected
edges. The algorithm begins by creating a list of substructures
where every substructure is a single node and its instances are
all nodes in the graph with the same node label. Initially, the
best substructure is the node with the most instances. The
substructures are ranked and placed on the expansion queue
Q. It then extends all substructures in Q in all possible ways by
a single edge and a node or only by single edge if both nodes
are already in the graph definition of the substructure. We
keep all extended substructures in newQ. We evaluate
substructures in newQ according to the chosen evaluation
heuristic.

The total number of substructures considered is
determined by the input parameter Limit. The best
substructure identified becomes the right side of the first
grammar production, and the graph G is compressed using this
best substructure. Compression replaces every instance of best
substructure with a single non-terminal node. This node is
labeled with a non-terminal label. The compressed graph is
further processed until it cannot be compressed any more, or
some user-defined stopping condition is reached (maximum
number of productions, for instance). In consecutive iterations
the best substructure can have one or more non-terminal
labels. It allows us to create a hierarchy of grammar
productions. The input parameter Beam specifies the width of
the beam search, that is, the length of Q.

Figure 1: A graph with overlapping substructures and a graph
grammar representation of it.

Recursive productions are identified during the
previously described search process by allowing instances to
grow and overlap. Any two instances are allowed to overlap
by only one vertex. The recursive substructure is evaluated
along with non-recursive substructures and is competing with
non-recursive substructures for placement on Q. Connection
instructions are created by determining which nodes
overlapped across instances. Figure 2 shows an example of a
substructure that is the right side of a recursive rule, along with
its connection instructions [11].

Figure 2: Substructure and its instances while determining
connection instructions (continuation of the example from
Figure 1).

One advantage of our algorithm is its modular design in

which the evaluation of candidate grammar rules is done
separately from the generation of these candidates. The result
is that any evaluation metric can be used to drive the search.
Different evaluation metrics are part of the system and can be
specified as arguments. We have had great success with the
minimum description length (MDL) principle on a wide range
of domains. MDL is an information theoretic approach [15].
The description length of the substructure S given the input
graph G is calculated as DL(S,G) =DL(S)+DL(G|S), where
DL(S) is the description length of the subgraph, and DL(G|S)
is the description length of the input graph compressed by the
subgraph [2][3]. An alternative measure is the size heuristic
which is computed as

()

() ()SGsizeSsize

Gsize

|+

where G is the input graph, S is a substructure and G|S is the
graph derived from G by compressing each instance of S into a
single node. size(t) can be computed simply by summing the
number of nodes and edges: size(t) = vertices(t) + edges(t).
The third measure is called setcover, which is used for concept
learning tasks using sets of disconnected graphs. This measure
maximizes the number of positive examples in which the
grammar production is found while minimizing the number of
such negative examples.

6. Experiments
We perform experiments in two different categories:
1) Different biological networks within species,
In this category we want to find common patterns for an
organism, for instance Salmonella, across different metabolic
pathways of this organism. The patterns will show the
structure that is repeated in many metabolic pathways of the
organism. We can use the inferred grammar understand the
building blocks of pathways and to compare one organism to
another.
2) Different species for a particular biological network.
In this category we want to find common patterns for a
specific process, for instance glycolysis, across different
organisms. The patterns will show the structure that is
repeated in this process across many organisms. We can use
the inferred grammar to understand the building blocks of
processes and to compare one process to another.

We group the graphs into sets which allow us to search
for common recursive patterns which can help to understand
basic building blocks and hierarchical organization of
processes. We analyze the results to evaluate the effectiveness
of the algorithms in this domain.

6.1 The Graph Representation

Our graph representation has three generic vertices, such
as Entry, Relation and Reaction, because we would like to
show the systematic view, like a Relation between two Entries
(gene or protein), or a Reaction between two Entries
(compound) catalyzed by a Entry (enzyme). The graph
representation in Figure 3 has five entries which represent
enzymes or chemical compounds. Each generic vertex has its
own satellite vertices to describe its properties

The biological networks used in our experiments were
from KEGG. We use a graph representation which has labels
on vertices and edges. The label entry represents a molecule, a
molecule group or a pathway. A node labeled entry can be
connected to a node labeled type. The type can be a value of
the set: enzyme, ortholog, gene, group, compound, or map. A
reaction is a process where a material is changed to another
material catalyzed by an enzyme. A reaction, for example, can
have one or more enzyme entries, and one or more
compounds. Labels on edges show relationships between

entities. The meanings are: Rct_to_P : reaction to Product ,
S_to_Rct : substrate to reaction, E_to_Rct : enzyme (gene) to
reaction, E_to_Rel : enzyme to relation, Rel_to_E : relation to
enzyme. Nodes labeled ECrel indicate an enzyme-enzyme
relation meaning that two enzymes catalyze successive
reactions.

Figure 3: The graph representation of a metabolic pathway.

6.2 Error

We use)g,matchCost(21g as a measure of inference error

(distance) between two grammars.)g,matchCost(21g is the

minimal number of operations required to transform 1g to a

graph isomorphic to 2g , or 2g to a graph isomorphic to 1g .

The operations are: insertion of an edge or node, deletion of a
node or an edge, or substitution of a node or edge label.

6.3 Experiments with Sets of Different
Biological Networks

We use ten species in our experiments. The abbreviated
names of the species and their meanings are:
bsu - Bacillus subtilis, ,
sty - Salmonella enterica serovar,
xcc - Xanthomonas campestris pv. campestris,
pto - Picrophilus torridus,
mka - Methanopyrus kandleri,
pho - Pyrococcus horikoshii,
sfx - Shigella flexneri,
efa - Enterococcus faecalis,
bar - Bacillus anthracis

The species we selected randomly from the database.
The number of networks is different for each species. We
wanted to see how our algorithm performs when we increase
sample size of graphs supplied to our inference algorithm. For
this purpose we divided all the networks into 11 sets such that
the last set (11th) has all the species. Set 10 excludes the 11th
portion of all networks. Set 9 excludes 2/11 of all networks
and set 1 has 1/11 of all networks. If all networks in the
species do not divide by 11 evenly we distribute the remaining
networks randomly to the 11 sets.

We would like to compare our inferred grammar from

sets of different sizes to the original, true, ideal grammar
which represents the species. However, such a graph grammar
is not known. In the first experiment we adopted as an original
grammar the grammar inferred from the last set. From each
set we infer four grammar productions which score the highest
in the evaluation. We compute the error (distance) of an
inferred grammar to the grammar inferred from the set with all
networks. The error is the minimal number of edges, vertices,
and labels required to be change or removed to transform the
structure of graph productions from one grammar to the other.
In figures we refer to it as #transformations. In Figure 4 we
show the results of the experiment. Every value in the figure is
an average from three runs. In every run we randomly shuffle
the networks over 11 sets such that sets are different in every
run. The very bottom curve in Figure 4 is the average over 11
table entries. Data in Figure 6 is organized in the same way.

In Figure 5 we show the graph grammar inferred from a
set of thirty and a set of one hundred and ten graphs of
Picrophilus torridus (pto).

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 2 3 4 5 6 7 8 9 10 11

set number

#t
ra

n
sf

o
rm

at
io

n
s bsu

dme

sty

xcc

pto

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5 6 7 8 9 10 11

set number

#t
ra

n
sf

o
rm

at
io

n
s mka

pho

stx

efa

bar

0.0
2.0
4.0
6.0

8.0
10.0
12.0

1 2 3 4 5 6 7 8 9 10 11

set number

#t
ra

n
sf

o
rm

at
io

n
s

Average

Figure 4: Change in inferred grammar measured
in reference to the biggest set in networks of ten
species.

6.4 Experiments with Biological Networks from
Different Species

In this experiment we construct sets of species with the
same biological network. We used ten metabolic pathways in

our experiments. The pathways’ numbers and their meanings
are:
00010 Glycolysis / Gluconeogenesis,
00020 Citrate cycle (TCA cycle),
00030 Pentose phosphate pathway,
00051 Fructose and mannose metabolism,
00061 Fatty acid biosynthesis (path 1),
00401 Novobiocin biosynthesis,
00602 Blood group glycolipid biosynthesis-neolactoseries,
00730 Thiamine metabolism,
00830 Retinol metabolism,
00930 Caprolactam degradation

The first experiment in this section is analogous the first

experiment of the previous section. In this experiment we
examine the change in pathways. We created 11 sets. Set
number 1 has ten networks, set 2 has twenty networks, and so
on. We increase the number of networks in every set by ten
such that the last set 11 has one hundred and ten networks. We
measure the number of transformations required to transform
the grammar inferred from the set to the grammar inferred
from set 11. We show results in Figure 6. Every value in
Figure 6 is an average from three runs. In every run we
randomly shuffle the networks over 11 sets such that sets are
different in every run. Figure 7 shows how computation time
changes when we increase the size of the input set. We collect
how many vertices has the graph created from all graphs in the
input set and the time needed for graph grammar inference
from the set. Figure 8 shows sample graph grammars inferred
from the set with ten and seventy graphs of network 00010.

typeentry gene

reaction
E_to_Rct

entryentry
S_to_RctRct_to_P

type type

compoundcompound

S1

S2 entry enzymetype

S3 entry compoundtype

S4

entry|S4

relation maplink
type

Real_to_E

compound

subtype
1

1-1

(a) (b)

Figure 5: Graph grammar inferred from a set of thirty (a) and
one hundred and ten (b) number of graphs in the input set of
Picrophilus torridus (pto).

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

10 20 30 40 50 60 70 80 90 100 110

number of graphs in the set

#t
ra

n
sf

o
rm

at
io

n
s net10

net20

net30

net51

net61

0.00

2.00

4.00

6.00

8.00

10.00

number of graphs in the set

#t
ra

n
sf

o
rm

at
io

n
s net401

net602

net730

net830

net930

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10 20 30 40 50 60 70 80 90 100 110

Average

Figure 6: Change in inferred grammar measured in
reference to the biggest set in ten networks.

0

5000

10000

15000

20000

25000

0 20000 40000 60000 80000 100000

number of vertices

ti
m

e
[s

ec
]

network 10

network 20

network 30

51

61

401

602

730

860

930

(a)

1

10

100

1000

10000

100000

1000 10000 100000

number of vertices

ti
m

e
[s

ec
]

network 10

network 20

network 30

51

61

401

602

730

860

930

(b)

Figure 7: Time of grammar inference as a function
of number of vertices in the graph in ten networks,
linear scale (a) and logarithmic scale (b).

a) b)

Figure 8: Graph grammar inferred from a set of ten (a) and
seventy (b) number of graphs in the input set of network
00010.

7. Conclusion
The experiments on the biological network domain give

us insight into the performance of the algorithm and to the
metabolic pathways. Examining Figure 4 we notice that some
species, have a very regular set of metabolic pathways.
Increasing the size of the set does not change the inferred
grammar much. While in other species, like xcc, the set of
metabolic pathways is very diverse resulting in significant
changes on the curve. Several curves, pto, pho, efa, gradually
decrease with the last values being zero. It shows us that our
algorithm performed well and with increasing number of
graphs in the input set we find the grammar which does not
change more with increased number of graphs which indicates
that grammar found represents the input set well. The very
bottom chart in Figure 4 shows the average change. We see
that with the increasing number of graphs in the input sets the
curve declines to zero which tells us that with the increasing
number of graphs we infer more accurate grammar. We find
confirmation of these observations in experiments with sets of
metabolic pathways of different species which describe the
same process we show in Figure 6. The average change also
declines to zero. We see fewer changes in curves in Figure 6
than in Figure 4. It tells us that there is less diversity in set of
species within one network than there is in sets of networks
within one species.

In Figure 7 we show the computation time as a function
of the number of vertices in the input set. We plotted two
curves, one in linear, and one in logarithmic scale. The curves
in linear scale become almost straight lines in logarithmic
scale which confirms experimentally the polynomial
complexity of the algorithm. Time curves of network 00010,
00030, and 00401 have a surprising dip towards the right end
of the scale where we would expect an increase in
computation time, but instead observe a decrease. We
suspected that it is because in these cases the input set of
graphs gets compressed very well in iteration one or two of

grammar inference and the compressed graph used in
iterations three and four is small which results in faster
execution time. However, a closer look at the number of
vertices in each iteration did not confirm it. We tend towards
relating the decreasing time phenomenon to the isomorphism
test and the heuristic used in the algorithm.

We can use inferred grammar productions not only to
provide an abstraction of recognized metabolic pathway for
better understanding but also to construct unknown metabolic
pathway based on molecular-level experimental data. Future
work will be in developing algorithms which allow for
learning larger classes of graph grammars (context sensitive),
including stochastic graph grammars and applications of these
algorithms to biological structures.

8. References
[1] N Chomsky,. Three models of language. IRE Transactions in

Information Theory 2, 3, 113-24, 1956
[2] D. Cook and L. Holder, “Substructure Discovery Using

Minimum Description Length and Background Knowledge.”
Journal of Artificial Intelligence Research, Vol 1, (1994),
231-255, 1994

[3] D. Cook and L. Holder, “Graph-Based Data Mining.” IEEE
Intelligent Systems, 15(2), pages 32-41, 2000.

[4] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining
coherent dense subgraphs across massive biological networks
for functional discovery. Bioinformatics, 21(1):213–221, 2005.

[5] E. Jeltsch, H. Kreowski, “Grammatical Inference Based on
Hyperedge Replacement. Graph-Grammars.” Lecture Notes in
Computer Science 532, 1990: 461-474, 1990

[6] Jonyer. L. Holder, and. D. Cook, “MDL-Based Context-Free
Graph Grammar Induction and Applications.” International
Journal of Artificial Intelligence Tools, Volume 13, No. 1,
65-79, 2004.

[7] M. Kanehisa, S. Goto, S. Kawashima, U. Okuno, and M.
Hattori. KEGG resource for deciphering the genome.
32:277–280, 2004.

[8] KEGG website. http://www.kegg.com.
[9] M. Koyuturk, A. Grama, and W. Szpankowski. An efficient

algorithm for detecting frequent subgraphs in biological
networks. Bioinformatics, 20:200–207, 2004.

[10] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach.
Systems Biology. WILEY-VCH, first edition, 2005.

[11] J. Kukluk, L. Holder, and D. Cook, Inference of Node
Replacement Recursive Graph Grammars. Sixth SIAM
International Conference on Data Mining, 2006

[12] H. Mamitsuka, Y. Okuno and A. Yamaguchi, Mining
Biologically Active Patterns in Metabolic Pathways Using
Microarray Expression Profiles, ACM SIGKDD Explorations
Newsletter, Volume 5 , Issue 2, 113 - 121

[13] G. Nevill-Manning and H. Witten, “Identifying hierarchical
structure in sequences: A linear-time algorithm.” Journal of
Artificial Intelligence Research, Vol 7, (1997, 1997),67-82

[14] T. Oates, S. Doshi, and F. Huang, “Estimating maximum
likelihood parameters for stochastic context-free graph
grammars.” volume 2835 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2003, 281—298

[15] Rissanen, J. Stochastic Complexity in Statistical Inquiry. World
Scientific Company. 1989

