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Abstract

In this paper, we design a novel MRF framework which

is called Non-Local Range Markov Random Field (NLR-

MRF). The local spatial range of clique in traditional MRF

is extended to the non-local range which is defined over the

local patch and also its similar patches in a non-local win-

dow. Then the traditional local spatial filter is extended to

the non-local range filter that convolves an image over the

non-local ranges of pixels. In this framework, we propose

a gradient-based discriminative learning method to learn

the potential functions and non-local range filter bank. As

the gradients of loss function with respect to model param-

eters are explicitly computed, efficient gradient-based opti-

mization methods are utilized to train the proposed model.

We implement this framework for image denoising and in-

painting, the results show that the learned NLR-MRF model

significantly outperforms the traditional MRF models and

produces state-of-the-art results.

1. Introduction

The Markov Random Field (MRF) [11, 30, 10, 4] pro-

vides an effective framework for modeling the statistical

prior of natural images [24, 14]. Image models based on

MRFs have been widely investigated and applied to vision

problems, e.g., image denoising [21, 1, 13, 32, 26, 22, 27,

17], inpainting [20], segmentation [2], stereo [25], etc.

In this paper, we focus on the continuously-valued high-

order MRF model [26], which is often constructed to model

the marginal distributions of image responses to a filter

bank [23]. In designing the model, two issues are com-

monly encountered. The first issue is the construction of

the random field, i.e., the spatial range of clique and the po-

tential function. Pairwise MRFs [4] model the statistical de-

pendency between the neighboring pixels. High-order MRF

models [21, 20, 1] extend these models to larger neighbor-

hoods to learn the MRF models with larger cliques, en-

abling them to better capture image structures. The poten-

tials themselves are often a robust function [25], student-t

distribution [21], or Gaussian scale mixture model [23, 28].

These functions are typically used to model the heavy-tailed

distribution of image responses.

The other major issue lies in learning the parameters.

Sampling-based methods [32, 9, 21, 23] and discriminative

learning methods [27, 26, 22, 1] are the two most common

approaches for fitting an MRF model to natural images. The

sampling-based methods utilize efficient sampling methods

to learn image prior by fitting the statistics of natural im-

ages. These methods are well founded on statistical theo-

ries and exhibit great performance in learning natural image

prior in a general way. The discriminative learning meth-

ods learn the model parameters by constructing a loss func-

tion [12] between the inferred image by MRF model and the

target image, and optimize the loss function by variational

method [26], implicit differentiation [22], or coordinate de-

scent algorithm [1]. This category of methods has exhibited

excellent performance in image restoration applications.

In this paper, we propose a novel framework of MRF

model, which is called non-local range MRF (NLR-MRF)

model. The major contribution is that a non-local range

Markov random field is constructed by extending the lo-

cal range clique around pixel to be a non-local range clique

composed of several similar patches in a non-local win-

dow around each pixel. Using this clique, traditional spatial

convolution is extended to a 3-dimensional non-local range

convolution over the spatially adaptive non-local ranges of

pixels. In this framework, both of the local image struc-

tures and the dependencies among the similar patches are

captured. As will be shown in Section 5, this model leads

to significant performance increases in MRF-based image

denoising and inpainting.

We propose a gradient-based discriminative learning

framework for learning the non-local range MRF model.

This training method is motivated by active random

field [1], which was trained using a randomized descent

procedure. In this work, we will show how to explicitly

compute the gradients of loss function with respect to the

parameters for NLR-MRF model. This enables us to use

gradient-based optimization methods to flexibly and effi-

ciently train the system. As a side-benefit, the gradient com-

putation framework is general for both NLR-MRF model

and the traditional Field of Experts (FoE) [21] model with
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many differential potential functions, providing a general

framework for discriminatively learning the FoE-like MRF

models.

The following sections are organized as follows. The re-

lated works are discussed in Section 2. In Section 3, the

non-local range MRF is introduced. In Section 4, the train-

ing algorithm of NLR-MRF model is presented by explic-

itly computing the gradients of loss function with respect to

model parameters. In Section 5, experimental evaluations

are presented. Finally, this work is concluded in Section 6.

2. Related Work

Product of Experts (PoE) [9] and Field of Experts

(FoE) [21] are typical high-order MRF models in which the

range of clique is defined as the local patch around each

pixel. Steerable random field (SRF) [20] learns the image

responses to local derivative filter that is aligned to the local

directions of image structures. In sparse long-range random

field [13], the sparse and long-range clique with size three

is designed to capture the second-order image statistics. All

of these MRF models capture the high-order dependency of

image structure around each pixel. In this work, the charac-

teristics of self-similarity in image patches is introduced to

design the non-local range of clique in MRF which captures

both the local image structures and also the dependencies

among the non-locally similar patches.

Training the high-order MRF is a challenging work. Zhu

and Mumford [32] propose to use Gibbs sampling to learn

the statistics of image responses to a pre-defined filter bank.

PoE [9] and FoE [9] jointly learn the filter bank and fit

the distribution of image responses to the filter bank using

contrastive divergence. In [23], auxiliary-variable Gibbs

sampler and Bayesian minimum mean squared error es-

timate are proposed to exploit more general and efficient

MRF model using the potentials of Gaussian scale mixture

(GSM) model [14]. These sampling-based methods have

sound statistical interpretation, however, they are generally

computationally challenging in applications.

Discriminative learning methods learn the parameters of

MRF by minimizing a loss function between the estimated

images and the target images. Variational optimization

method [26] discriminatively learns MRF model through

deriving the quadratic up-bound for student-t expert func-

tion, however, it is not easy to find the up-bounds for gen-

eral expert functions. In [22], the gradients of cost function

w.r.t. model parameters are calculated by implicit differen-

tiation. The above methods require that the MAP estima-

tion is optimized to achieve the final results at convergence.

Barbu [1] proposes an Active Random Field (ARF) that dis-

criminatively trains the MRF model combined with a sub-

optimal inference algorithm using fixed number of gradient

descent iterations and produces excellent denoising results.

The model parameters are learned by randomized descent

procedure that randomly selects a variable and modify it by

a small amount if the cost function decreases. Our train-

ing framework is motivated by ARF, however, we propose a

general gradient-based training framework to learn the pa-

rameters by explicitly computing the gradients of loss func-

tion with respect to parameters for NLR-MRF model with

any differentiable potential functions. As the gradients are

explicitly computed, it is efficient and flexible to learn NLR-

MRF model using gradient-based optimization algorithms.

The characteristics of self-similarity in natural image is

widely investigated in image restoration [5, 6, 15, 8], mo-

tion estimation [29], super-resolution [31], etc. In this work,

this characteristics is utilized into the MRF-based image

prior, which captures the advantages of BM3D [6] and non-

local means [5] in a flexible MRF framework. It can also

be applied to more low level vision applications besides de-

noising and inpainting, e.g., super-resolution, demonsacing,

that will be investigated in our future work.

3. Non-Local Range Markov Random Field

Markov Random Field (MRF) is formally defined over a

graph G =< V,E >. V is the set of nodes representing the

random variables x = {xv}v∈V , E are the edges connect-

ing the nodes, and the clique c ∈ C is defined by a neigh-

borhood system, which indicates the factorization of the

probability density of MRF. By Hammersley-Clifford theo-

rem, the probability density of MRF is a Gibbs distribuion:

p(x) = 1
Z(Θ)exp(−

∑
c∈C Vc(x; Θ)), where Vc(·) is the po-

tential function over clique c, and Z is the partition function

to normalize the density. In applications of low level vi-

sion, image lattice coupled with a neighborhood system is

mapped to MRF, and the potential function is modeled as

the robust function [25], student-t distribution [19, 21, 1] or

Gaussian scale mixture model [28, 23].

3.1. Basic Definition

The clique of MRF is generally defined by the local

neighborhoods around pixels in the traditional MRF. In this

work, we extend the clique of MRF to be defined over non-

local range in natural image, which is called Non-Local

Range Markov Random Field (NLR-MRF).

In non-local range MRF, the clique of each pixel is

composed of the local patch around the pixel and also its

top similar patches searched by block matching with mean

squared error as patch similarity in the non-local neighbor-

hood around the pixel, and we define the involved pixels in

the clique as the non-local range of this pixel. For exam-

ple, as shown in Figure 1 (a), the non-local range of pixel pi
(shown in the red dot) is composed of its connected pixels

both in the local patch and the similar patches in a larger

neighborhood. Apparently, the non-local ranges of pixels

are adaptively located over the image region depending on

the different locations of the similar patches.
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Figure 1. Non-Local Range MRF (NLR-MRF) and the maps of

image responses to local and non-local range filter. In NLR-MRF,

The clique of each pixel is composed of the patch around the pixel

and the top similar patches in its non-local window. The non-local

range filter is the combination of local spatial filter and the cross-

patch filter. Compared with the local spatial filter, the response

map of non-local range filter is much more sparser, which is ben-

eficial to better preserve the image details in image restoration.

Based on this definition, the filter that convolves an im-

age is also extended to the non-local range filter, which is

defined over the non-local ranges of pixels. As the non-local

range of each pixel is composed of a set of patches, the fil-

ter over the non-local range should be a 3-dimensional filter

(for gray-scale image). Due to the high similarities among

the patches in a non-local range, we define the non-local

range filter, denoted as f , as the combination of two sepa-

rate filters: a spatial filter fs defined over each patch and a

1-dimensional cross-patch filter f t defined across different

patches in a non-local range. Assume that the local spatial

filter is of size w×w, and there are d similar patches in the

non-local range, then f is a three dimensional filter:

f = {f1; f2; · · · ; fd} = {f t
1f

s; f t
2f

s; · · · ; f t
df

s}. (1)

It is composed of d spatial filters scaled by the elements in

cross-patch filter f t = {f t
1, · · · , f

t
d}. Then the non-local

range convolution can be computed as

(f ∗ I)(x, y) =
d

∑

l=1

w−1
∑

p=0

w−1
∑

q=0

fd−l+1(w − p, w − q)I(xl + p, yl + q),

(2)

where (xl, yl) is the left-top position of the l-th most similar

patch in the non-local range of (x, y). Obviously, when l =
1, the most similar patch is just the local patch surrounding

(x, y). As f is separable, this is equivalent to convolving

the image by the local spatial filter fs, and followed by the

convolution with cross-patch filter f t over the patch centers

in the non-local range of each pixel.

It is well known that the responses of an image con-

volved by a high-frequency filter obey a heavy-tailed distri-

bution, and only the high-frequency edges or textures have

larger responses. Please refer to Figure 1 (c) for example, it

shows the response map of a natural image convolved by a

5× 5 filter. However, when convolved by a non-local range

filter composed of the same spatial filter and a cross-patch

filter f t = [−0.15,−0.35, 0.5], the response map shown in

Figure 1 (d) becomes much sparser than that in Figure 1

(c), even along edges and in the textured region. That is be-

cause the high responses in Figure 1 (c) are further removed

by the convolution with a high-frequency cross-patch fil-

ter. This phenomenon is beneficial to better preserve image

structures or textures when applying NLR-MRF model to

image restoration.

3.2. Formulation of NLRMRF model

The non-local range MRF is based on the Field of Ex-

perts (FoE) framework with potential function modeling

image responses to a filter bank. Assume that there are N
filters in the filter bank, then the probability density of an

image I is modeled as:

p(I; Θ) =
1

Z(Θ)

∏

c∈C

N∏

i=1

φ(fi ∗ I(c); Θ), (3)

where Θ are the model parameters, fi ∗ I(c) denotes the

value of non-local range convolution at each clique c ∈ C.

The clique c is defined as the non-local range of each pixel,

and fi denotes the i-th non-local range filter, which can be

decomposed into pairs of filters {f t
i , f

s
i }, and φ is the ex-

pert function modeling heavy-tailed marginal distribution

of filter responses. For the convenience of computation, the

non-local range convolution can be written as matrix multi-

plication: Fix = F t
i F

s
i x, where F s

i , F
t
i are the convolution

matrices corresponding to spatial filter fs
i and cross-patch

filter f t
i respectively, x is the image vector.

We will investigate two typical types of expert functions,

i.e., Student-T (ST) expert:

φ((Fix)p; Θ) = [1 +
1

2
(F t

i F
s
i x)2p]

−αi , (4)

and Gaussian Scale Mixture (GSM) expert:

φ((Fix)p; Θ) =

J∑

j=1

αijN((F t
i F

s
i x)2p; 0, σ

2
i /sj), (5)

where N(·) is the Gaussian function, αij is the weight of j-

th Gaussian component for the i-th filter. σ2
i is the base vari-

ance shared by all the Gaussian components in the i-th filter

and sj is the scale parameter to scale the variance of the j-th

Gaussian component shared by all the filters, which is set to
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be 11 scales, i.e., {sj}
11
j=1 = {exp(−5,−4,−3, · · · ,+5)}

to support different shapes of Gaussian components.

When applying NLR-MRF to image restoration, the in-

ferred image x (the vector representation of image) is de-

rived by Maximum A Posteriori (MAP) estimation. It is

commonly implemented by minimizing its minus logarithm

that is an energy function:

argminx{E(x|y,Θ) = Edata(y|x) + Eprior(x; Θ)}, (6)

where Edata is deduced by likelihood and Eprior =

−
∑

p

∑
i logφ((Fix)p; Θ). The key component in gradi-

ent based optimization is the computation of the gradient

of Eprior(x; Θ). For student-t expert, the gradient can be

computed as

∂Eprior(x; Θ)

∂x
=

N∑

i=1

αiF
T
i WiFix, (7)

where Wi = diag( 1
1+ 1

2
(Fix)2

), and diag(·) denotes a diago-

nal matrix with diagonal vector as in the bracket. For GSM

expert, assume that there are J components in each Gaus-

sian scale mixture model, then the gradient is

∂Eprior(x; Θ)

∂x
=

N∑

i=1

τi

J∑

j=1

FT
i WijFix, (8)

where Wij = diag(
sj
σ2
i

αijN(Fix;0,σ2
i /sj)∑

J
l=1

αilN(Fix;0,σ2
i
/sl)

), τi is added to

scale the contribution of the i-th filter to the expert function.

4. Discriminative Learning Framework

Now the challenging work is how to learn the involved

parameters in NLR-MRF model. We design an efficient and

general framework to train non-local range MRF with gen-

eral expert functions. Motivated by the success of the ARF

model [1], we discriminatively train the model parameters

by optimizing the result created by executing a fixed num-

ber of gradient-descent optimization steps. Given the pair

of degraded image y and the ground-truth high-quality im-

age t, the parameters are learned by minimizing the loss

function between the inferred image xK and target image t:

Θ∗ = argminΘL(x
K(Θ), t)

where xK(Θ) = GradDescK{E(x|y,Θ)}, (9)

where GradDescK means the K-steps of gradient descent

procedures using NLR-MRF model to infer the restored im-

age, and the restored image is initialized by x0 = y. We de-

note the learned NLR-MRF model as NLR-MRF model

with K iterations in the following sections. Unlike the

randomized coordinate descent algorithm in [1], we explic-

itly compute the gradients of the loss function with respect

to model parameters, which enable efficient and flexible

gradient-based algorithms to learn NLR-MRF model with

general types of expert functions.

4.1. Computation of Gradients

It is non-trivial to compute the gradients of cost func-

tion with respect to model parameters for NLR-MRF model.

Due to the limited space, only the major formulations are

presented and all the related deductions can be found in the

supplemental material.

The major technique in computation is to utilize ma-

trix operation instead of the convolution operation in the

original definition of NLR-MRF model. We represent the

spatial and cross-patch filters as the linear combinations

of two dictionaries of basis filters Bs and Bt computed

by PCA over the natural image patch samples: F s
i =∑Ns

m=1 λi,mBs
m, F t

i =
∑Nt

n=1 γi,nB
t
n, in which Bs

m and

Bt
n are the m-th and n-th convolution matrices of basis

filters for spatial filter and cross-patch filter respectively,

Ns, Nt are the number of basis filters. Then learning a filter

is to learn its coefficients over the basis filters.

We also found very limited improvement using Edata
as [1], therefore we safely discard Edata and only use

Eprior for inference. Then the inference problem in Equa-

tion (9) can be explicitly written as xt+1 = xt − g(xt; Θ),
where g(xt; Θ) = ∂Eprior(x

t; Θ)/∂xt, t = 0, 1, · · · ,K −

1. Given the training pairs of observed image and desired

image {yl, tl}
D
l=1, the gradient of loss function L w.r.t. any

parameter θ ∈ Θ is

∂L({xK
l
, tl})

∂θ
=

∑

l

∂L(xK
l
, tl)

∂θ
= −

∑

l

K
∑

k=1

∂L

∂xk
l

∂g(xk−1
l

)

∂θ
,

(10)

where x0l is the observed image yl. To make the formula-
tion more clear, we remove the index l of training pairs in
the following computations. In the implementation, minus
PSNR is used as the loss function, therefore

L(xK , t) = −20 log10
255

√

1
M

||xK − t − mean(xK − t)||2
, (11)

M is the number of pixels. By the chain rule of calculus,
∂L(xK ,t)

∂xt
is computed as

∂L(xK , t)

∂xt
=

∂L

∂xK

K−1∏

k=t

∂xk+1

∂xk
. (12)

Note: Equation (10) presents a general framework to

compute gradients of loss function w.r.t. model param-

eters for NLR-MRF model with any differentiable expert

functions, and the key is how to compute ∂xk+1

∂xk
and

∂g(xk)
∂θ

for different expert functions. This gradient computation

method can also be applied to train the traditional FoE

model with local spatial filter bank by setting the cross-

patch filter to be with a single value of one.

Next we will compute the gradients for the NLR-MRF

model with student-t expert and GSM expert, which are two

commonly used expert functions.
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4.1.1 Gradients for NLR-MRF with Student-t Expert

We now compute the gradients of loss function w.r.t. pa-

rameters Θ = {λi, γi, αi}
N
i=1 for NLR-MRF model with

student-t expert. First, if denote:

Wk
i = diag({

1

1 + 1
2
(Fixk)2p

}Mp=1),

Uk
i = diag({

(Fix
k)2p

[1 + 1
2
(Fixk)2p]

2
}Mp=1),

then ∂xk+1

∂xk
= I −

∑N
i=1 αiF

T
i (W k

i − Uk
i )Fi, where M is

the number of pixels.

Second, the gradients of g(xk; Θ) w.r.t. parameters in Θ
are listed as follows.

∂g(xk)

∂λi,m

=
N
∑

i=1

αi[(F
t
i B

s
m)TW k

i Fi + FT
i (W k

i − Uk
i )F

t
i B

s
m]xk,

∂g(xk)

∂γi,n
=

N
∑

i=1

αi[(B
t
nF

s
i )

TW k
i Fi + FT

i (Wk
i − Uk

i )B
t
nF

s
i ]x

k,

∂g(xk)

∂αi

= FT
i Wk

i Fix
k.

Given the above computations, it is easy to derive the

gradients of ∂L
∂λi,m

, ∂L
∂γi,n

, ∂L
∂αi

from Equation (10).

4.1.2 Gradients for NLR-MRF with GSM Expert

For the NLR-MRF model with GSM expert, we will learn
the parameters Θ = {τi, {αij}, σi, λi, γi}i=1,··· ,N ;j=1,···J .
Similar to the computations in Section 4.1.1, if denote:

wk
ijp =

αijN

(

(Fix
k)2p; 0,

σ2
i

sj

)

∑J
l=1 αilN

(

(Fixk)2p; 0,
σ2
i

sl

) ,

uk
ijp =

∑J
l=1 αilN

(

(Fix
k)2p; 0,

σ2
i

sl

)

(sj − sl)

∑J
l=1 αilN

(

(Fixk)2p; 0,
σ2
i

sl

) ,

W k
ij = diag({

sj

σ2
i

wk
ijp}

M
p=1),

Uk
ij = diag({

sj

σ4
i

wk
ijpu

k
ijp(Fix

k)2p}
M
p=1),

then ∂xk+1

∂xk
= I−

∑N
i=1 τi

∑J
j=1 F

T
i (W k

ij−Uk
ij)Fi. Second, the

gradients of g(xk; Θ) w.r.t. parameters are listed as follows.

∂g(xk)

∂λi,m

=
N
∑

i=1

J
∑

j=1

τi[(F
t
i B

s
m)TW k

ijFi + FT
i (W k

ij − Uk
ij)F

t
i B

s
m]xk,

∂g(xk)

∂γi,n
=

N
∑

i=1

J
∑

j=1

τi[(B
t
nF

s
i )

TWk
ijFi + FT

i (Wk
ij − Uk

ij)B
t
nF

s
n]x

k,

∂g(xk)

∂αij

= τiF
T
i diag({

1

σ2
i αij

wk
ijpu

k
ijp}

M
p=1)Fix

k,

∂g(xk)

∂σi

=
J
∑

j=1

τiF
T
i (

−2

σi

W k
ij +

1

σi

Uk
ij)Fix

k,

∂g(xk)

∂τi
=

J
∑

j=1

FT
i W k

ijFix
k.

Based on the above formulations, the gradients of loss func-

tion w.r.t. the model parameters can be derived by inserting

the above equations into Equation (10).

4.1.3 Implementation Details

Algorithm 1 : Compute the gradients of loss function with

respect to NLR-MRF model parameters

Input: Training pair {y, t}, current parameters Θ and the num-

ber of gradient descent steps K during inference.

Output: ∂L
∂θ

, for any θ ∈ Θ.

1: Forward inference: Iteratively perform K steps of gradient

descent procedures using the current parameters Θ, and save

the inferred images {xt}t=1,··· ,K in each step.

2: Compute ∂L

∂xK
.

3: for t = K to 1 do

4: Compute
∂g(xt−1)

∂θ
(θ ∈ Θ) and ∂xt

∂xt−1 .

5:
∂L
∂θ

= ∂L
∂θ

− ∂L
∂xt

∂g(xt−1)
∂θ

.

6:
∂L

∂xt−1 = ∂L
∂xt

∂xt

∂xt−1 .

7: end for

8: return ∂L
∂θ

, θ ∈ Θ.

All of the above gradients can be efficiently computed

by the convolution or per-pixel operations. First, the ma-

trix multiplication Fx is just the convolution of image I
(the matrix form of x) by the non-local range filter f cor-

responding to F . As the non-local ranges of pixels are

not fixed and symmetric in the non-local range convolution,

FT x can not be implemented by the convolution with the

mirror of filter f as in the traditional convolution. Assume

that the non-local filter is with size w × w × d, then the

filtered image I ′ corresponding to FT x is computed by cu-

mulating the weighted pixel values for all the pixels in the

non-local range of each pixel (x, y): I ′(xl + p, yl + q) =
I ′(xl+p, yl+q)+fd−l+1(w−p, w−q)I(xl+p, yl+q), for

all l ∈ {1, · · · , d} , p, q ∈ {0, · · · , w − 1}, and (xl, yl) is

the left top position of the l-th patch in the non-local range

of (x, y). Second, the diagonal matrix multiplying a vector

x can be implemented by the per-element multiplication be-

tween its diagonal vector and x. The iterative algorithm to

compute the gradients is presented in Algorithm 1.

4.2. Training Methods

Given the gradients of loss function with respect to pa-

rameters in NLR-MRF model, we use gradient-based algo-

rithms to discriminatively learn the parameters.

The training method for image inpainting will be dis-

cussed in the next section. For image denoising, the train-

ing set of noisy/noise-free image pairs is constructed over

the 40 images as [21, 1]. To incrementally learn the NLR-

MRF model, we first use stochastic gradient descent algo-

rithm to fast train the MRF model with traditional spatial

filter bank initialized randomly, and the gradients are com-

puted by setting the cross-patch filter as a single element fil-

ter with value of one. Second, we initialize the NLR-MRF
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Figure 2. Training curves for the NLR-MRF model with 1 iteration

and thirteen non-local filters of size 5 × 5 × 3. The left and right

sub-figures plot the training errors (i.e., the minus mean PSNRs

over training set) with respect to the increasing training steps for

noise levels of 10 and 25 respectively.

Figure 3. Learned non-local range filter banks (5×5×3). The first

and second rows show the non-local range filter banks of NLR-

MRF model with 3 iterations for noise levels of 10 and 25 respec-

tively. Pairs of spatial filter and cross-patch filter are presented at

top and bottom of each sub-figure.

by the above learned MRF model, and the non-local filters

are initialized by the pairs of learned spatial filter and the

cross-patch filter with the only non-zero element 1 in its fi-

nal element. Then stochastic gradient descent algorithm is

used to learn the NLR-MRF model by fast decreasing the

training loss. Stochastic gradient descent provides a good

estimation for model parameters with high speed. Finally,

conjugate gradient descent is used to further improve the

training accuracy by optimizing the model parameters. Ex-

perimentally, we use 200, 200 and 100 steps in these three

training procedures to learn the optimal model parameters.

About twenty hours were required to train the NLR-MRF

model with 1 iteration and thirteen 5× 5× 3 filters.

Figure 2 presents the training curves for NLR-MRF

model with 1 iteration and thirteen non-local range filters

of size 5 × 5 × 3 (Please refer to the figure for details). In

Figure 3, we present the learned non-local filter banks of

NLR-MRF model with 3 iterations for noise levels of 10

and 25 respectively. Interestingly, we observe Gabor-like

patterns in different orientations and frequencies in some of

the learned spatial filters.

5. Results

We apply the NLR-MRF model to the applications of

image denoising and inpainting. The performance for im-

age denoising is evaluated over the 68 Berkeley test im-

ages as [21, 1] and the standard denoising test images.

We present the results of MRF-based models: FoE [21],

ARF [1], MRF with Bayesian minimum mean squared er-

ror estimate (MRF-MMSE) [23], and the other state-of-

the art denoising methods: wavelet-based method (BLS-

Table 1. Denoising results in average PSNRs over 68 Berkeley im-

ages. Thirteen filters of size 5 × 5 and 5 × 5 × 3 are learned for

ARF and our model. Ours-k means NLR-MRF with k iterations.

Noise levels 10 15 20 25 50 Average

FoE [21] 32.68 30.50 28.78 27.60 23.25 28.56

NL [5] 32.36 30.08 28.55 27.26 23.72 28.39

KSVD [7] 33.11 30.85 29.37 28.29 25.17 29.36

BLS-GSM [18] 33.03 30.77 29.30 28.23 25.30 29.33

BM3D [6] 33.32 31.08 29.62 28.57 25.44 29.61

ARF-1 [1] 32.65 30.52 28.89 27.75 24.57 28.88

ARF-2 [1] 32.65 30.64 29.19 28.07 24.87 29.08

ARF-3 [1] 32.75 30.70 29.26 28.14 25.10 29.19

ARF-4 [1] 32.74 30.70 29.28 28.21 25.13 29.21

Ours-1 (ST) 32.80 30.47 28.95 27.81 24.62 28.93

Ours-2 (ST) 33.03 30.78 29.21 28.13 25.16 29.26

Ours-3 (ST) 33.13 30.91 29.39 28.26 25.33 29.40

Ours-4 (ST) 33.18 30.97 29.46 28.32 25.38 29.46

Ours-1 (GSM) 32.99 30.66 29.09 27.95 24.72 29.08

Ours-2 (GSM) 33.13 30.87 29.38 28.30 25.16 29.37

Ours-3 (GSM) 33.17 30.92 29.46 28.39 25.29 29.45

Ours-4 (GSM) 33.20 30.97 29.50 28.48 25.38 29.51

GSM) [18], non-local means method (NL) [5], sparse rep-

resentation method (KSVD) [7] and BM3D algorithm [6].

All of the compared results come from the original papers

or produced by the codes from the author’s web page.
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Figure 4. Scatter plots of the PSNRs over 68 Berkeley images pro-

duced by ARF and NLR-MRF with GSM expert (4 iterations). The

standard deviation of noises is 25. The average PSNRs produced

by ARF and NLR-MRF models are 28.21 and 28.48 respectively.

Table 1 compares the average PSNRs of denoising re-

sults produced by different algorithms over 68 Berkeley im-

ages with noise levels of 10, 15, 20, 25, 50. We present

the results of NLR-MRF models with iterations 1, 2, 3, 4

and 5 × 5 × 3 filters for both student-t expert and GSM

expert, the filter bank with thirteen filters are learned as

in [1], and more filters marginally increase the performance.

First, our method significantly improves the performance

of MRF-based models in denoising. The average PSNR

of NLR-MRF model with 4 iterations and GSM expert is

29.51 which is better than 29.21 produced by the state-of-

the-art MRF method ARF [1]. Please refer to Figure 4 for

the scatter plots of per-image PSNRs. Second, the NLR-

MRF model with GSM expert works better than student-t

expert due to its flexibility in fitting the image statistics with

more parameters. Third, compared with the other state-of-

art denoising methods, our results using NLR-MRF with 4
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Figure 5. Denoising results comparison (Please refer to the electronic version and zoom-in for better comparison). (a) Noisy image

(standard deviation of noises is 25). (b) Result of FoE (PSNR = 28.67). (c) Result of ARF (PSNR = 28.94). (d) Result of NLR-MRF

(PSNR = 29.39). (e) Result of BLS-GSM (PSNR = 29.03). (f) Result of KSVD (PSNR = 29.05). (g) Result of BM3D (PSNR = 29.60).
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Figure 6. Denoising results comparison (Please refer to the electronic version and zoom-in for better comparison). The standard deviation

of added noises is 25. (a)-(e) show the results of Field of Experts model [21], MRF with Bayesian minimum mean squared estimation

in [23] (eight 3× 3 filters), active random field with 4 iterations [1] and NLR-MRF model with 4 iterations and GSM expert.

iterations and GSM expert are better than that of non-local

means method, KSVD method, BLS-GSM method, and al-

most equal to the results of BM3D. We also trained NLR-

MRF models with iterations 5, 6, 7, 8 and noise level of 25,

and the test average PSNRs are 28.49, 28.51, 28.51, 28.52,

and do not increase with more iterations.

Table 2. Image denoising results on standard test images (the

added noise level is 25, and the results are measured by PSNR).

Noise levels Barbara Boats House Lena Peppers Average

NL [5] 28.71 28.10 30.32 29.95 28.45 29.11

BLS-GSM [18] 29.13 29.37 31.40 31.69 29.21 30.16

KSVD [7] 29.60 29.28 32.15 31.32 29.73 30.42

BM3D [6] 30.65 29.86 32.87 32.04 30.25 31.13

FoE [21] 27.04 28.72 31.11 30.82 29.20 29.38

ARF-4 [1] 27.59 29.14 31.18 30.87 29.54 29.66

Ours-4 28.94 29.55 32.15 31.51 30.03 30.43

Table 3. Comparison with MRF-MMSE over 68 Berkeley images.

Methods Expert function Filter Bank Mean PSNRs

MRF-MMSE [23] GSM 3× 3, 8 filters 27.95

NLR-MRF-4 GSM 3× 3× 3, 8 filters 28.16

Table 2 presents the results over 5 standard test images,

and our method with 4 iterations, GSM expert and 5×5×3
filter bank produces the second highest mean PSNRs among

the state-of-the-art denoising methods, and performs much

better than the other MRF-based denoising methods. In Ta-

ble 3, we compare our model to MRF-MMSE with eight

3×3 filters [23]. The NLR-MRF model with eight 3×3×3
non-local range filters achieves significantly higher perfor-

mance which indicates the effectiveness of learning the

cross-patch filters. Figure 5 and 6 present the denoising

results. It is shown that NLR-MRF model well preserves

image details and produces better results than the previous

MRF-based models, and performs better or comparable to

the other state-of-the art denoising methods.

We also apply the NLR-MRF model to image inpainting

in Figure 7. We incrementally train the NLR-MRF model

by the following steps: first train NLR-MRF model with 50

iterations by minimizing the cost function between the de-

graded images and the target images, then iteratively train

one more NLR-MRF model with 5 iterations at each step

using the cost function between the restored images by the

already trained models and the target images, until the train-

ing accuracy does not increase. In the example of Figure 7,

NLR-MRF with iterations of 50, 5, 5, 5 and GSM expert

(thirteen 5× 5× 3 filters) are trained from the training set.

By applying these four models successively on each chan-

nel (in RGB space) of test image in JPEG version [3, 21],

the PSNR of inpainting result is 32.59. It is higher than the

result by FoE model (32.22 dB in YCbCr space and 32.39

dB in RGB space), the result by running the code of MRF-

MMSE method [23] (31.69 dB), and the result using the

color version KSVD model [16] (32.45 dB).

The two computational steps for image restoration us-

ing NLR-MRF model are computing the non-local range

by block matching and performing fixed number of gradi-

ent descent steps for inference. Our implementation comb-

ing C++ and matlab takes 37 seconds for block matching in
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Figure 7. Learning NLR-MRF model (5 × 5 × 3 filters) for inpainting. Sixty-five steps of gradient descent in inference are learned to

infer the results. The PSNR of the restored image is 32.59. It is higher than 32.22 (in YCbCr space) and 32.39 (in RGB space) by FoE

model [21], 31.69 by running the codes of MRF-MMSE [23], and 32.45 by the color version KSVD algorithm [16].

31 × 31 search windows and 14 seconds for four iterations

of gradient descent in inference, when thirteen 5 × 5 × 3
non-local filter bank and GSM expert are utilized and the

image size is 481× 231 on a platform of Intel 3.2G CPU.

6. Conclusion
In this work, we proposed a novel framework of non-

local range MRF model and a gradient-based discrimina-

tive learning method to train the model. By extending the

traditional MRF with local clique to be a non-local range

random field, both the local structures and dependencies

among similar patches in natural images are learned by non-

local range filters, which enable significant improvements

in image restoration over the traditional MRF models.

The non-local range MRF model captures the advantages

of BM3D and non-local means in a flexible MRF frame-

work. It can be used as an image prior for the other low level

vision problems besides denoising and inpainting, e.g., de-

mosaicing, super-resolution, which deserve further investi-

gations. We are also interested in extending the NLR-MRF

model to color image and video restoration, then the non-

local range filter will be defined over the multiple channels

of color image or multiple frames in video.
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