
Learning Non-Monotonic Logic Programs:
Learning Exceptions

Yannis Dimopoulos and Antonis Kakas

Department of Computer Science

University of Cyprus

CY-1678, Nicosia, Cyprus

{yannis, antonis} @turing.es.ucy.ac.cy

Abstract . In this paper we present a framework for learning non-mono-
tonic logic programs. The method is parametric on a classical learning
algorithm whose generated rules are to be understood as default rules.
This means that these rules must be tolerant to the negative information
by allowing for the possibility of exceptions. The same classical algorithm
is then used to learn recursively these exceptions.
We prove that the non-monotonic learning algorithm that realizes these
ideas converges asymptotically to the concept to be learned. We also

discuss various general issues concerning the problem of learning non-
monotonic theories in the proposed framework.

1 I n t r o d u c t i o n

Over the last two decades research work in Artificial Intelligence has shown

that many problems can not be captured fully within the realm of classical

monotonic logic and that other logics which are non-monotonic are more suitable.

In many cases these problems need a non-monotonic formalism if they are to be

represented adequately. As a result if we want to develop methods for learning

theories for these problems we need to develop learning formalisms that are

based on non-monotonic representation (description) languages and concepts.

In this paper we will present a learning framework where the learned theo-

ries are non-monotonic. In particular, we will be interested in learning theories

which are non-monotonic logic programs, We are thus interested in extending

the language bias of the hypotheses from definite logic programs as in Inductive

Logic Programming ([13]) to the language of non-monotonic logic programs.

The development of this non-monotonic learning framework will be done primar-

ily within the context of learning from a set of examples hierarchical concepts

with their exceptions, The particular learning problem that we will study within

this framework is the usuM problem of learning a concept from a set of positive

and negative examples with emphasis on problems that can not be captured by

classical definite logic programs. To do this we will exploit a recently proposed

formalism for non-monotonic logic programming which although like all other

such formalisms is based on the principle of negation as failure it does not rely on

a NAF construct within the language but instead uses a limited form of classical

negation. We are thus interested in extending the language bias from definite

123

logic programs to a more general class of logic programs that embodies both the

non-monotonic principle of NAF as well as a form of explicit negation.

Within this formalism then the basic idea is to employ a classical learning

algorithm to cover (as usual) the positive examples but with the difference that

we are tolerant with respect to the negative information in the sense that we will

allow a hypothesis generated by the classical algorithm even if this covers some of

the negative examples. Hence a rule generated by the classical learning algorithm

is now to be understood as a default rule in the sense that it holds in general but

not always; it may have exceptions. In this way the logic program that we are

building is not anymore a classical monotonic theory but now this constitutes a

non-monotonic theory. If indeed it is the case that a generated rule also covers

some of the negative examples the non-monotonic learning process can not stop

but it will continue to address the problem of learning the concept that covers

these negative examples i.e. the exceptions to the previously generated rule for

the positive examples. This will be done by calling again the underlying classical

algorithm that we are using in a dual form to learn the part of the negative

concept that corresponds to these exception examples. As a result we will get

a set of rules with the classical negation of the concept appearing in the head

that imply the negation of the concept for these examples. These negative rules

will then be added to the previously generated positive rules to form a new

hypothesis.

Again we wilt allow anyone of these negative rules even if this covers some

of the positive examples i.e. contains exceptions. The negative rules are also

default rules and hence we need to be tolerant in the same way and allow for the

possibility that they may cover some of the opposite (positive) examples. If this

is so we will then iterate the above process by calling the classical algorithm to

learn the "subpart" of the concept given by the subset of positive examples that

form the exceptions to the negative rules generated in the previous step.

The problem of learning non-monotonic theories (logic programs) has already

been address in the literature by several authors (e.g. [1], [11], [16]). In most of

these works NAF is used in the object language of non-monotonic logic programs.

This forces the need to invent new predicates (abnormality predicates) to handle

exceptions. In [1, 11], exceptions are handled primarily at one level by some

method of enumeration or with the use of inequality conditions. This makes it

difficult to handle a hierarchy of exceptions (i.e. exceptions of exceptions etc).

Our approach is closely related to the algorithm presented in [16]. This is also

capable of learning hierarchical concepts by using abnormality predicates and

negation at the object level. In fact, this algorithm is, modulo the representation

language, identical to the algorithm we present in this paper, t Our recursive

treatment and the interpolation of the positive and negative information applies

to that algorithm as well. Nevertheless, while in [16] the main task is to use the

negative examples to learn the exceptions to the positive concept, we are also

interested in learning (and using) the negative concept itself in a symmetric way

to that of the positive concept. This task can be easily accommodated in the

I We thank the anonymous referees for pointing this connection out to us.

124

particular non-monotonic logic programming formalism that we are using.

The idea of learning the negative concept has already been studied in several

earlier works. For example the work in CLINT ([5]) is concerned with learning

the negative concept to be understood in a three valued logic. Our work has

several points in common with this work but differs in the following ways. The

main difference is the fact that here we are not only concerned with learning

the negative concept per se but are also interested in a focused limited learning

of parts of the negative concept as the need arises from the hierarchical nature

of the positive concept. In this sense the two approaches are complementary

in a way that our approach can adopt the other at the point where we need

to learn the negative concept and conversely the extended CLINT system can

adopt our method to learn hierarchical concepts. The two approaches also differ

in the particular formalisms and description languages that they are using. Our

approach with its tolerant rules seems to provide a simple framework in which

non-monotonic learning algorithms can be developed.

Another method that is related to our work is that of [3]. This also uses a

representation language which includes priorities but these are based on statis-

tical information coming from the examples. Classical rules are generated for

both the positive and negative concept and each one is attributed a statistical

priority weight. However, like in [5], this method does not generate exceptions

directly, as in our work and in [16], but exceptions come indirectly through the

relative strength of the statistical weights of contradictory rules. Consequently,

the theories generated in [3] will not have the multi-layered hierarchical structure

that can be present in our theories. Again we believe that the two approaches

can complement each other.

The rest of the paper is organised as follows. Section 2 gives some needed

background information on the subject of non-monotonic logic programs. In sec-

tion 3 we describe the non-monotonic learning algorithm and then show some

of its main properties in section 4. Section 5 provides additional discussion on

the non-monotonic learning algorithm and the issue of handling negative infor-

mation.

2 Non-monotonic reasoning in Logic Programming

Non-monotonic reasoning in Logic Programming is done using the negation as
failure principle (NAF) ([2]). This principle informally states that we can assume

that some atom is false provided that it is not possible to derive the atom

from our theory. Traditionally, in order to implement this principle a negation

as failure operator is introduced in the language. Thus the language of Logic

programming is extended from definite Horn clauses to general clauses of the

form:

A ~ L1, . . .Ln

where A is an atom and each Li is either an atom Ai or a negation as failure literal

not As. As usual each variable occurring in the clause is implicitly universally

125

quantified. The semantics of this form of negation introduced in logic programs

is given by some formalization of the NAF principle which can now be stated as:

not A holds iff A fails to hold

for any atomic goal A. Operationally, in order to satisfy a NAF goal, not p,

an auxiliary computation is generated that checks that the goal, p, can not be

derived. Consider for example the following program

f ly(z) *-- bird(z), not abnormal(x)
abnormal(z) pc.gui.(z)

bird(x) ,-- penguin(x)
bird(Tweety)

From the first clause (rule) of the program we can prove that Tweety flies if

we can prove that Tweety is a bird and that not abnormal(Tweety) holds. The

first of these follows directly from the last clause (rule) of the program whilst to

show that not abnormal(Tweety) holds we need (following the NAF principle)

to check that abnormai(Tweety) can not be proved from the program. Indeed,

there is no way to prove this form the above program. On the other hand, if we

add to the program the new clause penguin(Tweety) then we will be able to

prove abnormal(Tweety) and thus not abnormal(Tweety) and flies(Tweety)

do not hold.
Notice here that the effect of the NAF condition in the first rule is to prevent

the conclusion of the rule to hold in the cases where we know (the program

knows) that the abnormality property holds. In other words, the first rule can

be understood as x flies if x is a bird unless x is abnormal. Thus the NAF

operator "not" can informally be given the meaning of "unless" and we can thus

see that NAF can help to capture exceptions to rules.

Various semantics have been proposed for general logic programs with NAF

in their language ([2], [6], [15], [18]). In this paper we will adopt a recent new

proposal ([8]) for capturing the NAF principle in Logic Programming that does

not employ a NAF operator in the language but instead uses a limited form

of classical negation together with a priority relation amongst the sentences of

the program. The semantics of this framework, called the admissibility (or more

generally the acceptability) semantics, is defined within an argumentation-based

formalism and has been shown to be powerful enough to encompass most of the

earlier semantics for NAF in Logic Programming.

In this framework the above logic program will be written equivalently as the

following theory

f ly(z) ~-- bird(z)
-,fly(z) +-- penguin(x)
bird(z) ~ penguin(x)

bird(Tweety)

with a (partial) ordering relation between the sentences that assigns the second

rule higher than the first. (In the subsequent chapters this will be denoted by

126

a directed arc between the rules.) Here "'~" denotes explicit negation and can

be used to represent negative information about the world that the program

is modelling. From this theory we can conclude that Tweety flies because we

can derive this from the first rule and there is no way to derive -~fly(Tweety)
from the program. If we add the sentence penguin(Tweety) then we can derive

both fly(Tweety) and -~fly(Tweety) from the program understood as a classi-

cal theory. But in the non-monotonic admissibility semantics of the theory the

second conclusion overrides the first since the part of the program that derives

-~fly(Tweety) contains the second rule which is designated higher than the first

rule which belongs to the part of the program that derives the first conclusion

fly(Tweety).
Note that the language bias given by this framework contains together with the

NAF principle that it embodies a form of explicit (classical) negation.

In general, this argumentation-based framework for non-monotonic Logic

Programs is defined as follows.

Defini t ion 1. (Background logic)
Formulae in the language s of the framework are defined as L +--L1 , Ln,
where L, L1 , . . . , Ln are positive or explicit negative literals. The only inference

rule is the classical modus ponens rule

L +-'-L1,...,Ln L1,...,Ln
n (n > O) []

We assume that, together with the set of sentences T, we are given a priority

relation < on these sentences (where r < r means that r has lower priority than

r The role of the priority relation is to encode locally the relative strength of

rules in the theory, typically between contradictory rules. We will require that

< is irreflexive and antisymmetric.

Def in i t lon2 . (Non.Monotonic Theory or Logic Program)
A theory (T, <) is a set of sentences 7" in s together with a priority relation <

on the sentences of T.

We now proceed to define a notion of attack on these theories based on the

possible conflicts that we can have in a theory Y between a literal L and its

explicit negation --L and on the priority relation < on T .

Defini t ion 3. (Attacks)
Let (T, <) be a theory and T, T / C T. Then T ~ attacks T i f f there exists L,

Tt C__ T ~ and T2 C_ T such that

(i) T1 ~-mi,~ L and T2 b,nin "~L

(ii) (3r' e 711, r e T~ s.t. r' < r) =~ (3r' E Tl , r e T2 s.t. r < r'). []

T F-rain L means that T ~- L under the background logic and that L can not

be derived from any proper subset of T. Using this we then define the basic

notion of an admissible subset of a given theory (program).

127

Defini t ion 4. (Admissibil i ty)

Let (T, <) be a theory and T _C T. Then T is admissible iff T is consistent and

for any T l C 7- if T I attacks T then T attacks T t.

The (sceptical) semantics of a theory can then be defined in terms of its admis-

sible subsets as follows.

Def ini t ion 5. Let (T, <) be a theory and L a ground literal. Then L is a non-

monotonic consequence of the theory iff L holds in every maximal admissible

subset of T.

It can be shown that given a logic program P, with NAF in its object lan-

guage we can define a corresponding equivalent theory D(P). This transforma-

tion is motivated from the interpretation of not p as unless p. For example, if we

have a rule "p ~- q, not r" then this transformed into two sentences "p ~-- q"and

"--p ~- r", and the second is assigned higher priority than the first.

Finally, we mention that for most of the work in this paper we will be con-

cerned with a subclass of non-monotonic logic programs in this formalism. These

will be theories where their set of contradictory rules (i.e. rules with opposite

conclusions) can be separated into classes where the rules in each class are to-

tally ordered by the priority relation of the theory. In such theories in order to

decide if an atom, A, holds we need to show that A can be derived classically

using some rule, r, for A and that -~A can not be derived (classically) using some

rule r ~ which is designated higher than the rule r by the priority relation on the

program.

3 Description of the Algorithm

The main learning problem we are interested in is the usual problem of learning

a concept from a set of positive and negative examples. Hence given a back-

ground theory and a set of examples we want to generate a hypothesis within

the language bias of non-monotonic logic programs described above that covers

all the positive examples and does not cover any of the negative examples. In

particular, we are interested in problems which can not be learned within the

language bias of definite (classical) logic programs. For example these concepts

may have an inherent hierarchical nature that cannot be captured by classical

logic programs. In these cases in addition to the coverage of the examples by

the generated hypothesis we also want to identify the hierarchical structure of

concept. As a result of this the generated hypothesis (non-monotonic logic pro-

gram) will also have as consequence the negation of the concept for some of

the negative examples. In other words, part of the negative concept will also be

learned.

The basic idea behind the algorithm that we are proposing is to use a classical

learning algorithm in a tolerant way in the sense that the hypothesis computed

to cover a set of positive examples may also cover some of the negative examples.

We say that, given a background theory B, a hypothesis H covers an example

128

e iff B U H implies l, such that Ill = e, where Ill = e' or III = -~e' where e' is an

atom. If the example e is negative (resp. positive) and B U H implies e (resp.

--,e) then this example is called an exception to H.

The set of negative examples that are covered by this generalization are

considered to be an exception to this generalization, and the algorithm then

attempts to learn this exception by using the classical algorithm on this set

of examples. This procedure is applied iteratively on subsets of the original

examples until a point is reached where, under the admissibility semantics, all the

positive examples are covered and no negative example is covered. We illustrate

the main features of the algorithm via the next example.

Example 1. Consider the background theory B

bird(x) ~-- penguin(x)
superpenguin(x) *- penguin(x)
bird(a), bird(b), penguin(c), penguin(d), superpenguin(e) , superpenguin(f)
Consider also the set of examples E = E + U E - where E + = {flies(a), flies(b),
f l ies(e), f l i e s (f) } and E - = {flies(c), f l ies(d)}.
El

The algorithm in the first step will attempt to cover all the positive exam-

pies by calling a classical learning algorithm. This can be done by the rule

f l ies(x) ~-- bird(x). But this rule also covers the negative examples. These

will then be considered to be exceptions to it, and a new phase will begin

that will now attempt to learn the concept that these exceptions may form.

The set of positive examples for the classical algorithm in this phase will be

E + = E - = {flies(c), f l ies(d)}. Since the concept of the exception should not

cover any of the positive examples covered by the rule, the negative examples for

this phase will be the set E~" = E +. Suppose that the classical algorithm will now

compute the rule -~flies(x) ,-- penguin(x). This new rule will be related to the

one of the previous step via a link that gives priority to ~fl ies(x) ~-- penguin(x)
over f l ies(x) ~ bird(x).

Note that we are learning the negative concept "~flies in exactly the same

way as the positive concept f l ies. Again some of the examples in Ei" are

covered by the new rule. These are the "exceptions of the exceptions"~ and

the algorithm again calls the classical learning algorithm to generate a rule

with input examples E + = {flies(e), f l i e s (f) } and E~" = E +. This rule is

f l ies(x) ~- superpenguin(x) which is added to the theory together with a link

from itself to the rule -~flies(x) *-- penguin(x). This last rule does not cover any

of examples in E~" and the procedure terminates. The result is the hypothesis

H

flies(x) ~ bird(x)

129

The hypothesis H together with the background knowledge B cover, under

the admissibility semantics, all the examples in E + and do not cover any of the

examples in E - .

The ideas presented so far can be captured formally in the following algo-

rithm. Let P be the set of positive examples, N the set of negative examples, B

the background knowledge, H the current hypothesis and R a rule initialized to

be empty.

A lgo r i thm NMLearn(P , N, B, R, H)

Begin

Classic-Learn(P, N, B, H')
if E C E ~ , where E = {ele E N and e covered by H'} and

E' = {ele e N and e covered by R}

then

begin

H = H U H~; add priority links from each rule in H I to R;

Mi = {eilei E N and covered by rule R~ e H'}.

For each Mi <> ~ do

N M Learn(Mi, P, B, R~, g")
end

else enumerate the exceptions of R and terminate;

end

Some comments on the algorithm are in order. First note that is possible that

at each step more than one rule may be needed to cover a set of the examples.

Consider the following example.

Example 2. Let the background knowledge be B I = B U {plane(g),plane(h),
plane(k), plane(m), damaged(k), damaged(m)}, where B is the background knowl-

edge of example 1. Moreover let the set of examples be the same with those of

example 1 augmented with the positives flies(g), flies(h) and the negatives

flies(k), flies(m). Then the algorithm will compute the hypothesis

/ ~ flies(x) ~ bird(x)

/

flies(x) ~ superpenguin(x) []

Notice that the algorithm computes the hypothesis in a depth first manner.

Sets of rules computed at each level are explicitly associated with a rule of

the previous level and are considered to express the part of the negative concept

130

that forms of the exception to the rule. Moreover, it is obvious from the recursive

nature of the algorithm NMLearn that the treatment of positive and negative

examples is symmetric. At each odd level (starting from level one) a set of

positive examples is generalized while at each even level set of negative ones.

Another important issue is the treatment of the negative examples by the

Classic-Learn algorithm. No special restriction is put on the rules that this

algorithm returns. Nevertheless, it is clear that the procedure may also cover

some of the negative examples. The non-monotonic algorithm can tolerate such

a coverage, since in the subsequent steps these exceptions will be captured and

introduced in the final hypothesis. We should though stress the fact that the

amount of tolerance that the algorithm exhibits is an important issue to be

discussed further in section 5.

4 P r o p e r t i e s o f t h e A l g o r i t h m

A learning problem is formally stated as a tuple (F, LB, LE, LH), where F is a

correct provability relation, LB the language of the background knowledge, LE
the language of examples and LH the hypothesis language. Then we are given

a background knowledge B E LB and a set of positive and negative examples

E = E + O E- , E E LE. The problem is to find a hypothesis H E LH such that

B, H F E + and Ve E E- , B, H ~/e. In this paper we are concerned with two

particular learning problems. The first is defined by the tuple (l-c, LB, LE, LH)
and the second by the tuple (FN, LB, LE, NLH). The provability relation }-c

refers to a correct provability relation for first order Horn clauses, while the

relation FN to a correct provability relation for non-monotonic logic programs

under the admissibility semantics. Furthermore, LB and LH is the language

of definite logic programs, while NLH denotes the language of non-monotonic

logic programs. Finally, LE is a language of ground atoms.

In order to prove the formal results of this section we will assume that any

input set of examples can be covered by the Classic-Learn algorithm with a

single clause and so NMLearn uses only a single clause at each level. Hence,

the N H L language is now restricted to non-monotonic theories of the form

H = (H1,. . . , Ha), where each Hi is a single rule and the links are of the

form Hi+l > Hi for 1 < i < n. Furthermore, since in this section we are

interested in learning hierarchies the language bias also imposes the restriction

that B ~ V(body(Hi+l) ~body(Hi)) for 1 < i < n, where B is the given

background knowledge. We call this language bias the hierarchy language bias.
Combining this with the single clause bias we get the single hierarchy language
bias.

Furthermore, assume that the algorithm Classic-Learn always computes a

clause e(x) ~ brain(X) that covers all the examples for which the following

minimality condition holds: For any other clause c(x) (--- b(x) that also covers

the same set of examples, B ~ V~(bm~,~(x) ---, b(z)) holds. ~ We call such a

clause a minimal clause or rule. A minimal clause together with the background

2 Here we identify the variables of the two rules c(x) *-- b,n,,(x) and c(~:) *-- b(x) by

131

knowledge entails a set of conclusions that is a subset of the consequences of any

other clause that covers the positive examples at hand.

This minimality condition implies that the hypotheses computed by N M L e a r n

comply with the single hierarchy langauge we have assumed in this section. This

is a straightforward consequence of the observation that for any Hi+l in the hy-

pothesis H = (H1,. . .Hm), Hi+l is a minimal rule that covers a set of examples

Ei+l, which are the exceptions to the rule Hi and so Hi is a rule that also covers

the examples Ei+t.

Next we prove that the procedure N M L e a r n always terminates.

P r o p o s i t i o n 6. The algorithm N M L e a r n terminates on any finite set of ex-

amples that is given as input.

Proof. Let E be a finite set of examples given as input to the algorithm. We will

show that at each iteration of the algorithm the classical algorithm is asked to

cover less examples than at the previous step, and therefore, since E is finite,

the algorithm terminates.

Let E + be the set of positive examples to be covered at step i (i odd) by a

clause rl. Suppose also that rl covers a non-empty set of negative examples E~-.

Otherwise, if E~- = 0 then the algorithm terminates. This set E~" will be covered

by a new (negative) rule ri+l. At this step the algorithm either terminates by

enumeration s when E h l ~ E + or if Ei+T1 C E + it continues to find a rule r,+2

to cover E++I . []

P r o p o s i t i o n 7. The depth of the hypothesis computed by the algorithm N M Learn

on a set of examples E = E + U E - is minimum in the sense that there is no

other hypolhesis that identifies the concept and has smaller depth.

Proof. Let M be an optimal hypothesis wrt the depth such that M I-N E + and

M t/N c for every e E E - . The algorithm in the first step has to cover the set

E + with the minimal clause of E +, say rl. Due to the restricted single hierarchy

language bias of N L H the same set of examples has also to be covered by of one

of the rules of M, say r~. If rl does not cover any examples from E - is optimal.

If not, then since rt is minimal, and so B ~body(r t) --.body(r~), every negative

example that is covered by rl is also covered by r~. This means that if the depth

is increased by the NMLearn by one, then the depth in M is increased by one

as well. Also if we denote by E~- the set of negative examples that have to be

covered by the optimal hypothesis in the next level note that E~- D E~-, where

E~- is the set of negative examples that have to be covered by the algorithm

NMLearn . Since NMLearn computes the minimal clause of E~" we see that

identifying the corresponding variables in the heads of the rules. We assume that the

heads do not contain any non-variable terms. If this is so, we first need to homogenise

such rules by introducing explicit equality conditions in the body of the rule.

s Note that the additional condition of minimality on Classic - Learn ensures that
at each iteration E~I C E +, hence enumeration is only required if Ei++l = E +.

132

if during this step the algorithm covers some positive examples then the same

positive examples will be covered by the optimal hypothesis and hence if the

depth needs to be increased further by the algorithm this will also be true in

M. Iterating these argument see that M has the same depth as the hypothesis

computed by the algorithm. []

We will now show that the algorithm NMLearn identifies in the limit ([7],

[9]) the learning problem (k-t4, LB, LE, NLH), under some restrictions on the

input examples.

Defini t ion 8. Let LE be the language of examples, E~ = {el, e~,...} denote

an infinite stream of examples, such that el E LE x { + , - } and Eoo a complete

enumeration of LE. Let also E + = {e I < e, + > e Ec~} denote the positive

examples and E ~ = {e I < e , - >E E~} the negative ones.

We say that the background knowledge B is par t ia l ly su i tab le for E~ and LH
if 3H E LH such that B, H l- E +. We also say that the background knowledge

B is su i tab le for E~ and LH iff it is partially suitable and Ve E E~, B, H V e.

We say that a learning problem (~-, LB, LE, LH) is par t ia l ly identif ied in the

limit by an algorithm LEARN iff for every stream Eoo and partially suitable

background knowledge B E LB, LEARN accepts incrementally E ~ and there

exists a step i for which Vj > i : Hi = Hj and B, Hi t- E +. 13

Def ini t ion 9. A learning problem (I-, LB, LE, LH) is ident if ied in t he limit

by an algorithm LEARN iff for every stream Eoo = E + U E~ and suitable

background knowledge B E LB, LEARN accepts incrementally E ~ and there

exists a step i for which Vj > i : Hi = Hj and B, Hi ~- E +, Ve E E~, B, Hi ~/e
holds. []

The tbllowing definition is used in the next theorem.

Def in i t ion 10. A set of examples E = E + U E - is called s t r ic t ly cons is ten t

wrt a background knowledge B, if there are no subsets, E + C E + and E}- _C E -

such that the minimal rules Hi of E + and Hj of E)- have equivalent bodies under

B, i.e. B ~ V (body(Hi) ~ body(Hi)) . []

T h e o r e m l l . If the learning problem (~'c, LB, LE, LH) is partially identified
in the limit by the algorithm Classic.Learn, then the learning problem (~-N
, LB, LE, NLH) on any strictly consistent infinite set of examples Eoo is iden-
tified in the limit by the algorithm N M Learn.

Proof. Let Eoo = E~ U E +. Then since Classic-Learn partially identifies in the

limit Eoo then after some step it will stabilize and there will be a rule Hi such

that Vj > i : Hi = H i and B, Hi I- E +. We call Hi H~. If H~ does not cover

any negative example then the concept is identified. If not then at some point

the negative examples will be encountered and the second level of the algorithm

will be activated. So again because Classic-Learn partially identifies in the limit

the classical learning problem, at some point after the stabilization of the first

133

rule a second negative rule Hs 2 will be stabilmed that will imply all the negative

examples that H~ covers. Note that this second rule will identify in the limit the

infinite stream of examples E2 = E+UE~, where E + = {elBUH ~ Fc e, e E E~}
and E~" = E~ - E~, where E~- = E~o. Iterating these arguments we can

construct a sequence of rules HA, H ~ , . . .H~ n each of which partially identifies

a learning problem on an infinite stream of examples Ei = E + U E~ where

E + = {eIBUH71 ~-c e,e e E?_I} and E~" = Eoo - E +. Such a finite sequence

will not be computed by the algorithm only if the algorithm reaches a point

where an enumeration is required or if an unbounded sequence of rules is needed

in order to identify the set Eoo. The first case can not occur as Er is strictly

consistent. If the second case occurs then note that due to the optimality of the

depth of the hypothesis constructed by the NMLearn algorithm (proposition

7) no other finite set of rules can cover Eoo. So the background knowledge and

the set E~ are not suitable and hence there is nothing to prove for algorithm.

Assume now that NMLearn computes a finite set of rules H = {H1, . . . , Hm}

and terminates without enumeration. Let E? I- be the set of examples covered

minimally by the rule Hi. We first prove that for every e E E +, B, H }-N e

(the background knowledge B will be omitted from the premises for the rest

of the proof). Let E++I be the last set on an odd level in which e occurs. If

2k + 1 = m we see that Hm ~'c e and hence HN }- e. Assume that 2k + 1 r If

H~k+z ~/c e then for all 2n > 2k + 2, H2n ~/c e and then H }-N e. If H2k+2 }-C e

then by construction of NMLearn, E+k+l can not be the last set in which e

occurs. Hence H }-N e, for every e E E +.

We next prove that if e E E~, then H ~t~r e. Assume the contrary and let

H~k+l be the last rule on an odd level, such that H2k+t ~'c e. If 2k + 1 = m

then the NMLearn will compute a new rule Hm+l such that Hm+l }-c e. This

gives a contradiction since Hm is the last such rule. Let 2k + 1 < m. Then by

construction H2k+2 }-c e. Furthermore, H2k+z }/c e since H~k+l is the last rule

on an odd level, such that H2k+l bc e. Hence H [/N e. 1:3

5 Further Discussion

The convergence result presented in the previous section is restricted to the

case of strictly consistent sets of examples. Sets of examples that are not strictly

consistent reveal important issues for practical systems that address the problem

of learning exceptions, both on an algorithmic as well as a conceptual level. The

following example is illustrative.

Example3. Consider the background knowledge B = {bird(a), feathered(a),
bird(a'), feathered(a'), bird(b), light(b), bird(b'), light(b'), bird(e), feathered(e),
broken-wings(c), bird(d), feathered(c'), broken-wings(d), bird(d), light(d),
big(d), bird(d~), light(d'), big(dr)), and the examples E = E + UE- where E + =

{flies(a), flies(b), flies(a'), flies(b') } and E - = {flies(c), flies(d), flies(c'),
flies(d')}. ra

134

In this example the minimal clause of both E + and E - is f l i es (x) ~- bird(x).

The algorithm N M L e a r n of the previous section will terminate by enumerating

the exceptions of the rule f l ies(x) +-- bird(x). Note however that the following

hypothesis:

(f~ fi~e flies(x) ~ bird(x), feathered(x)

s(x) ~- bird(x), feathered(x), broken-wings(x)

~ flies(x_.)r bird(x), tight(x)

flies(x) bird(x), light(x), big(x)

covers all the positive examples and none of the negative without the need for

any enumeration. In this case (see also example 3.2) it is clear that the single

hierarchy language bias is too restrictive as these examples are inherently multi-

hierarchical and thus the algorithm is forced to enumerate. In general to avoid

enumeration in the N M L e a r n algorithm whenever it reaches a stage where

E = E t holds for R and H J, the algorithm can backtrack to the point where

R was computed to generate a set of new rules to replace R which are more

specific than R in the sense that they have less consequences than those of R.

One possible way to do this is to employ the standard "covering approach" where

we split the set of examples that we want to cover into smaller subsets and try

to cover each of these separately.

The negative input information present in the negative examples can be used

in two different ways during the learning process of the algorithm N M L e a r n .

On the one hand they can be used within the classical algorithm employed by

N M L e a r n to specialise the monotonic generalization rules that this generates.

On the other hand, they can also be used as examples that define a part of the

negative concept which forms an exception. We thus see that negative informa-

tion can play a double role, either that of specialization or that of exception.

Clearly each one of these roles on its own is not optimal. In the case where

the only role is that of specialization we may have situations (e.g. hierarchical

concepts) where it is not possible to find an appropriate theory. On the other

hand, if we treat all negative information as exception then we run the risk of

been overgeneral and thus overtolerant as the above example 3 shows. In gen-

eral, a learning system must find a balance between the two different uses of

the negative information. One possible strategy to achieve this balance in the

algorithm N M L e a r n is to allow the Classic-Learn to use the negative examples

to specialise as much as possible (without losing coverage of any of the positive

examples) and then treat the remaining negative examples as exceptions.

Finally, note that it may happen that some of the negative examples are

used neither in the specialization process by the Classic-Learn algorithm nor

as exceptions by N M L e a r n . Those examples remain essentially unused. Hence

it is reasonable to require that the learning process should try to learn the part

of the negative concept implied by these examples. In fact, this learning of the

negated concept is necessary in some situations. Consider the following example.

135

Example $. Let B = {Republican(a), Republican(b), Quacker(c), Quacker(d)
and E = E+UE -, where E + = {Pacifist(c), Pacifist(d)} and E - = {Pacifi-
st(a), Pacifist(b)}. O

The obvious generalization is the clause Pacifist(z) ~ Quaeker(z). How-

ever, note that from this theory we can entail Pacifist(m) for any m such that

Republican(m) and Quacker(m) holds although intuitively in view of the neg-

ative examples we do not expect this. If we require that we also learn the concept

that generalizes the unused negative examples, the clause -,Pacifist(z) ~ Repu-
blican(z) will be also computed. Then within this new theory under the admis-

sibility semantics, the value of Pacifist(m) is undefined.

This learning of the negative concept can easily be accommodated within our

framework by requiring that after NMLearn terminates on the original input

of examples a second run is activated to learn input of examples a second run is

activated to learn the negative examples unused in the first run. This will give a

second (dual) hierarchy whose rules are not related to these of the first hierarchy

and thus allow for the possibility of many admissible extensions. As a result of

this, under the skeptical semantics, some literals may become undefined. Note

that in this way we combine together the non-monotonic learning of a hierarchical

concept, as in [16], with learning the negative concept as in [3] and [5].

6 C o n c l u s i o n s - F u r t h e r w o r k

We have proposed a framework for learning non-monotonic logic programs and

have studied within this framework the problem of learning a hierarchical con-

cept from a set of examples, The main features of our approach are (i) the

exploitation of a classical learning algorithm that is tolerant to the negative in-

formation, (ii) the handling of exceptions through learning the relevant part of

the negative concept and (iii) the ability to complete within the same frame-

work the learning of the negative concept. These features have been naturally

accommodated within the particular non-monotonic logic programming formal-

ism that we have adopted that embodies together with the NAF principle a form

of explicit negation.
Our approach is closely related to that of [16]. Nevertheless, we argue that a

further step may be useful if the task is to learn the negative concept completely.

This can be easily accommodated within the particular non-monotonic formal-

ism used in this paper. The definition of the negative concept through explicit

negation provides a more expressive representation language where undefinet-

ness can be accommodated. The idea of learning the negative concept and thus

allowing a three valued semantics, was also used in [5] and [3]. However, in these

works the negative concept is not related so strongly to the positive one in the

sense that they do not generate explicit hierarchical structures for the concept

to be learned. Thus our work provides a framework that links together these

works [3], [5], [16] where one can investigate how these different approaches can

complement each other. We are planning to test empirically the theoretical work

136

developed here, compare these results with those of [3], [5] and investigate how

we can link our approach to these other methods in order to get better results.

We also plan to investigate to what extend our techniques can be applied to

problems of refining classifications learned by artificial neural network systems.

Other possible directions for further research are the following. One issue is

the investigation of the dual nature of negative information for specialization

and exceptions as pointed out in section 5.

Another issue is the extension of the non-monotonic learning algorithm along

two main directions. The first is to modify the algorithm with incremental learn-

ing capabilities ([4]). Preliminary investigations indicate that this can be done in

a way analogous to NMLearn . Also incremental specialization techniques (e.g.

[11], [17]) may be useful in developing incremental variants of the algorithm.

The second extension that needs further study is the problem of learning with a

background knowledge which is itself non-monotonic. We are currently investi-

gating how classical algorithms such as those based on inverse resolution ([12])

can be modified to work on non-monotonic background knowledge.

Acknowledgements We thank the anonymous referees for many valuable com-

ments. This work was partly supported by the ESPRIT BRA project Compulog

2 no 6810.

References

1. M. Bain and S. Muggleton, Non-monotonic learning. In: J.E. ttayes-Michie and E.
Tyugu, eds., Machine Intelligence 1~. Oxford University Press, 1990

2. K.L. Clark. Negation as failure. In Logic and databases, Gallaire and Minker, eds.,
Plenum Press, 1978.

3. J. Cussens, A. Hunter and A. Srinivasan. Generating explicit ordering for non-
monotonic logics. Proc. of AAAI-93.

4. L. De Raedt. Interactive Theory Revision: an Inductive Logic Programming Ap-
proach. Academic Press, 1992.

5. L. De Raedt and M. Bruynooghe. On negation and three-valued logic in interactive
concept learning. Proc. of the 9th European Conference on AI, ECAI-90, 207-212,
1990.

6. M. Gelfond and V. Lifschitz. The stable model semantics for logic programs. Proc.
of the 5th International Conference and Symposium on Logic Programming, 1070-
1080, MIT Press, 1990.

7. E.M. Gold. Language identification in the limit. Information and Control, 10:447-
474, 1967.

8. A. Kakas, P. Mancarela and P. M. Dung. The acceptability semantics for logic
programs. Proc. of 11th Inter. Conference on Logic Programming, ICLP-94, 504-
519, MIT Press, 1994.

9. J-U. Kietz and S. Dzeroski. Inductive logic programming and learnability. SIGART
Newsletters, 5(1), 1994.

10. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

137

11. C. Ling. Non-Monotonic specialization. Proc. of the Inductive Logic Programming
Workshop, ILP-91, 1991.

12. S. Muggleton and W. Buntime. Machine invention of first order predicates by

inverting resolution. Proc. of the 5th Inter. Conference on Machine Learning, 339-

352, Kaufmann, 1988.
13. S. Muggleton. Inductive logic programming. New Generation Computing, 8, 295-

318, 1991.
14. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.

submitted.
15. T. Przymusinski, On the declarative and procedural semantics of logic programs.

Journal of Automated Reasoning, 5, 167-205, 1989.

16. A. Sfinivasan, S. Muggleton and M. Bain. Distinguishing exceptions from noise in

non-monotonic learning. Proc. of the International Workshop on Inductive Logic
Programming, S. Muggleton and K. Furukawa, Japan, 1992.

17. S. Wrobel. On the proper definition of minimality in specialization and theory revi-

sion. Proc. of the European Conference on Machine Learning, ECML.93, Vienna,

1993, LNAI 667, Springer Verlag.
18. A. Van Gelder, K. A. Ross and J. S. Schlipf. Unfounded sets and well-founded

semantics for general logic programs. Proc. of the 7th Symposium on Principles of
Database Systems~ PODS.88, 221-230, ACM Press, 1988.

