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Abstract

Learning dynamic Bayesian network structures provides a principled mechanism for identifying

conditional dependencies in time-series data. An important assumption of traditional DBN struc-

ture learning is that the data are generated by a stationary process, an assumption that is not true in

many important settings. In this paper, we introduce a new class of graphical model called a non-

stationary dynamic Bayesian network, in which the conditional dependence structure of the under-

lying data-generation process is permitted to change over time. Non-stationary dynamic Bayesian

networks represent a new framework for studying problems in which the structure of a network is

evolving over time. Some examples of evolving networks are transcriptional regulatory networks

during an organism’s development, neural pathways during learning, and traffic patterns during the

day. We define the non-stationary DBN model, present an MCMC sampling algorithm for learning

the structure of the model from time-series data under different assumptions, and demonstrate the

effectiveness of the algorithm on both simulated and biological data.

Keywords: Bayesian networks, graphical models, model selection, structure learning, Monte

Carlo methods

1. Introduction

A principled mechanism for identifying conditional dependencies in time-series data is provided

through structure learning of dynamic Bayesian networks. An important requirement of this learn-

ing is that the time-series data is generated by a distribution that does not change with time—it is

stationary. The assumption of stationarity is adequate in many situations since certain aspects of

data acquisition or generation can be easily controlled and repeated. However, other interesting and

important circumstances exist where that assumption does not hold and potential non-stationarity

cannot be ignored.

The inspiration for this model of “networks evolving over time” comes primarily from neurobi-

ology. Dynamic Bayesian networks have been used to identify networks of neural information flow

that operate in the brains of songbirds (Smith et al., 2006). When a juvenile male songbird is born,

he cannot sing any songs; however, as he ages, he learns songs from other birds singing around him.

As the songbird learns from its environment, the networks of neural information flow slowly adapt

to make the processing of sensory information more efficient. The analysis carried out by Smith

et al. (2006) was limited by the fact that the researchers were forced to learn networks on subsets of

the data since DBN structure learning algorithms assume stationarity of the data. Therefore, a learn-
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ing algorithm based upon dynamic Bayesian networks that relaxes the data stationarity assumption

would be ideally suited to this problem.

As another example, structure learning of DBNs has been used widely in reconstructing tran-

scriptional regulatory networks from gene expression data (Friedman et al., 2000; Hartemink et al.,

2001). But during development, these regulatory networks are evolving over time, with certain con-

ditional dependencies between gene products being created as the organism develops, and others

being destroyed. As yet another example, one can use a DBN to model traffic flow patterns. The

roads upon which traffic passes do not change on a daily basis, but the dynamic utilization of those

roads changes daily during morning rush, lunch, evening rush, and weekends.

If one collects time-series data describing the levels of gene products in the case of transcrip-

tional regulation, traffic density in the case of traffic flow, or neural activity in the case of neural

information flow, and attempts to learn a DBN describing the conditional dependencies in the time-

series, one could be seriously misled if the data-generation process is non-stationary.

Here, we introduce a new class of graphical model called a non-stationary dynamic Bayesian

network (nsDBN), in which the conditional dependence structure of the underlying data-generation

process is permitted to change over time. In the remainder of the paper, we introduce and define

the nsDBN framework, present a simple but elegant algorithm for efficiently learning the structure

of an nsDBN from time-series data under a variety of different assumptions, and demonstrate the

effectiveness of these algorithms on both simulated and experimental data.

1.1 Related Work

Representing relationships or statistical dependencies between variables in the form of a network

is a popular technique in many communities, from economics to computational biology to soci-

ology. Recently, researchers have been interested in elucidating the temporal evolution of genetic

regulatory networks (Arbeitman et al., 2002; Luscombe et al., 2004) and neural information flow

networks (Smith et al., 2006), but were forced to perform their analysis on subsets of the data since

their structure learning algorithms assumed stationarity of the data. Additionally, some economics

techniques require prior specification of a graphical model (for a particular data set) and assume it is

stationary (Carvalho and West, 2007) when the data set may actually be highly non-stationary (Xuan

and Murphy, 2007). Therefore, the identification of non-stationary behavior in graphical models is

of significant interest and importance to many communities.

We divide models of evolving statistical dependencies into those that model changing structures

and those that model changing parameters, and describe examples of both in this section. Addition-

ally, we briefly explain how our approach compares and some of the advantages it provides over

other methods.

1.1.1 STRUCTURAL NON-STATIONARITY

Approaches that learn structural non-stationarities are those that explicitly model the presence of

statistical dependencies between variables and allow them to appear and disappear over time (e.g.,

they define directed or undirected networks whose edges change over time).

In recent work modeling the temporal progression of networks from the social networks commu-

nity (Hanneke and Xing, 2006), the p∗ or exponential random graph model (ERGM) (Wasserman

and Pattison, 1996) was generalized to the temporal ERGM (tERGM) model, where a structural

evolutionary process is modeled with a set of features between adjacent network structures (Han-
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neke and Xing, 2006). The tERGM model was further extended to the hidden tERGM (htERGM)

to handle situations where the networks are latent (unobserved) variables that generate observed

time-series data (Guo et al., 2006, 2007).

While the transition model of an htERGM allows for nearly unlimited generality in characteriz-

ing how the network structure changes with time, it is restricted to functions of temporally adjacent

network structures. Therefore, an evolutionary process that differs between early observations and

later observations may not be effectively captured by a single transition model. Also, the emission

model defined in Guo et al. (2007) must be estimated a priori and only captures pairwise corre-

lations between variables; more complicated relationships between multiple variables that change

over time may be missed altogether. Finally, Guo and colleagues focus on identifying undirected

edges. Although it is possible to adapt the ERGM model for directed graphs, it becomes more

difficult to define the parameters of the tERGM and the emission model assuming directed edges.

In the continuous domain, some research has focused on learning the structure of a time-varying

undirected Gaussian graphical model (Talih and Hengartner, 2005). These authors use a reversible-

jump MCMC approach to estimate the time-varying variance structure of the data. They explicitly

model the network’s edges as non-zeroes in the precision matrix. While this model allows for fast,

efficient sampling, it only does so by defining several restrictions to the model space. First, the

structural evolutionary process is piecewise-stationary and restricted to single edge changes. Rapid

and significant structural changes would be approximated by a slowly changing network structure,

resulting in an inaccurate portrayal of the true evolutionary behavior of the data-generating process.

Additionally, the total number of segments or epochs in the piecewise stationary process is assumed

known a priori, thereby limiting application of the method in situations where the number of epochs

is not known. Finally, this approach only identifies undirected edges (correlations), while time-

series data should allow one to identify directed edges (conditional dependencies).

A similar algorithm—also based on undirected Gaussian graphical models—has been devel-

oped to segment multivariate time-series data (Xuan and Murphy, 2007). This approach iterates

between a convex optimization for determining the graph structure and a dynamic programming

algorithm for calculating the segmentation. This results in some notable advantages over Talih and

Hengartner (2005): it has no single edge change restriction and the number of segments is calcu-

lated a posteriori. The main restriction, however, is that the graph structure must be decomposable.

Additionally, because this method models structure as non-zeroes in the precision matrix, it only

identifies undirected edges. Finally, the networks (precision matrices) in each segment are assumed

independent, preventing the sharing of parameters and data between segments.

Another recently proposed model for identifying evolving networks is the temporally smoothed

l1-regularized logistic regression (TESLA) method, described by Kolar et al. (2010) and Ahmed and

Xing (2009). This approach involves learning a discrete binary Markov random field with sparse,

varying parameters. A useful advantage of this model is that can be reparameterized to account

for either smoothly varying or abrupt sudden changes to the network structure. Additionally, it

scales well to thousands of nodes. However, it is undirected, requires binary data, and only captures

pairwise relationships between variables. The binary input and pairwise relationship requirements

may be relaxed, but the likelihood function would have to be significantly modified to incorporate

cliques; the resulting optimization problem might become intractable.
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1.1.2 PARAMETER NON-STATIONARITY

Approaches that learn parameter non-stationarities are those that explicitly model the evolution

of parameters over time. Here we only focus on a few that can be represented as networks with

temporally changing parameters.

Switching state-space models (SSMs) represent a piecewise-stationary extension of linear dy-

namic systems (Ghahramani and Hinton, 2000). In an SSM, a sequence of observations is modeled

as a function of several independent hidden variables which is itself controlled by a switch vari-

able. The hidden variables as well as the switch variable all have Markovian dynamics. While this

approach is similar to ours in that it describes the evolution of a piecewise-stationary process, it

does have some notable differences. Our model has no hidden variables, only observed variables.

Critically, our variables are not assumed to be independent; rather, their dependencies are unknown

and must be estimated a posteriori. Additionally, the piecewise-stationary process in our approach

does not follow Markovian dynamics, like the switch variable in an SSM.

A more closely related model is the recently published non-homogeneous Bayesian network

(Grzegorczyk et al., 2008). In this model, the conditional distributions of the variables are assumed

to follow a mixture of Gaussians. Each observation is allocated to a single mixture component

where the parameters and number of the mixture components are determined a posteriori using an

allocation sampler. Unfortunately, an allocation sampler does not allow data to be shared across

different mixture components since they are assumed independent. However, this model seems

to do a good job of capturing the non-stationary behavior of parameters in a Gaussian Bayesian

network, assuming that the underlying structure is inferred correctly.

1.1.3 OUR APPROACH

Although we provide more detail in Section 3, for the purpose of comparison, we define our ap-

proach as the identification of a discrete Bayesian network that evolves according to a piecewise-

stationary process where edges are gained and lost over time. Building on the Bayesian network

model allows us to identify directed networks and results in efficient learning (under certain as-

sumptions). Additionally, when the conditional probability distributions of the Bayesian network

are multinomial, we can identify linear, non-linear, and combinatorial interactions between vari-

ables. Finally, the piecewise-stationary assumption (and additional constraints on how and when

edge changes occur) allows our method to scale to large data sets with many variables and provides

a natural parameterization for placing priors on the structural evolution process.

Our method falls into the category of models that identify non-stationarities in structure, not

parameters. In the rest of this paper, we define non-stationarities as times at which conditional

dependencies between variables are gained or lost (i.e., edges are gained or lost). We have chosen

to focus on structural non-stationarity for several reasons. First, we are not as interested in making

predictions about future data (such as might be the case with spam prediction) as we are in the

analysis of collected data to identify non-stationary statistical relationships between variables in

multivariate time-series. Additionally, the problems we analyze in this paper are highly multimodal

in the posterior over structures and likely to be even more varied in the posterior over parameters.

By assuming conjugate parameter priors, we address both problems by averaging out all possible

parameters and only examining the posterior over structures.

However, we recognize that the parameters of the conditional distributions may also change

with time. Some changes to the parameters of the conditional distributions may effectively result in
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a structural change, while other changes may be dramatic, yet not alter the structure. Ultimately, a

trade-off must be made between simplifying model assumptions resulting in greater statistical power

versus a completely general framework requiring approximation schemes. Under our modeling

assumptions, we can identify non-stationarities in the parameters of the conditional distributions that

are significant enough to result in structural changes; we assume other changes are small enough to

not alter edges in the predicted structure.

2. Brief Review of Structure Learning of Bayesian Networks

Bayesian networks are directed acyclic graphical models that represent conditional dependencies

between variables as edges. They define a simple decomposition of the complete joint distribution—

a variable xi is conditionally independent of its non-descendants given its parents. Therefore, the

joint distribution of every variable xi can be rewritten as P(x1, . . . ,xn) = ∏i P(xi|πi), where πi are

the parents of xi. Bayesian networks may be learned on time-series data, but the semantics are

slightly different, leading to the dynamic Bayesian network (DBN) model. DBNs enable cyclic

dependencies between variables to be modeled across time. DBNs are a special case of Bayesian

networks, with modeling assumptions regarding how far back in time one variable can depend

on another (minimum and maximum lag), and constraints placed on edges so that they do not go

backwards in time. For notational simplicity, we assume hereafter that the minimum and maximum

lag are both 1.

The task of inferring the structure (i.e., the set of conditional dependencies) of a Bayesian net-

work is typically expressed using Bayes’ rule, where the posterior probability of a given network

structure G (i.e., the set of conditional dependencies) after having observed data D is given by

P(G|D) =
P(D|G)P(G)

P(D)
.

Since P(D) is the same for all structures, we see that P(G|D) ∝ P(D|G)P(G). The prior over

networks P(G) can be used to incorporate prior knowledge about the existence of specific edges

(Bernard and Hartemink, 2005) or the overall topology of the network (e.g., sparse); often, prior

knowledge is not available and P(Θ) is assumed uniform. The marginal likelihood P(D|G) is further

defined in terms of the parameters Θi of the conditional probability distributions (CPDs) between a

variable and its parents P(xi|πi,Θi). The entire set of parameters Θi for all variables is simply Θ.

P(D|G) =
∫

P(D|Θ,G)P(Θ|G)dΘ. (1)

One might be interested in inferring the values of Θ given a particular network, but we will be

focusing on learning the network itself, or the set of conditional dependencies. In computer science,

this task is often referred to as structure learning; in statistics, it is often called model selection.

More detailed reviews of structure learning of Bayesian networks can be found in Buntine (1996),

Chrisman (1998), Krause (1998), and Murphy (2001).

For the remainder of this section, we review the most common approaches to inferring dynamic

Bayesian networks, thereby setting the stage for what changes we will need to make in the following

section to handle inference in the non-stationary setting. For brevity, we will focus on dynamic

Bayesian networks with discrete variables, though the ideas could also be applied to networks of

continuous variables. Details specific to structure learning of Bayesian networks with continuous

variables can be found in Hofmann and Tresp (1995) and Margaritis (2005).
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2.1 Evaluating the Marginal Likelihood P(D|G)

Evaluation of the marginal likelihood in Equation (1) can be performed either approximately or

exactly. The marginal likelihood can be approximated with the Akaike information criterion (AIC),

the Bayesian information criterion (BIC) (Friedman et al., 1998), or the minimum description

length (MDL) (Lam and Bacchus, 1994; Suzuki, 1996) metric. Each of these metrics suggests

how model complexity should be penalized. For example, the AIC metric penalizes free parame-

ters less strongly than the BIC metric; therefore, a Bayesian network learned using the AIC metric

would be likely be more dense than a Bayesian network learned using the BIC metric.

Alternatively, if a conjugate prior is placed on Θ which is then marginalized out, the value of

P(D|G) can be computed exactly. Assuming that Θ parameterizes multinomially distributed condi-

tional probability distributions, one can place a conjugate Dirichlet prior on the parameters Θ and

then marginalize them out to obtain the Bayesian-Dirichlet (BD) metric. The BD metric can be

further modified so that all of the networks that represent the same set of conditional independence

relationships have the same probability; this is called the Bayesian-Dirichlet equivalent (BDe) met-

ric (Heckerman et al., 1995). By using a Dirichlet prior and marginalizing over all values of Θ, the

BD and BDe metrics inherently penalize more complex models, so a prior on the network P(G)
may not always be necessary. The primary advantage of the BD family of metrics is that the evalu-

ation of P(D|G) is exact and can be computed in closed form. However, if the assumption that the

parameters of CPDs are multinomially distributed is incorrect, these metrics might not find the true

network of conditional dependencies.

Since we will be modifying it later in this paper, we show the closed-form expression for the

BDe metric below:

P(D|G) =
n

∏
i=1

qi

∏
j=1

Γ(αi j)

Γ(αi j +Ni j)

ri

∏
k=1

Γ(αi jk +Ni jk)

Γ(αi jk)
(2)

where qi is the number of configurations of the parent set πi, ri is the number of discrete states

of variable xi, Ni jk is the number of times xi took on the value k given the parent configuration j,

Ni j = ∑ri

k=1 Ni jk, and αi j and αi jk are Dirichlet hyper-parameters on various entries in Θ. If αi jk is

set to α/(qiri) (essentially a uniform Dirichlet prior), we get a special case of the BDe metric: the

uniform BDe metric (BDeu), whose parameter priors are all controlled by a single hyperparameter

α.

2.2 Deciding Between Search or Sampling Strategies

Once a form of the marginal likelihood P(D|G) is defined and a method for evaluating it is chosen,

one must decide whether the objective is to identify the best network or to capture the uncertainty

over the space of all posterior networks. Search methods may be used to find the best network or

set of networks (i.e., a mode in the space of all networks), while sampling methods may be used to

estimate posterior quantities from the space of all networks.

Search methods may be exact or heuristic, but exact search for Bayesian networks is compu-

tationally infeasible for more than about 30 variables because the number of possible networks

is super-exponential in the number of variables. In fact, identifying the highest scoring Bayesian

network has been shown to be NP-Hard (Chickering et al., 1994). If the maximum number of

parents for any variable is limited to some constant pmax, the total number of valid networks be-

comes exponential in the number of variables; however, finding the best network is still NP-Hard

(for pmax ≥ 2). Therefore, heuristic searches are often employed, including greedy hill-climbing,
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simulated annealing (Heckerman et al., 1995), the K2 algorithm (Chickering et al., 1995), genetic al-

gorithms (Larrañaga et al., 1996), and even ant colony optimization (de Campos et al., 2002). Most

heuristic searches perform well in a variety of settings, with greedy hill-climbing and simulated

annealing being the most commonly used techniques.

A different approach from search is the use of sampling techniques (Madigan et al., 1995; Giu-

dici et al., 1999; Tarantola, 2004). If the best network is all that is desired, heuristic searches will

typically find it more quickly than sampling techniques. However, sampling methods allow the

probability or importance of individual edges to be evaluated over all possible networks. In set-

tings where many modes are expected, sampling techniques will more accurately capture posterior

probabilities regarding various properties of the network. The primary disadvantage of sampling

methods in comparison to search methods is that they often take longer before accurate results

become available.

A common sampling technique often used in this setting is the Metropolis-Hastings algorithm,
which is a Markov chain Monte Carlo (MCMC) method. The M-H acceptance probability for
moving from state x to state x′ is shown below, where each state is a DBN.

α(x,x′) = min

{

1,
p(D|x′)

p(D|x)
×

p(x′ → x)

p(x → x′)

}

= min







1,
p(D|x′)

p(D|x)
︸ ︷︷ ︸

likelihood ratio

×
∑M′ p(M′)p(x|x′,M′)

∑M p(M)p(x′|x,M)
︸ ︷︷ ︸

proposal ratio







(3)

where M is the move type that allows for a transition from state x to x′ and M′ is the reverse move

type for a transition from state x′ back to state x. While multiple moves may result in a transition

from state x to state x′ (and vice versa), typically there is only a single move for each transition.

In such a case, the sums over M and M′ each only include one term, and the proposal ratio can be

split into two terms: one is the ratio of the proposal probabilities for move types and the other is the

ratio of selecting a particular state given the current state and the move type. The choice of scoring

metric determines the likelihoods, and p(M′) and p(M) are often chosen a priori to be equivalent

or simple to calculate.

2.3 Determining the Move Set

Once a search or sampling strategy has been selected, one must determine how to move through

the space of all networks. A move set defines a set of local traversal operators for moving from

a particular state (i.e., a network) to nearby states. The set of states that can be reached from

the current one is often called the local neighborhood of that state. The values of p(x′|x,M) and

p(x|x′,M) in the proposal ratio are defined by the move set.

Ideally, the move set includes changes that allow posterior modes to be frequently visited. For

example, it is reasonable to assume that networks that differ by a single edge will have similar

likelihoods. A well-designed move set results in fast convergence since less time is spent in the low

probability regions of the state space. For example, with traditional Bayesian networks, Madigan

et al. (1995) proposed that the move set be: add an edge and delete an edge. However, it was later

shown by Giudici and Castelo (2003) that the convergence rate could be increased with the addition

of another move to the move set: reverse an edge.
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Figure 1: An example nsDBN with labeled components (namely, transition times t1 and t2 and edge

change sets ∆g1 and ∆g2). Edges that are gained from the previous epoch are shown as

thicker lines and edges that will be lost in the next epoch are shown as dashed lines. Note

that the network at each epoch is actually a DBN drawn in compact form, where each

edge represents a statistical dependence between a node at time t and its parent at the

previous time t −1.

3. Learning Non-Stationary Dynamic Bayesian Networks

While DBNs are excellent models for describing dependencies between time-series random vari-

ables, they cannot represent or reason about how these dependencies might change over time. In

contrast, our nsDBN model is capable of characterizing dependencies between temporally observed

variables, as well as reasoning about whether and how those dependencies change. Because DBNs

are well studied and well understood, we have chosen to introduce the details of our nsDBN model

by building upon the existing DBN model. Therefore, we use this section to detail how the structure

learning procedure for DBNs needs to be modified and extended to account for non-stationarity

when learning a non-stationary DBN.

Assume that we observe the state of n random variables at N discrete times. Call this multivari-

ate time-series data D, and further assume that it is generated according to a non-stationary process,

which is unknown. The process is non-stationary in the sense that the network of conditional de-

pendencies prevailing at any given time is itself changing over time. We call the initial (dynamic)

network of conditional dependencies G1 and subsequent networks are called G2,G3, . . . ,Gm. We

define ∆gi to be the set of edges that change (either added or deleted) between Gi and Gi+1. The

number of edge changes specified in ∆gi is si. We define the transition time ti to be the time at which

Gi is replaced by Gi+1 in the data-generation process. We call the period of time between consecu-

tive transition times—during which a single network of conditional dependencies is operative—an

epoch. So we say that G1 prevails during the first epoch, G2 prevails during the second epoch, and

so forth. We will refer to the entire series of prevailing networks as the structure of the nsDBN.

Figure 1 shows an example nsDBN with the components labeled.

3.1 Updating the Marginal Likelihood and Incorporating Priors

Since we wish to estimate a set of networks instead of one network we must derive a new expression

for the marginal likelihood. Consider the simplest case where m = 2 and the transition time t1 at

which the structure of the nsDBN evolves from network G1 to network G2 is known. We would like
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to find the networks G1 and G2 that have the highest probability given the observed time-series data

D and prior. Thus, we want to find the networks that maximize the expression below:

P(G1,G2|D, t1) =
P(D|G1,G2, t1)P(G1,G2|t1)

P(D|t1)
∝ P(D|G1,G2, t1)P(G1,G2|t1).

To maximize the marginal likelihood P(D|G1,G2, t1) in the above expression, one approach might

be to estimate a different network for each epoch. Unfortunately, if the number of observations in

each epoch is small, accurate reconstruction of the correct structure may be difficult or impossible

(Friedman and Yakhini, 1996; Smith et al., 2003). Additionally, learning each network separately

might lead to predictions that are vastly different during each epoch. If prior knowledge about the

problem dictates that the networks will not vary dramatically across adjacent epochs, information

about the networks learned in adjacent epochs can be leveraged to increase the accuracy of the

network learned in the current epoch.

Expanding the simple formulation to multiple epochs, assume there exist m different epochs

with transition times T = {t1, . . . , tm−1}. The network Gi+1 prevailing in epoch i+ 1 differs from

network Gi prevailing in epoch i by a set of edge changes we call ∆gi. We would like to determine

the sequence of networks G1, . . . ,Gm that maximize the posterior given below:

P(G1, . . . ,Gm|D,T ) ∝ P(D|G1, . . . ,Gm,T )P(G1, . . . ,Gm|T ). (4)

Since each network differs from the previous one by a set of edge changes, we can rewrite the prior

and obtain the expression below:

P(G1, . . . ,Gm|T ) = P(G1,∆g1, . . . ,∆gm−1|T ).

By writing the objective function this way, we rephrase the problem as finding the initial network

and m− 1 sets of edge changes that best describe the data. Unfortunately, the search space for

finding the best structure is still super-exponential (in n) for the initial network and the task of

identifying the other networks is exponential (in both m and n). However, using this formulation, it

is easy to place some constraints on the search space to reduce the number of valid structures. If we

specify that the maximum number of parents for any variable is pmax and, through priors, require

that the maximum number of edge changes for any ∆gi is smax, the search space for finding the best

structure becomes exponential (in n) for the initial network and exponential (in m and smax) for the

other networks.

We assume the prior over networks can be further split into components describing the initial

network and subsequent edge changes, shown below:

P(G1,∆g1, . . . ,∆gm−1|T ) = P(G1)P(∆g1, . . . ,∆gm−1|T ).

leading to the final form of the posterior

P(G1,∆g1, . . . ,∆gm−1|D,T ) ∝ P(D|G1,∆g1, . . . ,∆gm−1,T )P(G1)P(∆g1, . . . ,∆gm−1|T ). (5)

As in the stationary setting, if prior knowledge about particular edges or overall topology is avail-

able, an informative prior can be placed on P(G1). In the context of the simulations and experiments

in this paper, we had no prior knowledge about the network; thus, we assumed a uniform prior on

P(G1). We do, however, place some prior assumptions on the ways in which edges change in the
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structure. First, we assume that the networks evolve smoothly over time. To encode this prior

knowledge, we place a truncated geometric prior with parameter p = 1− e−λs on the number of

changes (si) in each edge change set (∆gi), with the distribution truncated for si > smax. For the

problems we explore, the truncation has no noticeable effect since smax is chosen to be large. The

updated posterior for the structure is given below:

P(G1,∆g1, . . . ,∆gm−1|D,T ) ∝ P(D|G1, . . . ,Gm,T )∏
i

(
1− e−λs

)(
e−λs

)si

1−
(
e−λs

)smax+1

∝ P(D|G1, . . . ,Gm,T )∏
i

(

e−λs

)si

∝ P(D|G1, . . . ,Gm,T )e
−λss,

where s = ∑i si. Therefore, a (truncated) geometric prior on each si is essentially equivalent to a

(truncated) geometric prior on the sufficient statistic s, the total number of edge changes.

When the transition times are a priori unknown, we would like to estimate them. The posterior

in this setting becomes

P(G1,∆g1, . . . ,∆gm−1,T |D) ∝ P(D|G1, . . . ,Gm,T )P(G1,∆g1, . . . ,∆gm−1,T )

= P(D|G1, . . . ,Gm,T )P(G1)P(∆g1, . . . ,∆gm−1,T )

= P(D|G1, . . . ,Gm,T )P(G1)P(∆g1, . . . ,∆gm−1)P(T ).

We assume that the joint prior over the evolutionary behavior of the network and the locations of

transition times can be decomposed into two independent components. We continue to use the

previous geometric prior with parameter p = 1− e−λs on the total number of edge changes. Any

choice for P(T ) can be made, but for the purposes of this paper, we have no prior knowledge about

the transition times; therefore, we assume a uniform prior on T so that all settings of transition times

are equally likely for a given value of m.

Finally, when neither the transition times nor the number of epochs are known a priori, both

the number and times of transitions must be estimated a posteriori. If prior knowledge dictates that

the networks evolve slowly over time (i.e., a transition does not occur at every observation), we can

include this knowledge by placing a non-uniform prior on m, for example a (truncated) geometric

prior with parameter p = 1− eλm on the number of epochs m, with the distribution truncated for

m > N. A geometric prior on the number of epochs is equivalent to a geometric prior on epoch

lengths (see Appendix A).

The form of the geometric prior was chosen for convenience since under a log transformation,

the likelihood (and prior) calculations reduce to: log(likelihood)− λss− λmm. In general, large

values of λm encode the strong prior belief that the structure changes slowly (i.e., few epochs exist)

and large values of λs encode the strong prior belief that the structure changes smoothly (i.e., few

edge changes exist).

Fortunately, the likelihood component of the posterior does not change whether we know the

transition times a priori or not. Therefore, any uncertainty about the transition times can be incor-

porated into the evaluation of the prior, leaving the evaluation of the likelihood unchanged.

3.2 Evaluating the New Marginal Likelihood

Now that a new likelihood has been defined, we must decide on which method to use for evaluation

and how to modify it to account for multiple structures. Any of the previously mentioned metrics
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can be modified to account for non-stationarity, but we chose to extend the BDe metric because it is

exact and because edges are the only representation of conditional dependencies that are left after

the parameters have been marginalized away. This provides a useful paradigm for non-stationarity

that is both simple to define and easy to analyze.

The BDe metric needs to be modified when learning an nsDBN because in Equation (2), Ni j

and Ni jk are calculated for a particular parent set over the entire data set D. However, in an nsDBN,

a node may have multiple parent sets operative at different times. The calculation for Ni j and Ni jk

must therefore be modified to specify the intervals during which each parent set is operative. Note

that an interval may include several epochs. An epoch is defined between adjacent transition times

while an interval is defined as the union of consecutive epochs during which a particular parent set

is operative (which may include all epochs).

For each node i, the parent set πi in the BDe metric is replaced by a set of parent sets πih, where

h indexes the interval Ih during which parent set πih is operative for node i. Letting pi be the number

of such intervals and qih be the number of configurations of πih results in the expression below:

P(D|G1, . . . ,Gm,T ) ∝
n

∏
i=1

pi

∏
h=1

qih

∏
j=1

Γ(αi j(Ih))

Γ(αi j(Ih)+Ni j(Ih))

ri

∏
k=1

Γ(αi jk(Ih)+Ni jk(Ih))

Γ(αi jk(Ih))

where the counts Ni jk and pseudocounts αi jk have been modified to apply only to the data in each

interval Ih. The modified BDe metric will be referred to as nsBDe. Given that |Ih| = th+1 − th,

we set αi jk(Ih) = (αi jk|Ih|)/N (e.g., proportional to the length of the interval during which that

particular parent set is operative). If αi jk is set everywhere to α/(qiri) as in the BDeu metric, then

we generalize the BDeu metric to nsBDeu, and the parameter priors are again all controlled by a

single hyperparameter α.

The derivation of the BDe metric requires seven assumptions: multinomial sample, parameter

independence, likelihood modularity, parameter modularity, Dirichlet distribution for parameters,

complete data, likelihood equivalence, and structure possibility (Heckerman et al., 1995). To ex-

tend the BDe metric to account for non-stationary behavior, we must extend only the parameter

independence assumption.

Parameter independence is split into local parameter independence and global parameter inde-

pendence. Letting G represent an individual network, global parameter independence is represented

as p(ΘG|G) = ∏n
i=1 p(Θi|G). In other words, the conditional probabilities can be decomposed by

variable. Local parameter independence is represented as p(Θi|G)=∏qi

j=1 p(Θi j|G); the conditional

probabilities for each variable are decomposable by parent configuration.

For nsDBNs, we also need to assume parameter independence across intervals. Parameter in-

dependence is thus split into three assumptions. The updated parameter independence assumptions

are defined below, where G represents an nsDBN structure, or set of networks.

Global parameter independence: The conditional probabilities are decomposable by variable:

p(ΘG|G) =
n

∏
i=1

p(Θi|G).

Interval parameter independence: The conditional probabilities for each variable are decomposable

by interval:

p(Θi|G) =
pi

∏
h=1

p(Θih|G).
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Local parameter independence: The conditional probabilities for each variable for each interval are

decomposable by parent configuration:

p(Θih|G) =
qih

∏
j=1

p(Θih j|G).

3.3 Using a Sampling Strategy and Choosing a New Move Set

We decide to take a sampling approach rather than using heuristic search because the posterior over

structures includes many modes. In particular, when the transition times are not known a priori, the

posterior is highly multimodal because structures with slightly different transition times likely have

similar posterior probabilities. Additionally, sampling offers the further benefit of allowing us to

evaluate interesting posterior quantities, such as when are the most likely times at which transitions

occur—a question that would be difficult to answer in the context of heuristic search.

Because the number of possible nsDBN structures is so large (significantly greater than the

number of possible DBNs), we must be careful about what is included in the move set. To provide

quick convergence, we want to ensure that every move in the move set efficiently jumps between

posterior modes. Therefore, the majority of the next section is devoted to describing effective move

sets under different levels of uncertainty.

4. Settings

Each of the following subsections demonstrates a method for calculating an nsDBN under a variety

of settings that differ in terms of the level of uncertainty about the number and times of transitions.

The different settings will be abbreviated according to the type of uncertainty: whether the number

of transitions is known (KN) or unknown (UN) and whether the transition times themselves are

known (KT) or unknown (UT). Figure 2 shows plate diagrams relating the DBN model to the three

different settings of the nsDBN model, described in the following subsections.

4.1 Known Number and Known Times of Transitions (KNKT)

In the KNKT setting, we know all of the transition times a priori; therefore, we only need to

identify the most likely initial network G1 and sets of edge changes ∆g1, . . . ,∆gm−1. Thus, we wish

to maximize Equation (5).

To create a move set that results in an effectively mixing chain, we consider which types of

local moves result in jumps between posterior modes. As mentioned earlier, networks that differ

by a single edge will probably have similar likelihoods. Therefore, the move set includes a single

edge addition or deletion to G1. Each of these moves results in the structural difference of a single

edge over all observations. One can also consider adding or deleting an edge in a particular ∆gi;

this results in the structural difference of a single edge for all observations after ti. Finally, we

consider moving an edge from one ∆gi to another, which results in the structural difference of a

single edge for all observations between ti and t j. These moves are listed as M1–M5 in Table 1,

along with the various proposal probabilities defined in the Metropolis-Hastings acceptance ratio

shown in Equation (3).
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Figure 2: Plate diagrams relating DBNs to nsDBNs under each setting. Gray circles represent quan-

tities that are known a priori while white circles represent those that are unknown. Non-

stationary DBNs may have multiple networks (m, indexed by j) and multiple different

parent sets for each variable (pi for variable i, indexed by h). In the KNKT setting, the

transition times t j are known a priori, but they must be estimated in the two other set-

tings. In the KNUT setting, the number of epochs m is still known, but the transition

times themselves are not. Finally, in the UNUT setting, even the number of epochs is

unknown; instead a truncated geometric prior is placed on m.

4.2 Known Number But Unknown Times of Transitions (KNUT)

Knowing in advance the times at which all the transitions occur, as was assumed in the previous

subsection, is often unrealistic. To relax this assumption, we now assume that while m is known, the

set T is not given a priori but must also be estimated. Thus, rather than maximizing Equation (5),

we maximize the expression below:

P(G1,∆g1, . . . ,∆gm−1,T |D).

Structures with the same edge sets but slightly different transition times will probably have similar

likelihoods. Therefore, we can add a new move that proposes a local shift to one of the transition

times: let d be some small positive integer and let the new time t ′i be drawn from a discrete uniform

distribution t ′i ∼ DU(ti −d, ti +d) with the constraint that ti−1 < t ′i < ti+1. Initially, we set the m−1

transition times so that the epochs are roughly equal in length. This placement allows the transition

times ample room to locally shift without “bumping” into each other too early in the sampling

3659



ROBINSON AND HARTEMINK

procedure. The complete move set for this setting includes all of the moves described previously as

well as this new local shift move, listed as M6 in Table 1.

As with the last setting, the number of epochs does not change; therefore, only the prior on the

number of edge changes s is used.

4.3 Unknown Number and Unknown Times of Transitions (UNUT)

In the most general UNUT setting, both the transition times T and the number of transitions are

unknown and must be estimated. While this is the most interesting setting, it is also the most

difficult. Since the move set from the KNUT setting provides a solution to this problem when m

is known, a simple approach would be to try various values of m and then determine which value

of m seems optimal. However, this approach is theoretically unsatisfying and would be incredibly

slow. Instead, we will further augment the move set to allow the number of transitions to change.

Since both the number of edge changes s and the number of epochs m are allowed to vary, we need

to incorporate both priors mentioned in Section 3.1 when evaluating the posterior.

To allow the number of epochs m to change during sampling, we introduce merge and split

operations to the move set. For the merge operation, two adjacent edge sets (∆gi and ∆gi+1) are

combined to create a new edge set. The transition time of the new edge set is selected to be the mean

of the previous locations weighted by the size of each edge set: t ′i = (siti + si+1ti+1)/(si + si+1). For

the split operation, an edge set ∆gi is randomly chosen and randomly partitioned into two new edge

sets ∆g′i and ∆g′i+1 with all subsequent edge sets re-indexed appropriately. Each new transition time

is selected as described above. The move set is completed with the inclusion of the add transition

time and delete transition time operations. These moves are similar to the split and merge operations

except they also increase or decrease s, the total number of edge changes in the structure. The four

additional moves are listed as M7–M10 in Table 1.

4.4 MCMC Sampler Implementation Details

In practice, the sampler is designed so that the proposal ratio
p(M′)
p(M)

p(x|x′,M′)
p(x′|x,M) is exactly 1 for most

moves. For example, if either move M1 or move M2 is randomly selected, the sampling procedure

is as follows: random variables xi and x j are selected, if the edge xi → x j exists in G1, it is deleted,

otherwise it is added (subject to the maximum of pmax parents constraint). We know that the max-

imal number of edges in G1 is npmax (due to the maximum parent constraint) and we let E1 be the

current number of edges in G1. If we are making move M1, the probability that we select a legal

edge to add is Pa = npmax−E1

npmax
. The probability of making the reverse move (from x′ back to x) is

Pd = E1+1
npmax

. The resulting proposal ratio is thus:

Pd

Pa

p(x|x′,M′
2)

p(x′|x,M1)
=

E1 +1

npmax −E1

npmax −E1

E1 +1
= 1.

A similar approach can be applied to the other moves.

This paradigm also handles boundary cases: if G1 is complete, then P(M1) = 0; if G1 is empty,

then P(M2) = 0; if si = smax∀i, then P(M3) = 0; if si = 1∀i, then P(M4) = 0; etc.

The relative proposal probabilities between different moves are designed so that all pairs of

complementary moves (a move and its reverse move) are equally likely. Under the KNKT setting,

Pa +Pd = Pae +Pde = 2Pme. Under the KNUT setting, Pa +Pd = Pae +Pde = 2Pme = 2Pst . Finally,

under the UNUT setting, Pa +Pd = Pae +Pde = 2Pme = 2Pst = Pm +Ps = Pag +Pdg.
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Move type M
Proposal p(M′)

p(M)
p(x|x′,M′)
p(x′|x,M)probability

(M1) add edge to G1 Pa
Pd

Pa

(E1+1)−1

(npmax−E1)−1 = npmax−E1

E1+1

(M2) delete edge from G1 Pd
Pa

Pd

(npmax−E1+1)−1

E−1
1

= E1

npmax−E1+1

(M3) add edge to ∆gi Pae
Pde

Pae

m−1(Si+1)−1

m−1(Smax−Si)−1 = Smax−Si

Si+1

(M4) delete edge from ∆gi Pde
Pae

Pde

m−1(Smax−Si+1)−1

m−1S−1
i

= Si

Smax−Si+1

(M5) move edge from ∆gi to ∆g j Pme 1
(m−1)−1(∑i Si)

−1

(m−1)−1(∑i Si)−1 = 1

(M6) locally shift ti Pst 1
(2d+1)−1

(2d+1)−1 = 1

(M7) merge ∆gi and ∆gi+1 Pm
Ps

Pm

(m−1)−12(Si+Si+1)
−1(Si+Si+1

Si
)
−1

(m−1)−1 = 2

(Si+Si+1)(Si+Si+1
Si

)

(M8) split ∆gi Ps
Pm

Ps

(m−1)−1

(m−1)−1(Si/2)−1(Si
x)

−1 = (Si/2)
(

Si

x

)

(M9) create new ∆gi Pag
Pdg

Pag

(m+1)−1

(N−m)−1n−2 =
(N−m)n2

m+1

(M10) delete ∆gi Pdg
Pag

Pdg

(N−m−1)−1n−2

m−1 = m
(N−m−1)n2

K
N

K
T

K
N

U
T

U
N

U
T

1

Table 1: The move sets under different settings. E1 is the total number of edges in G1, pmax is the

maximum parent set size, smax is the maximum number of edge changes allowed in a single

transition time, and si is the number of edge changes in the set ∆gi. The proposal ratio is

the product of the last two columns. The KNKT setting uses moves M1–M5, KNUT uses

moves M1–M6, and UNUT uses moves M1–M10, in each case with the proposal probabili-

ties appropriately normalized to add to 1.

5. Results on Simulated and Real Data Sets

Here we examine both the speed and accuracy of our sampling algorithm under all three settings

and on both simulated and real data sets. We want to solve real-world problems, but accurate ground

truths are often not available to assess performance; therefore, we must rely on simulation studies

to provide representative performance estimates for the real problems of interest.

We have studied the performance characteristics of our algorithm in simulation studies that vary

by several orders of magnitude in number of observations, number of variables, number of epochs,

and network density. In each case, we perform simulations with multiple data sets multiple times

with multiple chains to help ensure our results are robust to simulation artifacts. For brevity, we

only present a few simulation results here; the broader set of experiments we have conducted yield

similar results.

All experiments were run on a 3.6GHz dual-core Intel Xeon machine with 4 GB of RAM.

5.1 Small Simulated Data Set

To evaluate the effectiveness of our method, we first apply it to a small, simulated data set. The first

experiment is on a simulated ten node network with 1020 observations and six single-edge changes

between seven epochs, where the length of each epoch varies between 20 and 400 observations. The
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Figure 3: nsDBN structure learning with known numbers of transitions. A: True non-stationary

data-generation process. The structure evolves gradually from the network at the left la-

beled G1 to the network at the right labeled G7. The epochs in which the various networks

are active are shown in the horizontal bars, roughly to scale. The horizontal bars repre-

sent the segmentation of the 1020 observations, with the transition times labeled below.

When these times are known to the algorithm (the KNKT setting), the recovered nsDBN

structure is exactly the true structure. B: When the times of the transitions are not known

(the KNUT setting), the algorithm learns the model-averaged nsDBN structure shown

(selecting edges that occur in greater than fifty percent of the sampled structures). The

learned networks and most likely transition times are highly accurate (only missing two

edges in G1 and all predicted transition times close to the truth).

true structure is shown in Figure 3A. We chose a small network with features biologically relevant

to genetic regulatory networks: a feedback loop, a variable with at least three parents, a pathway of

length six, and the inclusion of observed variables that do not even participate in the network.

5.1.1 KNKT SETTING

In this simple setting, the sampler rapidly converges to the correct solution. We generate a data set

using the structure in Figure 3A, and run our sampler for 100,000 iterations, with the first 25,000

samples thrown out for burn-in.

To obtain a consensus (model averaged) structure prediction, an edge is considered present at a

particular time if the posterior probability of the edge is greater than 0.5. The value of λm has no

effect in this setting, and the value of λs is varied between 0.1 and 50. The predicted structure is

exactly identical to the true structure shown in Figure 3A for a broad range of values, 0.5 ≤ λs ≤ 10,

indicating robust and accurate learning.

5.1.2 KNUT SETTING

In this setting, transition times are unknown and must be estimated a posteriori. The prior on m

remains unused, and for the prior on s, the value of λs is again varied between 0.1 and 50.
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KNUT Setting

Figure 4: Posterior probability of transition times when learning an nsDBN in the KNUT setting.

The blue triangles on the baseline represent the true transition times and the red dots

represent one standard deviation from the mean probability, which is drawn as a black

line. The variance estimates were obtained using multiple chains. The highly probable

transition times correspond closely with the true transition times.

Again, we generate a data set using the structure from Figure 3A and run the sampler for 200,000

iterations, with the first 50,000 samples thrown out for burn-in. More samples are collected in the

KNUT setting because we expect that convergence will be slower given the larger space of nsDBNs

to explore.

The predicted consensus structure is shown in Figure 3B for λs = 5; this choice of λs provides

the most accurate predictions. The estimated structure and transition times are very close to the

truth. All edges are correct, with the exception of two missing edges in G1, and the predicted

transition times are all within 10 of the true transition times. We can also examine the posterior

probabilities of transition times over all sampled structures. This is shown in Figure 4. The blue

triangles on the baseline represent the true transition times, and spikes represent transition times

that frequently occurred in the sampled structures. While the highest probability regions do occur

near the true transition times, some uncertainty exists about the exact locations of t3 and t4 since the

fourth epoch is exceedingly short.

To obtain more accurate measures of the posterior quantities of interest (such as the locations

of transition times), we generate samples from multiple chains; we use 25 in the KNUT setting.

Combining the samples from several chains allows us to estimate both the probability of a transition

occurring at a certain time and the variance of that estimate. The red dots in Figure 4 represent one

standard deviation above and below the estimated mean probability of a transition occurring at a

particular time. We discovered that the speed of convergence under the KNKT and KNUT settings

were very similar for a given m. This unexpected result implies that the posterior over transition

times is rather smooth; therefore, the mixing rate is not greatly affected when sampling transition

times.
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5.1.3 UNUT SETTING

Finally, we consider the UNUT setting where the number and times of transitions are both unknown.

We examine the accuracy of our method in this setting using several values of λs and λm. We use

the range 1 ≤ λs ≤ 5 because we know from the previous settings that the most accurate solutions

were obtained using a prior within this range; the range 1 ≤ λm ≤ 50 is selected to provide a wide

range of estimates for the prior on m since we have no previous knowledge of what it should be.

Again, we generate a data set using the structure from Figure 3A and run the sampler for 300,000

iterations, with the first 75,000 samples thrown out for burn-in. We collect samples from 25 chains

in this setting.

Figure 5 shows the posterior probabilities of transition times for various settings of λs and λm.

As expected, when λm increases, the number of peaks decreases. Essentially, when λm is large,

only the few transition times that best characterize the non-stationary behavior of the data will be

identified. On the other hand, when λm is very small, noises within the data begin to be identified

as transition times, leading to poor estimates of transition times.

We can also examine the posterior on the number of epochs, as shown in Figure 6. The largest

peak can be used to provide an estimate of m. A smaller λm results in more predicted epochs and

less confidence about the most probable value of m.

Finally, since we know what the true structure is, we can obtain a precision-recall curve for each

value of λs and λm. The precision-recall curves are shown at the top of Figure 7. To calculate these

values, we obtained individual precision and recall estimates for each network at each observation

and averaged them over all observations. Therefore, the reported precision and recall values can be

viewed as the average precision and average recall over all observations.

One way to identify the best parameter settings for λs and λm is to examine the best F1-measure

(the harmonic mean of the precision and recall) for each. The table in Figure 7 shows the best F1-

measures and reveals λs = 5 and λm = 1 as best for this data, although nearly all choices achieve an

F1-measure above 0.9.

5.2 Larger Simulated Data Set

To evaluate the scalability of our technique in the most difficult UNUT setting, we also simulate

data from a 100 variable network with an average of 50 edges over five epochs spanning 4800

observations, with one to three edges changing between each epoch. We generate 10 different data

sets from the model and acquire 25 chains from each data set. For each chain, we take 800,000

samples, with the first 200,000 samples thrown out for burn-in.

The posterior probabilities of transition times and the number of epochs (corresponding to Fig-

ures 5 and 6) for one of the simulated data sets are shown in Figure 8. The significantly sharper

prediction for the posterior probabilities of transitions occurring at specific times is most likely due

to having more observations and, thus, more confident estimates. The number of epochs with the

highest posterior probability is five for all choices of priors, which is exactly the true number of

epochs for this data set.

Additionally, the precision-recall curves and F1-measures are shown in Figure 9, revealing the

λs = 1 and λm = 5 assignments to be best for this data, although all choices achieve excellent results.
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UNUT Setting

Figure 5: The posterior probabilities of transition times from the sampled structures in the UNUT

setting for various values of λs and λm. As in Figure 4, the blue triangles on the baseline

represent the true transition times and the red dots represent one standard deviation from

the mean probability obtained from several runs, which is drawn as a black line. Only the

(λs,λm) values of (1,1) and (1,2) seem to result in poor estimates of the true transition

times.

5.3 Drosophila Muscle Development Gene Regulatory Networks

Having achieved excellent results even in the hardest UNUT setting across ten different data sets

generated from two different simulated networks—one with 10 variables and the other with 100—

we are confident enough in the usefulness of our model to analyze some real data.
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UNUT Setting

Figure 6: The posterior probabilities of the number of epochs for various values of λs and λm. The

x-axes range from 1 to 10 and the y-axes from 0 to 1 for all of the plots except those

marked with a star. The starred plots show predictions with significantly more epochs

than the truth. The posterior estimates on the number of epochs m are closest to the true

value of 7 when λm is 1 or 2.

In this subsection, we apply our method to identify non-stationary networks using Drosophila

development gene expression data from Arbeitman et al. (2002). This data contains expression

measurements of 4028 Drosophila genes over 66 time steps throughout development and growth

during the embryonic, larval, pupal, and adult stages of life. Zhao et al. (2006) focused on 19 genes

involved in muscle development and learned a single network over all 66 time steps with this data.

Using the same data, Guo et al. (2007) learned a time-varying undirected network over a subset of
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UNUT Setting

λs

1 2 3 4 5

0.4341 0.9423 0.9469 0.9738 0.9912 1

0.6760 0.9562 0.9553 0.9906 0.9909 2

0.9206 0.9553 0.9729 0.9731 0.9905 5 λm

0.9264 0.9550 0.9657 0.9829 0.9791 10

0.8804 0.8806 0.9042 0.8922 0.8807 50

Figure 7: Top: Precision-recall curves for various values of λs and λm under the UNUT setting. The

most accurate estimates for the structure of the nsDBN arise when λs = 5 and λm = 1.

Bottom: Corresponding F1-measures for the precision-recall curves. F1-measures over

0.9 are shaded; darker shades indicate values closer to 1, and the highest value is shown

in bold.
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UNUT Setting

Figure 8: The posterior probabilities of transition times and number of epochs from one of the

larger (100 variables, 5 epochs, and 4800 observations) simulated data sets under the

UNUT setting for various values of λs and λm. The axes are the same for all plots. Top:

The blue triangles on the baseline represent the true transition times and the red dots

represent one standard deviation from the mean probability obtained from several runs,

which is drawn as a black line.
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UNUT Setting

λs

1 3 5

0.9489 0.9510 0.9468 1

0.9377 0.9521 0.9356 2 λm

0.9531 0.9459 0.9398 5

Figure 9: Top: Precision-recall curves for several values of λs and λm under the larger 100 variable

simulation. Bottom: Corresponding F1-measures for the precision-recall curves. F1-

measures over 0.9 are shaded; the highest value is shown in bold.

11 of the 19 genes identified by Zhao et al. (2006). To facilitate comparison with as many existing

methods as possible, we apply our method to the data describing the expression of the same 11

genes, preprocessing the data in the same way as described by Zhao et al. (2006). Unfortunately,

no other techniques predict non-stationary directed networks, so our comparisons are made against

the stationary directed network predicted by Zhao et al. (2006) and the non-stationary undirected

network predicted by Guo et al. (2007).

We collect 50,000 samples and throw out the first 10,000 for burn-in; we then repeat this process

for 25 chains. We need fewer samples in this problem compared to previous data sets because there

are relatively few variables and observations.
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Figure 10 shows how our predicted structure compares to those reported by Zhao et al. (2006)

and Guo et al. (2007). The nsDBN in Figure 10C was learned using the KNKT setting with transition

times defined at the borders between the embryonic, larval, pupal, and adult stages.

While all three predictions share many edges, certain similarities between our prediction and

one or both of the other two predictions are of special interest. In all three predictions, a cluster

seems to form around myo61f, msp-300, up, mhc, prm, and mlc1. All of these genes except up are

in the myosin family, which contains genes involved in muscle contraction. Within the directed

predictions, msp-300 primarily serves as a hub gene that regulates the other myosin family genes. It

is interesting to note that the undirected method predicts connections between mlc1, prm, and mhc

while neither directed method makes these predictions. Since msp-300 seems to serve as a regulator

to these genes, the method of Guo et al. (2007) may be unable to distinguish between direct and

indirect interactions, due to its undirected nature and reliance on correlations.

Two interesting temporal similarities arise when comparing our predictions to those from Guo

et al. (2007). First, an interaction between eve and actn arise at the beginning of the pupal stage in

both methods. Second, the connection between msp-300 and up is lost in the adult network. Note

that the loss of this edge actually characterizes the progression to the adult stage from the pupal

stage in our prediction, while the method from Guo et al. (2007) combines the two stages. The

estimation of a combined pupal/adult stage may simply be due to predicting the loss of the edge

between msp-300 and up earlier in development than our method.

Despite the similarities, some notable differences exist between our prediction and the other

two predictions. First, we predict interactions from myo61f to both prm and up, neither of which

is predicted in the other methods, suggesting a greater role for myo61f during muscle development.

Also, we do not predict any interactions with twi. During muscle development in Drosophila, twi

acts as a regulator of mef2 which in turn regulates some myosin family genes, including mlc1 and

mhc (Sandmann et al., 2006; Elgar et al., 2008); our prediction of no connection to twi mirrors

this biological behavior. Finally, we note that in our predicted structure, actn never connects as a

regulator (parent) to any other genes, unlike in the network predicted by Zhao et al. (2006). Since

actn (actinin) only binds actin, we do not expect it to regulate other muscle development genes,

even indirectly.

If we transition to the UNUT setting, we can also examine the posterior probabilities of tran-

sition times and epochs. These plots are shown in Figure 11A and 11B, respectively. The tran-

sition times with high posterior probabilities correspond well to the embryonic→larval and the

larval→pupal transitions, but a posterior peak occurs well before the supposed time of the

pupal→adult transition; this reveals that the gene expression program governing the transition to

adult morphology is active well before the fly emerges from the pupa, as would clearly be expected.

Also, we see that the most probable number of epochs is three to four, mirroring closely the total

number of developmental stages.

5.4 Simulated Data Set Similar to the Drosophila Data Set

To evaluate the accuracy of a recovered nsDBN on a problem of exactly the same size as the pre-

dicted Drosophila muscle development network, we simulate a non-stationary time-series with the

same number of nodes and a similar level of connectivity as the Drosophila data set. We generate

data from an nsDBN with 66 observations and transition times at 30, 40, and 58 to mirror the num-

ber of observations in embryonic, larval, pupal, and adult stages of the experimental fly data. Since
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Figure 10: Comparison of computationally predicted Drosophila muscle development networks.

A: The directed network reported by Zhao et al. (2006). B: The undirected networks

reported by Guo et al. (2007). C: The nsDBN structure learned under the KNKT setting

with λs = 2. Only the edges that occurred in greater than 50 percent of the samples are

shown, with thicker edges representing connections that occurred more frequently.
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Figure 11: Learning nsDBN structure in the UNUT setting using the Drosophila muscle develop-

ment data. A: Posterior probabilities of transition times using λm = λs = 2. The blue

triangles on the baseline represent the borders of embryonic, larval, pupal, and adult

stages. B: Posterior probability of the number of epochs. The high weight for 3 and 4

epochs closely matches the true number of developmental stages.

it is difficult to estimate the amount of noise in the experimental data, we also simulate noise at

various signal-to-noise ratios, from 4:1 down to 1:1. Finally, since many biological processes have

more variables than observations, we examine the effect of increasing the number of experimental

replicates as a possible means to overcome this challenge.
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Figure 12: An nsDBN was learned on simulated data that mimicked the number of nodes, connec-

tivity, and transition behavior of the experimental fly data. This allowed us to estimate

the accuracy of learned nsDBNs on a problem of this size. A: Precision-recall curves for

increasing values of the signal to noise ratio in the data (using one replicate). B: Pre-

cision recall curves for an increasing number of experimental replicates (using an SNR

of 2:1). A greater signal to noise ratio and a greater number of experimental replicates

both result in better performance, as expected.

As discussed earlier, to obtain posterior estimates of quantities of interest, such as the number

of epochs or transition times, we generate many samples from several chains; averaging over chains

provides a more efficient exploration of the sample space. To incorporate replicates into the posterior

calculations, we generate samples from multiple chains (25) for each set of replicates. Since the

underlying data generation process is the same for each replicate, we simply average over all the

chains. The results of these simulations are summarized in Figure 12.

As expected, as the signal-to-noise ratio of the data increases, the greater the accuracy in the

learned nsDBNs as reflected in the F1-measures: 1:1 is 0.734, 2:1 is 0.850, 3:1 is 0.875, and 4:1 is

0.950. Additionally, increasing the number of replicates also increases prediction accuracy: one is

0.869, two is 0.924, three is 0.945, and four is 0.956. This demonstrates the importance of multiple

replicates for biological data with many variables but few observations.

This simulation study allows us to explore how much a relatively small data set and noise affect

the predictions from our algorithm on a problem of similar size as the Drosophila muscle devel-

opment network. From the results in Figure 12, we see that learning an nsDBN on a problem of

the same scale as the Drosophila data set results in accurate network reconstruction, even in the

presence of substantial noise. Therefore, we can surmise that any inaccuracies in our predicted

Drosophila muscle development network would not arise due to the use of a dataset of that size,

but might arise from an exceptionally high level of noise in the data (or inappropriate modeling

assumptions).
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5.5 Neural Information Flow Networks in Songbirds

Our goal is to learn neural information flow networks in the songbird brain. Such networks repre-

sent the transmission of information between different regions of the brain. Like roads, the anatom-

ical connectivity of a brain indicates potential pathways along which information can travel. Like

traffic, neural information flow networks represent the dynamic utilization of these pathways. By

identifying the neural information flow networks in songbirds during auditory stimuli, we hope to

understand how sounds are stored and processed in the brain.

In this experiment, eight electrodes were placed into the vocal nuclei of six female zebra finches.

Voltage changes were recorded from populations of neurons while the birds were provided with four

different two-second auditory stimuli, each presented twenty times. The resulting voltages were

post-processed with an RMS transformation and binned to 5 ms; this interval was chosen because

it takes 5–10 ms for a neural signal to propagate through one synaptic connection (Kimpo et al.,

2003). We analyze data recorded from electrodes for two seconds pre-stimulus, two seconds during

stimulus, and two seconds post-stimulus. We learn an nsDBN for two of the birds over six seconds

for two different stimuli using all repetitions; this data set contains 8 variables and nearly 25,000

observations for each bird and each stimulus.
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Figure 13: Posterior results of learning nsDBNs under the UNUT setting for two birds presented

with two different stimuli (white noise and song). A: Posterior transition time probabili-

ties. Transitions are consistently predicted near the stimulus onset (2 seconds) and offset

(4 seconds). B: Posterior estimates of the number of epochs. The estimated number of

epochs is three or four, with strong support for the value four when the bird is presented

with a song.

The posterior transition time probabilities and the posterior number of epochs for two birds

presented with two different stimuli under the UNUT setting (λs = λm = 2) can be seen in Figure 13.

Note how the estimated transition times correspond closely with the times of the stimulus onset and

offset and how the posterior estimate of the number of epochs is around three or four; taken together,

these statistics imply that different networks predominate in the pre-stimulus, during stimulus, and

post-stimulus time periods.
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The posterior estimates consistently differ when the bird is listening to white noise versus song.

When listening to a song, an additional transition is predicted 300–400 ms after the onset of a

song but not after the onset of white noise. This implies that the bird further analyzes a sound

after recognizing it (e.g., hearing a known song), but performs no further analysis when it does not

recognize a sound (e.g., hearing white noise).

Previous analysis of this data assumed that any changes in the neural information flow network

of a songbird listening to sound occurred only at sound onset and offset (Smith et al., 2006). Only

by appropriately modeling the neural information flow networks as nsDBNs are we able to learn

that this assumption is not accurate.

Further analysis and investigation of this data is left to future work.

5.6 Performance and Scalability

Due to the use of efficient data structures in the sampler implementation, the computational time

needed to update the likelihood is essentially the same for all moves. Therefore, the runtimes of

the algorithm under the KNKT, KNUT, and UNUT settings do not differ for a given number of

samples. Nevertheless, one typically wants more samples in settings with increased uncertainty to

ensure proper convergence.

For the small ten variable simulated data set, the sample collection process for each chain takes

about 10 seconds per 100,000 samples, which translates to 10 seconds for the KNKT setting, 20

seconds for the KNUT setting, and 30 seconds for the UNUT setting. Fortunately, all runs can

easily be executed in parallel. Sample collection for the Drosophila data set and the similarly sized

simulated data set takes only a few seconds for each chain under all settings.

For the larger 100 variable simulated data set, sample collection takes about 2 minutes per

100,000 samples. The increased runtime is primarily due to the larger number of variables, so

defining the neighborhood for each move takes more time. Due to intelligent caching schemes, the

number of observations affects runtime in only a sublinear fashion (provided that enough memory

is available).

Surprisingly, one of the largest contributors to running time is the actual recording of the MCMC

samples. For example, each sample in the larger simulated data set can be represented by a 10,000

by 4,800 binary matrix of indicators for individual edges at every point in time. A full recording of

each sample is therefore very time consuming: just recording each sample in the larger simulated

data set leads to an increased runtime of about 50 minutes per 100,000 samples. We can alleviate

this problem in several ways. First, because only a small number of those 48 million values actually

change between samples, each sample can be represented and output in a compressed fashion;

however, the same amount of processing still must occur after the sample collection completes.

A better option is to only record the posterior quantities of interest. For example, recording just

the transition times and number of epochs adds only a few seconds to the runtime on the larger

simulated data set.

6. Discussion

Non-stationary dynamic Bayesian networks provide a useful framework for learning Bayesian net-

works when the generating processes are non-stationary. Using the move sets described in this

paper, nsDBN learning is efficient even for networks of 100 variables, is generalizable to situations

of varying uncertainty (KNKT, KNUT, and UNUT), and is robust (i.e., not very sensitive) to the
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choice of hyper-parameters over a large range of values. Additionally, by using a sampling-based

approach, our method allows us to assess a confidence for each predicted edge—an advantage that

neither Zhao et al. (2006) nor Guo et al. (2007) share.

We have demonstrated the feasibility of learning an nsDBN in all three settings using simulated

data sets of various numbers of transition times, observations, variables, epochs, and connection

densities. Additionally, we have identified nsDBNs in the KNKT and UNUT settings using biologi-

cal gene expression data. The Drosophila muscle development network we predict is consistent with

the predictions from other techniques and conforms to many known biological interactions from the

literature. The predicted transition times and number of epochs also correspond to the known times

of large developmental changes. Although each connection on the predicted Drosophila muscle de-

velopment network is difficult to verify, simulated experiments of a similar scale demonstrate highly

accurate predictions, even with moderately noisy data and one replicate.

While we focus on certain aspects of the model in this paper, many of our decisions are choices

rather than restrictions. For example, we present results using a Markov lag of one, but any Markov

lag could be used. Additionally, we use the BDe score metric, but any score metric or conditional

independence test can be used instead; however, any score metric which does not integrate over

the non-structural parameters would require an augmented sampling procedure. The assumption

of discrete data is not necessary; our method easily extends to continuous data, provided that an

appropriate scoring metric (like BG) is adapted.

A discrete view of time is necessary to our approach, but many continuous-time data sets can

be transformed into discrete-time ones without significant loss of information. The use of directed

graphs is also necessary, and desired, but undirected estimates can be obtained through moralization

of directed estimates. Although we choose simple priors to learn smoothly evolving networks,

nearly any priors would be easy to incorporate; in particular, incorporating expert knowledge about

the problem domain would be an ideal method for defining priors.

For problems of more than a few variables, the use of MCMC sampling is essential since EM

techniques would not converge in any reasonable time frame given such a large sample space. One

of our key discoveries for increasing convergence is the reformulation of the problem from learning

multiple networks to learning a network and changes to that network. This parameterization pro-

vides an intuitive means for defining evolving networks and allows us to define move sets with good

convergence properties. Our particular choices of the move sets are not the only possible ones, but

we have taken extra care to ensure that they work well on the types of problems we examine in this

paper.

The proposed sampling algorithm scales well to problems with hundreds of variables and thou-

sands of observations, but we are not certain how well it will scale to problems that are orders of

magnitude larger. When obtaining sample runs takes days instead of minutes or hours, it may be-

come desirable to obtain faster estimates, even if they are approximate. Variational methods are one

alternative to MCMC sampling approaches, often obtaining faster estimates at the cost of decreased

accuracy (Beal and Ghahramani, 2006). For the scale of problems in this paper, the run times and

convergence rates of our MCMC sampling algorithm were good enough that we did not have to

resort to variational approximations. However, if we wish to explore much larger data sets in the

future, we may need to develop a variational algorithm to obtain results in a reasonable time frame.

Non-stationary DBNs offer all of the advantages of DBNs (identifying directed, potentially

non-linear interactions between variables in multivariate time-series) and are additionally able to

identify non-stationarities in the interactions between variables. The sampling algorithm presented
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here allows one to estimate the strength of individual edges as well as posterior distributions of and

quantities of interest. In future work, we hope to analyze data from other fields that have traditionally

used DBNs and instead use nsDBNs to identify and model previously unknown or uncharacterized

non-stationary behavior.

Another direction that could be explored in the future is nsDBN learning with latent variables.

Following an EM approach like in Friedman (1997) would be the first step, but one would also need

to consider how to connect hidden variables across epochs and how to incorporate different numbers

of hidden variables at different epochs. Learning non-stationary networks with latent variables

seems to present a vexing challenge in the general case, but might be feasible in simple cases when

enough data is available.
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Appendix A.

While we decided to place a (truncated) geometric prior on the number of epochs m, other priors may

be considered. Talih and Hengartner (2005) chose to model epoch lengths as i.i.d. geometric random

variables. Here, we prove that a geometrically distributed prior on epoch lengths is equivalent to a

geometrically distributed prior on the number of epochs.

Letting li be the length of epoch i and N be the total number of observations, we can write a

geometrically distributed prior on epoch lengths as:

m

∏
i=1

(1− p)li−1 p = pm
m

∏
i=1

(1− p)li−1

= pm(1− p)∑m
i=1 li−1

= pm(1− p)N−m

=

(
p

1− p

)m

(1− p)N .

Since N is the same for every nsDBN, we see that the geometrically distributed prior is simply

a function of the number of epochs m. Compare this to a geometrically distributed prior on the

number of epochs, shown below:

(1−q)m−1q = (1−q)m q

1−q

= A(1−q)m.

where A is a constant that is the same for all nsDBNs. Therefore, a geometrically distributed prior

on epoch lengths with success probability p= 1−q
2−q

< 1/2 is equivalent to a geometrically distributed

prior on the number of epochs with success probability q. In this paper, we assume that q takes the

form q = 1− e−λ , allowing for a more intuitive control of the prior by simply changing λ.
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