
SUBMITTED TO INT. CONF ON COMPUTER VISION, 2005 1

Learning Non-Generative Grammatical Models for
Document Analysis

Michael Shilman, and Paul Viola

Abstract—
We present a general approach for the hierarchical seg-

mentation and labeling of document layout structures. This
approach models document layout as a grammar and per-
forms a global search for the optimal parse based on a gram-
matical cost function. Our contribution is to utilize ma-
chine learning to discriminatively select features and set all
parameters in the parsing process. Therefore, and unlike
many other approaches for layout analysis, ours can eas-
ily adapt itself to a variety of document analysis problems.
One need only specify the page grammar and provide a set
of correctly labeled pages. Experiments demonstrate the
effectiveness of this technique on two document image anal-
ysis tasks: page layout structure extraction and mathemat-
ical expression interpretation. Experiments demonstrate
that the learned grammars can be used to extract the docu-
ment structure in 57 files from the UWIII document image
database. A second set of experiments demonstrate that
the same framework can be used to automatically interpret
printed mathematical expressions so as to recreate the orig-
inal LaTeX.

I. Introduction

A 2003 review of document structure analysis lists sev-
enteen distinct approaches for the problem [1]. Perhaps
the greatest difference between the published approaches
is in the definition of the problem itself. One approach may
extract the title, author, and abstract of a research paper
[2], [3]. Another approach may extract the articles from
a newspaper [4]. The seventeen approaches (and others
published since the review) use widely varying algorithms
as well. Absent from most of these papers is the sense that
progress made in solving one task is directly transferable
to another task. Our goal is to create a single framework
which can be applied to new domains rapidly, with high
confidence that the resulting system will be efficient and re-
liable. This is in contrast to a number of previous systems,
where retargeting requires hand tuning many parameters
and the selection of features for local distinctions. Our
approach uses machine learning to set all parameters and
to select a key subset of a features from a large generic
library of features. While the features selected for two dif-
ferent tasks will be different, the library itself is can be
used for a wide variety of tasks.

The approach taken in this paper is to build a global hi-
erarchical and recursive description of all observations on
the page (text or pixels or connected components). The
set of all possible hierarchical structures is described com-
pactly as a grammar. Dynamic programming is used to
find the globally optimal parse tree for the page. Global
optimization provides a principled technique for handling
local ambiguity. The local interpretation which maximizes

Microsoft Research
Redmond, WA, 98033

Fig. 1. A very simple page with four terminal objects.

the global score is selected. Some previous approaches have
used local algorithms which group characters/words/lines
in a bottom up process. Bottom up algorithms are very
fast, but are often brittle. The challenges of grammat-
ical approaches include computational complexity, gram-
mar design, feature selection, and parameter estimation.

Related earlier work on grammatical modeling of docu-
ments includes [5], [6], [2], [7], [8], [9]. It is not surprising
that these efforts have adopted the state of the art in pars-
ing at the time of publication. So for example the work of
Krishnamoorthy et. al. uses the grammatical and parsing
tools available from the programming language community
[2] (see also [6], [10]). Similarly the work by Hull uses prob-
abilistic context free grammars [11] (see also [5], [7], [12]).
In the last few years there has been a rapid progress in
research on grammars in the natural language community.
Advances include powerful discriminative models that can
be learned directly from data [13], [14]. Such models are
strictly more powerful than the probabilistic context free
grammars used in previous document analysis research. Si-
multaneously progress has been made on accelerating the
parsing process [15], [16]. Motivated by these results a new
wave of research on grammatical parsing for documents is
likely to result.

The focus of this paper is on feature selection and pa-
rameter estimation. We will present an algorithm which
can learn to parse effectively from labeled examples. The
key difference from earlier published work is that a discrim-
inative grammar is learned, rather than a generative gram-
mar. The advantages of a discriminative Markov models
are now well appreciated [13]. The advantages of a dis-
criminative grammar are similarly significant. Many new
types of features can be used. Additionally the grammar
itself can often be radically simplified.

2 SUBMITTED TO INT. CONF ON COMPUTER VISION, 2005

(Page → ParList)
(ParList → Par ParList)
(ParList → Par)
(Par → LineList)
(LineList → Line LineList)
(LineList → Line)
(Line → WordList)
(WordList → Word WordList)
(WordList → Word)
(Word → terminal)

TABLE I

A example grammar which can be used to described printed

pages.

II. Document Grammars

One simple example examined in detail may yield some
intuitions regarding the algorithms presented below. Fig-
ure 1 shows a page with 4 terminal objects, which depend-
ing on the application could be connected components, pen
stokes, text lines, etc. In this case, let us assume that the
objects are words on a simple page and the task is to group
the words into lines and lines into paragraphs. A simple
grammar that expresses this process is shown in Figure II.

Consider the following parse for this document:
(Page (ParList

(Par (LineList
(Line (WordList (Word 1)

(WordList (Word 2))))
(LineList

(Line (WordList (Word 3)
(WordList (Word 4)))))))))

This parse tree provides a great deal of information about
the document structure: there is one paragraph containing
two lines; the first line contains word 1 and word 2, etc.

The grammatical approach can be adopted for many
types of document analysis tasks, including the parsing
of mathematical expressions, text information extraction,
and table extraction.

This paper will restrict attention to grammars in Chom-
sky normal form 1, which contains productions such as
(A → B C) and (B → b). This first states that the non-
terminal symbol A can be replaced by the non-terminal
B followed by the non-terminal C. The second states that
the non-terminal B can be replaced by terminal symbol b.
A simple weighted grammar, or equivalently a Probabilis-
tic Context Free Grammar (PCFG), additionally assigns a
cost (or negative log probability) to every production.

While there are a number of competing parsing algo-
rithms, one simple yet generic framework is called Chart
Parsing [17]. Chart parsing attempts to fill in the entries
of a chart C(A, R). Each entry stores the best score of
a non-terminal A as an interpretation of the sub-sequence
of terminals R. The cost of any non-terminal can be ex-
pressed as the following recurrence:

C(A, R0) = min
A→BC

R1∩R2=∅
R1∪R2=R0

C(B, R1)+C(C, R2)+ l(A→ BC) (1)

1 Any more general grammar can be easily converted to a CNF
grammar.

where {BC} ranges over all productions for A, and R0 is
a subsequence of terminals (what we will call a region),
and R1 and R2 are subsequences which are disjoint and
whose union is R0 (i.e. they form a partition). Essentially
the recurrence states that the score for A is computed by
finding a low cost decomposition of the terminals into two
disjoint sets. Each production is assigned a cost (or loss or
negative log probability) in a table, l(A→ BC). The entries
in the chart (sometimes called edges) can be filled in any
order, either top down or bottom up. The complexity of
the parsing process arises from the number of chart entries
that must be filled and the work required to fill each entry.
The chart constructed while parsing a linear sequence of
N terminals using a grammar including P non-terminals
has O(PN2) entries (there are 1

2

(
N
2

)
∈ O(N2) contiguous

subsequences, {i, j} such that 0≤ i < j and j < N). Since
the work required to fill each entry is O(N), the overall
complexity is O(PN3).

A. Geometric Parsing Is Exponential

In this paper we will study algorithms for parsing termi-
nals arranged on a two dimensional page. Unfortunately
a direct application of chart parsing to two dimensional
arrangements of terminals requires exponential time. The
key problem is that the terminals no longer have a linear
sequential order. Returning to (1), the region R0 is now a
subset, and R1 and R2 are subsets which are disjoint and
whose union is R0 (i.e. they form a partition). As before
we can analyze the size of the chart, which is O(P |P(N)|)
where P(N) is set of all subsets of N terminals. Since
there are an exponential number of subsets the algorithm
is exponential.

Hull introduced a geometric criteria which prunes the
search in cases where the geometric component of the cost
is too high [11]. Miller and Viola introduced a heuristic
based on convex hulls which rejects regions R1, R2 that
violate chull(R1) ∩R2 = ∅ or chull(R2) ∩R1 = ∅ [7].
Calling these sets regions is now appropriate, since each set
lies within a convex region of the page. It is worth noting
that if the terminals lie along a line (and therefore have a
strict linear ordering) the convex hull criterion yields the
O(N2) regions and is equivalent to the linear sequence used
in conventional parsing.

Experiments in this paper make use of the convex hull
constraint, as well as other geometric constraints that sig-
nificantly reduce the set of subsets considered during pars-
ing. These constraints combine to yield near O(N3) com-
plexity on most types of printed documents. A set of novel
and efficient geometric constraints are described elsewhere
[18].

B. The Limitations of Generative Grammars

The basic parsing framework described in (1) provides a
modest set of parameters which can be adapted using stan-
dard machine learning techniques. In essence there is one
parameter for each production in the grammar and addi-
tionally a set of parameters associated with each terminal
type. Models such as these are essentially PCFGs, and

Shilman and Viola: NON-GENERATIVE GRAMMARS FOR DOC ANALYSIS 3

they lack the expressive power to model many key proper-
ties of documents. Stated in another way, the terminals of
these models are statistically independent given the parse
tree structure (much in the same way the observation of
a Markov chain model are independent given the hidden
states). For a simple grammar where a paragraph is a col-
lection of lines ((Par → Line Par) and (Par → Line))
the appearance of the lines in a paragraph are independent
of each other. Clearly the lines in a particular paragraph
are far from independent, since they share many proper-
ties; for example the lines often have the same margins,
or they may all be center justified, or they may have the
same inter-line spacing.

This severe limitation was addressed by researchers in
the document structure analysis [5], [11], [19]. They re-
placed the pure PCFG grammar with an attributed gram-
mar. This is essentially equivalent to an expansion of the
set of non-terminals. So rather than a grammar were a
paragraph is a set of lines (all independent), the para-
graph non-terminal is replaced by a paragraph(lMargin,
rMargin, lineSpace, justification). The terminal
line is then rendered with respect to these attributes.
When the attributes are discrete (like paragraph justifi-
cation), this is exactly equivalent to duplicating the pro-
duction in the grammar. The result is several types of
paragraph non-terminals, for example left, right, and cen-
ter justified. An explosion in grammar complexity results,
with many more productions and much more ambiguity.

Continuous attributes are more problematic still. The
only tractable models are those which assume that the at-
tributes of the right hand side (non-)terminals are a simple
function of those on the left hand non-terminals. For exam-
ple, that the margins of the lines are equal to the margins
of the paragraph plus Gaussian noise.

The main, and almost unavoidable, problem with
PCFGs is that they are generative. The grammar is an at-
tempt to accurately model the details of the printed page.
This includes margin locations, lines spacing, font sizes,
etc. Generative models have dominated both in natural
language and in related areas such as speech (where the
generative Hidden Markov Model is universal [20]). In the
last few years related non-generative discriminative mod-
els have arisen. Discriminative grammars allow for much
more powerful models of terminal dependencies without an
increase in grammar complexity.

III. Non-generative Grammatical Models

The first highly successful non-generative grammatical
model was the Conditional Random Field2 [13]. Recently
similar insights have been applied to more complex gram-
matical models [14]. The basic insight is actually quite
simple; the production cost in (1) can be generalized con-
siderably without changing the complexity of the parsing
process. The cost function can be expressed more gener-
ally as: l(A→ BC,R0,R1,R2,doc) which allows the cost to
depend on the the regions R0, R1 and R2, and even the

2 The focus of the referenced paper is on a Markov chain models,
which are equivalent to a very simple grammar.

entire document doc. The main restriction on l() is that
it cannot depend on the structure of the parse tree used
to construct B and C (for this would violate the dynamic
programming assumption underlying chart parsing).

This radically extended form for the cost function pro-
vides a great deal of flexibility. So for example low cost
could be assigned to paragraph hypotheses where the lines
all have the same left margin (or the same right margin,
or where all lines are centered on the same vertical line).
This is quite different from conditioning the line attributes
on the paragraph attributes. For example, one need not
assign any cost function to the lines themselves. The entire
cost of the paragraph hypothesis can fall to the paragraph
cost function. The possibilities for cost functions are ex-
tremely broad. The features defined below include many
types of region measurements and many types of statis-
tics on the arrangements of the terminals (including non-
Gaussian statistics). Moreover, the cost function can be
a learned function of the visual appearance of the compo-
nent. This provides a unification between the step of OCR
which typically proceeds document structure analysis and
the document structure itself.

The main drawback of these extended cost functions is
the complexity of parameter estimation. For attributed
PCFGs there are straightforward and efficient algorithms
for maximizing the likelihood of the observations given the
grammar. So for example, the conditional margins of the
lines is assumed to be Gaussian, then the mean and the
variance of this Gaussian distribution can be computed
simply. Training of non-generative models, because of their
complex features, is somewhat more complex.

Parameter learning can be made tractable if the cost
function is restricted to a linear combination of features:

l(p, R0, R1, R2,doc) =
∑

i

λp,ifi(R0, R1, R2,doc).

where p is a production from the grammar. While the
features themselves can be arbitrarily complex and statis-
tically dependent, learning need only estimate the linear
parameters λp,i.

IV. Grammar Learning

There are a number of alternative algorithms for esti-
mating the feature parameters, including conditional ran-
dom fields [13] and support vector machines [14]. We pro-
pose a much simpler algorithm that is easy both to imple-
ment and to understand. The key insight is that learning
to parse is much like learning to classify. Our goal is to
estimate a set of parameters which assigns low costs to the
correct grammatical groupings and high cost to incorrect
groupings. In essence, we need to find parameters that as-
sign a high score to valid paragraphs and a low score to
invalid paragraphs.

Learning proceeds in rounds (see Figure 2). Beginning
with an agnostic grammar, whose parameters are all zero,
a labeled set of expressions is parsed. Not surprisingly, it
would be exceedingly rare to encounter the correct parse.
The simplest variant of the learning approach takes both

4 SUBMITTED TO INT. CONF ON COMPUTER VISION, 2005

0) Initialize weights to zero for all productions
1) Parse a set of training examples using

current parameters
2) For each production in the grammar
2a) Collect all examples from all charts.

Examples from the true parse are TRUE.
All others are FALSE.

2b) Train a classifier on these examples.
2c) Update production weights.

New weights are the cumulative sum.
3) Repeat Step 1.

Fig. 2. Pseudo-code for the training algorithm.

the incorrect and correct parses and breaks them up into
to examples for learning. Each example of a production
< p,R1,R2,doc > from the correct parse is labeled TRUE,
and from the incorrect parse is labeled FALSE.

Conversion into a classification problem is straightfor-
ward. First the set of features, fi, is used to transform ex-
ample j into a vector of feature values xj . The weights for
a given production are adjusted so that the cost for TRUE
examples is minimized and the cost for FALSE examples is
maximized (note that the typical signs are reversed since
the goal is assign the correct parse a low cost). Given
the linear relationship between the parameters and cost,
almost any simple learning algorithm can be used. We
have used both perceptron weight updates and AdaBoost
of decision stumps [21], [22].

The scoring function trained after one round of parsing
is then used to parse the next round. Entries from the
new chart are used to train the next classifier. The scores
assigned by the classifiers learned in subsequent rounds are
summed to yield a single final score.

The basic learning process above can be improved in
a number of ways. Note that the scoring function will be
used to score all chart entries, not just those that appear as
part of the best parse. In order to maximize generalization,
it is best to train the weights using the true distribution
of the examples encountered. The chart provides a rich
source of negative examples which lie off the path of the
best parse.

The set of examples in the chart, while large, may not be
large enough to train the classifier to achieve optimal per-
formance. One scheme for generating more examples, is to
find the K best parses. The algorithm for K best parsing
is closely related to simple chart parsing. The chart is ex-
panded to represent the K best explanations: C(A,R,K),
while computation time increases by a factor of K2. The
resulting chart contains K times as many examples for
learning.

It is also important to note that the set of examples ob-
served from early rounds of parsing are not the same as
those encountered in later rounds. As the grammar pa-
rameters are improved, the parser begins to return parses
which are much more likely to be correct. The examples
used from early rounds do not accurately represent this
later distribution. It is important that the weights learned
from early rounds not “overfit” these unusual examples.
There are many mechanisms designed to prevent overfit-

(Page → SecList)
(SecList → Sec SecList)
(SecList → Sec)
(Sec → ColList)
(ColList → Col ColList)
(ColList → Col)
(Col → ParList)
(ParList → Par ParList)
(ParList → Par)
(Par → LineList)
(LineList → Line LineList)
(LineList → Line)

TABLE II

Document layout grammar.

ting by controlling the complexity of the classifier. Ad-
aBoost provides a very simple scheme for controlling com-
plexity; simply stop training after just a few rounds.

V. Applications

In order to demonstrate the flexibility and effectiveness
of this framework, solutions for two document analysis
tasks are described: document layout analysis and printed
equation interpretation. Many related applications are
suitable as well including, segmentation and recognition
of ink drawings, document table extraction, and web page
structure extraction. The key differences between applica-
tions is: (1) the grammar used to describe the documents;
(2) the set of features used to compute the cost functions;
(3) the geometric constraints used to prune the set of ad-
missible regions. Once these decisions are made, training
data is used to set all parameters of the model.

A. Document Layout Analysis

One goal of document layout analysis is to determine the
information necessary to convert a scanned document into
a fully editable input file for a document preparation pro-
gram, such as LaTeX or Word. While the text in a scanned
file can be easily extracted using OCR, this information
is not sufficient to produce an easily editable file. Addi-
tional information such as paragraph boundaries, columns,
justification, and most importantly reading flow are neces-
sary as well. This document structure information is often
missing from PDF and Postscript files as well. Whether
for scans, PDF, or Postscript, the addition of document
structure information yields a living document that can be
repaginated, reformatted, and edited.

Document preparation programs frequently divide the
printed page into sections. Each section has some number
of columns and each column has some number of para-
graphs. This recursive structure is expressed as a gram-
mar in Table A. Knowledge of this structure is sufficient
to accurately produce an editable file from a scanned doc-
ument.

Experiments are performed using the UWIII document
image database [23]. The database contains scanned doc-
uments with ground truth for lines, paragraph, regions,
and reading order (see Figure 3). For most documents the
ground truth labels are easily converted to grammar

Shilman and Viola: NON-GENERATIVE GRAMMARS FOR DOC ANALYSIS 5

Fig. 3. An example page from the UWIII database. The input to
the parsing algorithm is the bounding boxes of the lines. The output
is the hierarchical decomposition into sections/columns/paragraphs.

above. Training and evaluation is performed using a set
of 60 documents which include pages from research papers,
books, and magazines.

B. Printed Mathematics Interpretation

In the academic research community almost all new pa-
pers are made available either in PDF or Postscript. While
convenient for printing, these formats do not support easy
reuse or reformatting. One clear example are the included
equations, which cannot be extracted, edited, or searched
easily. Other examples include tables and bibliographies.

The de facto standard for scientific publication is La-
TeX, in part because it provides powerful and high-quality
mathematics layout. Neither PDF nor Postscript docu-
ments provide the information required to reconstruct the
LaTeX equations used to generate the original.

Given a set of training LaTeX documents, a set of La-
TeX macros can be used to “instrument” the document
rendering process. The result is a set of instrumented DVI
files which can be processed to extract the bounding boxes
of characters on the page and the corresponding LaTeX
expression. These macros have been applied to a set of La-
TeX files made available from the ArXiv pre-print server
(see Figure 4).

After post-processing the training data is a collection ex-
pressions, each a well-formed syntactic trees of terminals.
These trees provide us with the opportunity to directly in-

Fig. 4. An example equation used to train the mathematical expres-
sion recognizer. The input to the algorithm are the set of connected
components of black ink and the output is the LaTeX necessary to
regenerate the expression.

(Expr → Row)
(Row → Row Item)
(Row → Item)
(Item → SubItem)
(Item → FracItem)
(Item → RawItem)
(Item → SupItem)
(FracItem → Row FracItem1)
(FracItem1 → BAR Row)
(SubItem → SupItem Row)
(SubItem → RawItem Row)
(SupItem → RawItem Row)

TABLE III

A grammar for mathematical expressions.

duce the grammar, since productions of the grammar are
directly observable from the input trees3. The induced
grammar is shown in Table III. Note that the terminals of
the grammar are not included and are referred to by the
non-terminal RawItem. The set of RawItem’s are the char-
acters, digits, and symbols used to build up mathematical
expressions. The terminals of the grammar are the primi-
tive connected components of black ink.

Unlike other work on mathematical parsing we do not
assume that the terminals have been segmented and rec-
ognized before interpretation begins. Recognition of the
terminals is an integral part of the parsing process. Ev-
ery symbol type has an associated grammatical rule that
describes the production of the terminals. For example
(RawItem → EQUALS) and (EQUALS → CC1 CC2), which
states that the “equals sign” is made up of a pair of con-
nected components. The cost function associated with the
EQUALS production must learn to assign low cost to pairs
of connected components that look like ’=’.

Overall setting up this problem is mechanically simple.
The grammar is created from the example LaTeX files and
the features are selected automatically from a larger set of
generically valuable features which are defined below.

VI. Features

The features used to learn the production scoring func-
tions are generally applicable and useful for a wide range
of tasks.

A set of geometric bounding box features have proven
valuable for measuring the alignment of components. The
first type are related to the bounding boxes of the sets
R0, R1, and R2. They measure the position of the cor-
ners, Xi,Yi and size, W,H of the box in page coordinates.
There are a total of 360 measurement features which we

3 Such a grammar is often called a tree-bank grammar.

6 SUBMITTED TO INT. CONF ON COMPUTER VISION, 2005

Fig. 5. Left: An input mathematical expression. During parsing the
expression Zo is encountered and must be interpreted. Right: The
four rendered images used as input to the production scoring process.

will refer to as {mj(R)}. A second set of features is combi-
natorial and relates all pairs of box measurement features:
g(mj(Ra),mj′(Rb)), where the a and b are {0,1,2} and the
function g can be addition, subtraction, multiplication, di-
vision, minimum, or maximum. A third set of features
measure properties of the bounding boxes of the terminals
included in the regions. This includes measuring the mini-
mum, maximum, average, standard deviation, and median
of some measurement feature evaluated across all region
terminals.

Additionally, there are a large set of pattern recogni-
tion features which are designed to discriminate regions
based on visual appearance. These features operate on the
rendered images of the terminals in the regions (see Fig-
ure VI). Visual features are necessary when the terminals
themselves must be recognized based on appearance. We
adopt the rectangle features proposed by Viola and Jones
[24]. They are computationally efficient and have proven
effective for a wide range of tasks. Each input image is rep-
resented 121 single rectangle features sampled uniformly
in location and scale. A much larger set has been used
for more difficult image recognition tasks, but these have
proven sufficient for these tasks.

Geometric normalization is a critical question when con-
structing image classification functions. In this case we
choose a reference frame which normalizes the size and lo-
cation of R0. The target is for R0 to fill 80% of the visual
image. The terminals of R1 and R2 are rendered in this
coordinate frame. This provide the image features with an
input image containing information about the relative po-
sitions of R1 and R2. So for example, if R2 is a subscript,
the position of its rendered components will be toward the
bottom of the reference frame. Finally the terminals from
the entire document are rendered in the reference frame of
R0 but with at a much smaller scale. This image encodes
document “context” and can be used to perform certain
types of local disambiguation.

During parsing every potential region and subregion is
encoded as a set of images. When there are many re-
gions the image encoding process, which involves image re-
scaling, would naively result in great deal of computation.
To avoid this computation, the integral image representa-
tion introduced by Viola and Jones is used to compute the
rectangle filters at any scale with no additional cost.

VII. Experiments

Two sets of experiments were performed using the fea-
tures described above. The overall process for learning
the grammar parameters is described in Figure 2. In each
round of learning AdaBoost on decision stumps is used.
Adaboost is used for two reasons. It provides a very sim-
ple mechanism for complexity control (early stopping). It
also provides a mechanism for feature selection, since each
round of boosting selects a single stump which is in turn
associated with a single feature.

Since the early rounds of training are likely to encounter
examples which are not representative of the final distribu-
tion, Adaboost is run on schedule of increasing complexity.
The first round of boosting selects 2 weak classifiers. The
second and third rounds select 4 and 8 classifier respec-
tively. Thereafter 8 classifiers (and hence 8 features) are
selected in each round of parsing.

Evaluation of parsing results is something of an art.
Since no system is perfect it is valuable to define a mea-
sure that quantifies the quality of a parse that is mostly
correct. One scheme is to measure the recall and preci-
sion for each type of production. The ground truth con-
tains many examples of each production. The percentage
of times each production is correctly identified is recall.
The learned grammar yields a parse for each input exam-
ple. The percentage of times these productions correspond
to the correct parse is the precision.

The UWIII document database includes 57 files split
80-20 in three rounds of cross-validation (see Table VII).
While performance on the training set is near perfect, the
performance on the test set is good but far from perfect.
In on-going work (to be reported in this paper at ICCV)
we are developing a larger training set. We are also in-
vestigating changes in the feature representation that may
improve generalization.

For both the document and mathematical equation do-
mains, a typical input with 80 terminals takes approxi-
mately 30 seconds to parse on a 1.7GHz Pentium 4 with
1GB of RAM.

TABLE IV

Results on the UWIII document structure extraction task.

Average denotes the average performance across all

productions. Weighted average assigns weight in the

average based on the number of examples encountered.

Shilman and Viola: NON-GENERATIVE GRAMMARS FOR DOC ANALYSIS 7

TABLE V

Results on the mathematical expression recognition task.

The equation database includes 180 expressions and a
grammar with 51 different mathematical symbols such as
λ and δ. The results are reported in Table VII).

VIII. Conclusion

We have presented an analysis framework that can learn
to simultaneously segment and recognize components of
printed documents. The framework is quite general, in
that all parameters of the parsing process are set using
a database of training examples. We have demonstrated
the effectiveness and generality of the framework by pre-
senting two applications: page layout structure extraction
and mathematical expression recognition. In the first case
the input to the algorithm is a collection of lines on the
page and the output is the section, column, and paragraph
structure. In the second case the input is a collection of
connected components on the page and the output is a set
of recognized mathematical symbols and the LaTex code
necessary to reproduce the input. While the final systems
are quite different, very few modifications to the learning
and parsing process are necessary to produce an accurate
recognition system.

References

[1] S. Mao, A. Rosenfeld, and T. Kanungo, “Document structure
analysis algorithms: A literature survey,” in Proc. SPIE Elec-
tronic Imaging, vol. 5010, January 2003, pp. 197–207.

[2] M. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan,
“Syntactic segmentation and labeling of digitized pages from
technical journals,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 15, pp. 737–747, 1993.

[3] J. Kim, D. Le, and G. Thoma, “Automated labeling in document
images,” in Document Recognition and Retrieval VIII, vol. 4307,
January 2001.

[4] D. Niyogi and S. Srihari, “Knowledge-based derivation of doc-
ument logical structure,” in Third International Conference on
Document Analysis and Recognition, Montreal, Canada, 1995.

[5] P. Chou, “Recognition of equations using a two-dimensional
stochastic context-free grammar,” in SPIE Conference on Vi-
sual Communications and Image Processing, Philadelphia, PA,
1989.

[6] A. Conway, “Page grammars and page parsing. a syntactic ap-
proach to document layout recognition,” in Proceedings of the
Second International Conference on Document Analysis and
Recognition, Tsukuba Science City , Japan, 1993, pp. 761–764.

[7] E. G. Miller and P. A. Viola, “Ambiguity and constraint in
mathematical expression recognition,” in Proceedings of the Na-
tional Conference of Artificial Intelligence. American Associ-
ation of Artificial Intelligence, 1998.

[8] T. Tokuyasu and P. A. Chou, “Turbo recognition: a statistical
approach to layout analysis,” in Proceedings of the SPIE, vol.
4307, San Jose, CA, 2001, pp. 123–129.

[9] T. Kanungo and S. Mao, “Stochastic language model for style-
directed physical layout analysis of documents,” in IEEE Trans-
actions on Image Processing, vol. 5, no. 5, 2003.

[10] D. Blostein, J. R. Cordy, and R. Zanibbi, “Applying compiler
techniques to diagram recognition,” in Proceedings of the Six-
teenth International Conference on Pattern Recognition, vol. 3,
2002, pp. 123–136.

[11] J. F. Hull, “Recognition of mathematics using a two-dimensional
trainable context-free grammar,” Master’s thesis, MIT, June
1996.

[12] N. Matsakis, “Recognition of handwritten mathematical expres-
sions,” Master’s thesis, Massachusetts Institute of Technology,
Cambridge, MA, May 1999.

[13] J. Lafferty, A. McCallum, and F. Pereira, “Conditional ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data,” in Proc. 18th International Conf. on Machine
Learning. Morgan Kaufmann, San Francisco, CA, 2001, pp.
282–289.

[14] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning,
“Max-margin parsing,” in Empirical Methods in Natural Lan-
guage Processing (EMNLP04), 2004.

[15] E. Charniak, S. Goldwater, and M. Johnson, “Edge-based best-
first chart parsing,” in Proceedings of the Fourteenth National
Conference on Artificial Intelligence, 1998, pp. 127–133.

[16] D. Klein and C. D. Manning, “A∗ parsing: Fast exact viterbi
parse selection,” Stanford University, Tech. Rep. dbpubs/2002-
16, 2001.

[17] M. Kay, “Algorithm schemata and data structures in syntactic
processing,” pp. 35–70, 1986.

[18] W. for Anonymity, “Efficient geometric algorithms for parsing
in two dimensions,” in Submitted to ICDAR, 2005.

[19] M. Viswanathan, E. Green, and M. Krishnamoorthy, “Docu-
ment recognition: an attribute grammar approach,” in Proc.
SPIE Vol. 2660, p. 101-111, Document Recognition III, Luc
M. Vincent; Jonathan J. Hull; Eds., Mar. 1996, pp. 101–111.

[20] L. Rabiner, “A tutorial on hidden markov models,” in IEEE,
vol. 77, 1989, pp. 257–286.

[21] M. Collins, “Discriminative training methods for hidden markov
models: Theory and experiments with perceptron algorithms.”
in EMNLP, 2002.

[22] Y. Freund and R. E. Schapire, “A decision-theoretic generaliza-
tion of on-line learning and an application to boosting,” in Com-
putational Learning Theory: Eurocolt ’95. Springer-Verlag,
1995, pp. 23–37.

[23] I. Philips, S. Chen, and R. Haralick, “Cd-rom document
database standard,” in Proceedings of 2nd International Con-
ference on Document Analysis and Recognition, 1993.

[24] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2001.

