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Abstract 

We derive a learning algorithm for inferring an overcomplete basis 

by viewing it as probabilistic model of the observed data. Over

complete bases allow for better approximation of the underlying 

statistical density. Using a Laplacian prior on the basis coefficients 

removes redundancy and leads to representations that are sparse 

and are a nonlinear function of the data. This can be viewed as 

a generalization of the technique of independent component anal

ysis and provides a method for blind source separation of fewer 

mixtures than sources. We demonstrate the utility of overcom

plete representations on natural speech and show that compared 

to the traditional Fourier basis the inferred representations poten

tially have much greater coding efficiency. 

A traditional way to represent real-values signals is with Fourier or wavelet bases. 

A disadvantage of these bases, however, is that they are not specialized for any 

particular dataset. Principal component analysis (PCA) provides one means for 

finding an basis that is adapted for a dataset, but the basis vectors are restricted 

to be orthogonal. An extension of PCA called independent component analysis 

(Jutten and Herault, 1991; Comon et al., 1991; Bell and Sejnowski, 1995) allows 

the learning of non-orthogonal bases. All of these bases are complete in the sense 

that they span the input space, but they are limited in terms of how well they can 

approximate the dataset's statistical density. 

Representations that are overcomplete, i. e. more basis vectors than input variables, 

can provide a better representation, because the basis vectors can be specialized for 
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a larger variety of features present in the entire ensemble of data. A criticism of 

overcomplete representations is that they are redundant, i.e. a given data point may 

have many possible representations, but this redundancy is removed by the prior 

probability of the basis coefficients which specifies the probability of the alternative 

representations. 

Most of the overcomplete bases used in the literature are fixed in the sense that 

they are not adapted to the structure in the data. Recently Olshausen and Field 

(1996) presented an algorithm that allows an overcomplete basis to be learned. This 

algorithm relied on an approximation to the desired probabilistic objective that had 

several drawbacks, including tendency to breakdown in the case of low noise levels 

and when learning bases with higher degrees of overcompleteness. In this paper, we 

present an improved approximation to the desired probabilistic objective and show 

that this leads to a simple and robust algorithm for learning optimal overcomplete 

bases. 

1 Inferring the representation 

The data, X 1 :L ' are modeled with an overcomplete linear basis plus additive noise: 

x = AS+i (1) 

where A is an L x M matrix, whose columns are the basis vectors, where M ~ L . 

We assume Gaussian additive noise so that 10gP(xIA, s) ()( -A(X - As)2/2, where 

A = 1/(12 defines the precision of the noise. 

The redundancy in the overcomplete representation is removed by defining a density 

for the basis coefficients, P(s), which specifies the probability of the alternative 

representations. The most probable representation, 5, is found by maximizing the 

posterior distribution 

s = maxP(sIA,x) = maxP(s)P(xIA,s) 
8 8 

(2) 

P(s) influences how the data are fit in the presence of noise and determines the 

uniqueness of the representation. In this model, the data is a linear function of 

s, but s is not, in general, a linear function of the data. IT the basis function is 

complete (A is invertible) then, assuming broad priors and low noise, the most 

probable internal state can be computed simply by inverting A. In the case of an 

overcomplete basis, however, A can not be inverted. Figure 1 shows how different 

priors induce different representations. 

Unlike the Gaussian prior, the optimal representation under the Laplacian prior 

cannot be obtained by a simple linear operation. One approach for optimizing sis 

to use the gradient of the log posterior in an optimization algorithm. An alternative 

method for finding the most probable internal state is to view the problem as the 

linear program: min 1 T s such that As = x. This can be generalized to handle both 

positive and negative s and solved efficiently and exactly with interior point linear 

programming methods (Chen et al., 1996) . 
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Figure 1: Different priors induce different representations. (a) The 2D data distribution 

has three main axes which form an overcomplete representation. The graphs marked "L2" 

and "L1" show the optimal scaled basis vectors for the data point x under the Gaussian 

and Laplacian prior, respectively. Assuming zero noise, a Gaussian for P{s) is equivalent 

to finding the exact fitting s with minimum L2 norm, which is given by the pseudoinverse 

s = A+x. A Laplacian prior (P{Sm) ex: exp[-OlsmlJ) yields the exact fit with minimum L1 

norm, which is a nonlinear operation which essentially selects a subset of the basis vectors 

to represent the data (Chen et al., 1996). The resulting representation is sparse. (b) A 

64-sample segment of speech was fit to a 2x overcomplete Fourier representation (128 basis 

vectors). The plot shows rank order distribution of the coefficients of s under a Gaussian 

prior (dashed); and a Laplacian prior (solid). Far more significantly positive coefficients 

are required under the Gaussian prior than under the Laplacian prior. 

2 Learning 

The learning objective is to adapt A to maximize the probability of the data which 

is computed by marginalizing over the internal states 

P(xIA) = J ds P(s)P(xIA, s) (3) 

general, this integral cannot be evaluated analytically but can be approximated 

with a Gaussian integral around s, yielding 

log P(xIA) ~ const. + log pes) - ~ (x - As)2 - ~ log det H (4) 

where H is the Hessian of the log posterior at S, given by )'ATA - VVlogP(s). 

To avoid a singularity under the Laplacian prior, we use the approximation 

(logP(sm»)' ~ -8tanh(,8sm) which gives the Hessian full rank and positive de

terminant. For large ,8 this approximates the true Laplacian prior. A learning rule 

can be obtained by differentiating log P(xIA) with respect to A. 

In the following discussion, we will present the derivations of the three terms in (4) 

and simplifying assumptions that lead to the following simple form of the learning 

rule 

(5) 
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2.1 Deriving V log pes) 

This term specifies how to change A so as to make the probability of the represen

tation s more probable. IT we assume a Laplacian prior, this component changes A 

to make the representation more sparse. 

We assume pes) = rIm P(Sm). In order to obtain 8sm/8aij, we need to describe 
s as a function of A. If the basis is complete (and we assume low noise), then we 

may simply invert A to obtain s = A -IX. When A is overcomplete, however, there 

is no simple expression, but we may still make an approximation. 

Under priors, the most probable solution, s, will yield at most L non-zero elements. 

In effect, this selects a complete basis from A. Let A represent this reduced basis 

under s. We then have s = A -1(X- €) where s is equal to s with M - L zero-valued 

elements removed. A-I obtained by removing the columns of A corresponding to 

the M - L zero-valued elements of s. This allows us to use results obtained for the 

case when A is invertible. Following MacKay (1996) we obtain 

(6) 

Rewriting in matrix notation we have 

810gP(s) _ A~ -Tv~T 
8A - - zs (7) 

We can use this to obtain an expression in terms of the original variables. We 

simply invert the mapping s ~ s to obtain Z f- z and W T f- A -T (row-wise) with 

Zm = 0 and row m ofWT = 0 if 8m = O. We then have 

8 log P(s) WT T 
8A = - zs (8) 

2.2 Deriving Vex - As)2 

The second term specifies how to change A so as to minimize the data misfit. 

Letting ek = [x - AS]k and using the results and notation from above we have: 

8 A~ 2 ~ ~ 8s, 
-8 .. "2 L-ek = AeiSj + A L-ek L-ak'~ 

a" k k I alJ 

(9) 

= AeiSj + A Lek L -aklWliSj (10) 

k I 

= AeiSj - AeiSj = 0 (11) 

Thus no gradient component arises from the error term. 

2.3 Deriving V log det H 

The third term in the learning rule specifies how to change the weights so as to 

minimize the width of the posterior distribution P(xIA) and thus increase the 

overall probability of the data. An element of H is defined by Hmn = Cmn + bmn 
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where Cmn = Ek Aakmakn and bmn = [-V'V' log P(s)]mn. This gives 

8logdetH _ ""H-1 [8emn + 8bmn ] 
8a ·· - ~ nm 8a .. 8a·· 

~ mn U ~ 

(12) 

First considering 8Cmn/8aij, we can obtain 

L H~~ ~~~ = L H~;.\aim + L Hj~.\aim + Hj/ 2Aaij (13) 
mn ~3 m:f.j m:f.j 

Using the fact that H~; = Hj~ due to the symmetry of the Hessian, we have 

(14) 

Next we derive 8bmn/8aij. We have that V'V'logP(s) is diagonal, because we 

assume pes) = nm P(sm). Letting 2Ym = H~!n8bmm/8sm and using the result 

under the reduced representation (6) we can obtain 

(15) 

2.4 Stabilizing and simplifying the learning rule 

Putting the terms together yields a problematic expression due to the matrix in

verses. This can be alleviated by multiplying the gradient by an appropriate positive 

definite matrix, which rescales the gradient components but preserves a direction 

valid for optimization. Noting that ATWT = I we have 

(16) 

H'\ is large (low noise) then the Hessian is dominated by AATA and we have 

(17) 

The vector y hides a computation involving the inverse Hessian. IT the basis vectors 

in A are randomly distributed, then as the dimensionality of A increases the basis 

vectors become approximately orthogonal and consequently the Hessian becomes 

approximately diagonal. It can be shown that if log pes) and its derivatives are 

smooth, Ym vanishes for large A. Combining the remaining terms yields equation 

(5). Note that this rule contains no matrix inverses and the vector z involves only 

the derivative of the log prior. 

In the case where A is square, this form of the rule is similar to the natural gradient 

independent component analysis (ICA) learning rule (Amari et al., 1996). The 

difference in the more general case where A is rectangular is that s must maximize 

the posterior distribution P(slx, A) which cannot be done simply with the filter 

matrix as in standard ICA algorithms. 



Learning Nonlinear Overcomplete Representations/or Efficient Coding 561 

3 Examples 

More sources than inputs. In these 2D examples, the bases were initialized 

to random, normalized vectors. The coefficients were solved using BPMPD and 

publicly available interior point linear programming package (Meszaros, 1997) which 

gives the most probable solution under the Laplacian prior assuming zero noise. 

The algorithm was run for 30 iterations using equation (5) with a stepsize of 0.001 

and a batchsize of 200. Convergence was rapid, typically requiring less than 20 

iterations. In all cases, the direction of the learned vectors matched those of the 

true generating distribution; the magnitude was estimated less precisely, possibly 

due to the approximation oflogP(xIA). This can be viewed as a source separation 

problem, but true separation will be limited due to the projection of the sources 

down to a smaller subspace which necessarily loses information . 

. ' '. ~ 

Figure 2: Examples illustrating the fitting of 2D distributions with overcomplete bases. 

The first example is equivalent to 3 sources mixed into 2 channels; the second to 4 sources 

mixed into 2 channels. The data in both examples were generated from the true basis A 

using x = As with the elements of s distributed according to an exponential distribution 

with unit mean. Identical results were obtained by drawing s from a Laplacian prior 

(positive and negative coefficients). The overcomplete bases allow the model to capture 

the true underlying statistical structure in the 2D data space. 

Overcomplete representations of speech. Speech data were obtained from the 

TIMIT database, using a single speaker was speaking ten different example sen

tences with no preprocessing. The basis was initialized to an overcomplete Fourier 

basis. A conjugate gradient routine was used to obtain the most probable basis 

coefficients. The stepsize was gradually reduced over 10000 iterations. Figure 3 

shows that the learned basis is quite different from the Fourier representation. The 

power spectrum for the learned basis vectors can be multimodal and/or broadband. 

The learned basis achieves greater coding efficiency: 2.19 ± 0.59 bits per sample 

compared to 3.86 ± 0.28 bits per sample for a 2x overcomplete Fourier basis. 

4 Summary 

Learning overcomplete representations allows a basis to better approximate the un

derlying statistical density of the data and consequently the learned representations 

have better encoding and denoising properties than generic bases. Unlike the case 

for complete representations and the standard ICA algorithm, the transformation 
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Figure 3: An example of fitting a 2x overcomplete representation to segments of from 

natural speech. Each segment consisted of 64 samples, sampled at a frequency of 8000 Hz 

(8 msecs). The plot shows a random sample of 30 of the 128 basis vectors (each scaled to 

full range). The right graph shows the corresponding power spectral densities (0 to 4000 

Hz). 

from the data to the internal representation is non-linear. The probabilistic formu

lation of the basis inference problem offers the advantages that assumptions about 

the prior distribution on the basis coefficients are made explicit and that different 

models can be compared objectively using log P(xIA). 
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