
Department of Computer Science

Series of Publications A

Report A-2008-5

Learning Nonlinear Visual Processing

from Natural Images

Jussi T. Lindgren

Academic Dissertation

To be presented, with the permission of the Faculty of Science of
the University of Helsinki, for public criticism in Hall 5, Uni-
versity Main Building, on Nov. 28th, 2008, at 12 o’clock noon.

University of Helsinki

Finland



Copyright c© 2008 Jussi T. Lindgren

ISSN 1238-8645
ISBN 978-952-10-5028-2 (paperback)
ISBN 978-952-10-5029-9 (PDF)
http://ethesis.helsinki.fi/

Computing Reviews (1998) Classification:
G.3,I.2.6,I.2.10,I.4.7,I.4.8,I.5.1,I.5.4

Helsinki University Print
Helsinki, November 2008 (100+52 pages)



Learning Nonlinear Visual Processing from Natural Images

Jussi T. Lindgren
Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
jtlindgr@iki.fi
http://www.iki.fi/jtlindgr/

Abstract

The paradigm of computational vision hypothesizes that any visual func-
tion – such as the recognition of your grandparent – can be replicated by
computational processing of the visual input. What are these computations
that the brain performs? What should or could they be? Working on the
latter question, this dissertation takes the statistical approach, where the
suitable computations are attempted to be learned from the natural visual
data itself. In particular, we empirically study the computational process-
ing that emerges from the statistical properties of the visual world and the
constraints and objectives specified for the learning process.

This thesis consists of an introduction and 7 peer-reviewed publications,
where the purpose of the introduction is to illustrate the area of study to
a reader who is not familiar with computational vision research. In the
scope of the introduction, we will briefly overview the primary challenges
to visual processing, as well as recall some of the current opinions on visual
processing in the early visual systems of animals. Next, we describe the
methodology we have used in our research, and discuss the presented re-
sults. We have included some additional remarks, speculations and conclu-
sions to this discussion that were not featured in the original publications.

We present the following results in the publications of this thesis. First,
we empirically demonstrate that luminance and contrast are strongly de-
pendent in natural images, contradicting previous theories suggesting that
luminance and contrast were processed separately in natural systems due to
their independence in the visual data. Second, we show that simple cell -like
receptive fields of the primary visual cortex can be learned in the nonlinear
contrast domain by maximization of independence. Further, we provide
first-time reports of the emergence of conjunctive (corner-detecting) and
subtractive (opponent orientation) processing due to nonlinear projection
pursuit with simple objective functions related to sparseness and response
energy optimization. Then, we show that attempting to extract indepen-
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dent components of nonlinear histogram statistics of a biologically plausible
representation leads to projection directions that appear to differentiate be-
tween visual contexts. Such processing might be applicable for priming, i.e.
the selection and tuning of later visual processing. We continue by showing
that a different kind of thresholded low-frequency priming can be learned
and used to make object detection faster with little loss in accuracy. Fi-
nally, we show that in a computational object detection setting, nonlinearly
gain-controlled visual features of medium complexity can be acquired se-
quentially as images are encountered and discarded. We present two online
algorithms to perform this feature selection, and propose the idea that for
artificial systems, some processing mechanisms could be selectable from the
environment without optimizing the mechanisms themselves.

In summary, this thesis explores learning visual processing on several levels.
The learning can be understood as interplay of input data, model struc-
tures, learning objectives, and estimation algorithms. The presented work
adds to the growing body of evidence showing that statistical methods can
be used to acquire intuitively meaningful visual processing mechanisms.
The work also presents some predictions and ideas regarding biological vi-
sual processing.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.3 Probability and Statistics: multivariate statistics
I.2.6 Learning: concept learning, connectionism and neural nets,

parameter learning
I.2.10 Vision and Scene Understanding: representations, data structures,

and transforms
I.4.7 Feature Measurement: feature representation
I.4.8 Scene Analysis: object recognition
I.5.1 Models: statistical
I.5.4 Applications: computer vision

General Terms:
vision research, machine learning, statistical modelling

Additional Key Words and Phrases:
natural image statistics, statistical dependencies, independent component
analysis, object recognition, feature extraction, feature selection, data
transformations
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The main results1 of the numbered publications are discussed in Chap-
ter 5. Here we summarize the results for convenience:

1. We demonstrate that a statistical model learned with Independent
Component Analysis on top of a nonlinear filter response histogram
representation is able to segregate the gists of natural scenes to some
extent.

2. We present a statistically learned system for object recognition where
the computationally more expensive discriminative processing is cho-
sen based on initial, faster mechanisms. We study the low-frequency
priming hypothesis in the context of the system.

3. We propose two online feature selection algorithms, one based on
Bayesian analysis and the other on heuristics. We evaluate the algo-
rithms on selecting nonlinear visual features for object recognition.

4. We show that Independent Component Analysis, when applied to
quadratically basis-expanded natural image data, can learn nonlinear
visual processing that functionally resembles angle and corner detec-
tion.

5. We study the statistical structure of nonlinear local contrast in natu-
ral images by applying Fourier techniques and Independent Compo-
nent Analysis. We show that in terms of the used statistical methods,
the local contrast retains strong similarities to the raw images.

6. We show that statistical minimization or maximization of paired filter
response energies over natural image data can lead to emergence of
nonlinear filters that exhibit conjunctive (angle and corner detecting)
and subtractive (orientation opponency) behaviour, respectively.

7. We study and describe the statistical relationships between local lu-
minance and contrast. These two image properties appear approxi-
mately pairwise independent in natural images. We show that this
independence does not extend to spatial analysis and hence that inde-
pendence can not be used as an argument to support the segregation
of luminance and contrast processing in a spatial sense.

1The usual c-word is avoided here; its proper context can be seen e.g. in Locke (1933).
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Glossary

The following technical terms and symbols are common in the introductory
part of this thesis. The publications may have slightly different notations.

ICA Independent Component Analysis
mechanism an operation that does some processing on information
model an object with tunable parameters, can also be a density
modelling selecting a model/mechanism structure, possibly

optimizing its parameters by data and constraints
nonlinear any computation on x not representable as

∑
i wixi

PCA Principal Component Analysis
SVM Support Vector Machine
V1 the primary visual cortex
V2, V4 other cortical visual areas

|| · ||2 Euclidean norm
A feature matrix, columns are features or receptive field models
det determinant of a matrix
g(·) some nonlinear scalar function, on vectors applied pointwise
P (·) probability of an event
px(·) density function with relation to the distribution of x
s an output value of a computation, a “response”
W weight matrix, a filter bank, rows are filters wT

v,w weight vectors, linear filters
wTx dot product, same as

∑
i wixi, filtration, “mechanism” example

x data vector, information, as input
xi the i:th row or column vector of a matrix (depending on context)
xi the i:th attribute/dimension/variable of vector x
z data vector from a whitened source (i.e. has identity covariance)

xi
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Preface

The research area of this thesis is inherently multidisciplinary and the
amount of relevant literature is staggering: the fields under consideration
include vision research, computer vision, machine learning, neuroscience
and psychology. When applicable and available, I have tried to cite recent
review work to provide understandable yet authoritative entry points to
the discussed topics. I have also attempted to re-use references in different
contexts. In many cases, scores of recommendable reports exist concerning
some specific issue. I apologize for the committed sins of omission.

Aside the acknowledgements and this preface, I will use the plural “we”
to denote the author, the author and the audience, or the joint authors
with respect to the publications, depending on the context. I may also use
the plural as a passive – I request the reader to be tolerant towards this.
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Chapter 1

On studying vision

Perceiving visual scenes seems relatively effortless to us. Our brains inter-
pret our visual environments with seemingly little delay, turning the re-
ceived barrage of photons into perceptions of our surroundings. This rapid,
unconscious interpretation is what allows us to see the world conveniently
as shapes, objects, surfaces, patterns, colours and so on.

The introspective feeling that seeing is easy is misplaced. As an invi-
tation, the reader is referred to Figure 1.1 that could well be taken as an
artist’s illustration of at least three different vision-related issues that we
will discuss in the remainder of this chapter. First, the illustration can
be used as a teaching example demonstrating how difficult it is to model
the processes of seeing. Second, the illustration could represent the brain
activity as it becomes our perception of the visual world. Third, the il-
lustration could portray the happy cross-disciplinarity of vision research.
We will shortly explain these three points, and hope that this thesis will
further convince the reader how fitting the suggested allegory is.

First, consider how Figure 1.1 reflects the problems of seeing. If time
is spent thinking on what might be interesting in the scene, we might
formulate these interests as questions posed to the visual apparatus. These
questions could be such as “what is shown in the image?”, “where is that
place?”, “what objects are present?” and yet more specific ones like “is
that Harry in the middle left?”, “is there anyone drowning in the image?”,
or “if you see something like that, should you run?”. Or, we could consider
tasks involving other images, such as “examine some additional images and
find those that resemble this one”. It should be apparent that it is difficult
to mathematically specify how the given image in Figure 1.1 should be used
to address such questions, as the challenges the task poses may range from
simple image processing to meaningful incorporation of human cultural
semantics. Subsequently, should there be a model to acceptably answer
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2 1 On studying vision

these (and other equally arbitrary) questions for images, the system would
practically pass a Turing test (Turing, 1950) customized for images: an
acceptable performance for the system would be that a human interrogator
would not be able to tell if the answers are returned by another human or
an artificial model. Hence we suppose that cognition and high-level visual
tasks are not ultimately separable (see e.g. Chalmers et al. (1992); A. J. Bell
(1999); Thelen et al. (2001), for a contrary view see Pylyshyn (1999) and
the heated peer commentary). Instead we accept that human-like seeing
may be a complicated and convoluted effort, with the required machinery
not necessarily simpler than the human brain.

Our second point was that Figure 1.1 can be used as an allegory of
system level neural visual processing in the brain. Making a convincing
case of this is not entirely possible without a proper overview of the bio-
logical brain. At the moment we have to content ourselves by pointing out
that the cortical processing in animals is performed by diverse sets of par-
allel elements and areas of computation that influence each other (Gilbert
& Sigman, 2007). These entities may perform at different latencies, hav-
ing an order of processing that may rather be cyclic instead of stagewise
or serial (Bullier, 2004). Further, these elements and areas may use dif-
ferent kinds of signaling strategies (Krahe & Gabbiani, 2004) and codes
(deCharms & Zador, 2000) to relay the results of their operation. Areas
that are considered segregated on the cortex may be devoted to separate
aspects of the visual input (Zeki, 1978; Livingstone & Hubel, 1988), but
also several visual aspects can be considered by a single cortical area (Ts’o
& Roe, 1995). Possibly different visual properties can be represented by the
same computational element at different points in time after the stimulus
onset (Roelfsema et al., 2007). To make things even more interesting, to
some extent this visual machinery can change its general operation over
time (Kaas et al., 1990; Kohn, 2007). The whole process of seeing, then,
somewhat resembles the performance of a well-tuned orchestra – or the
parallel baying from a well-behaving zoo (although provocative, the flavour
of this idea is not new, see e.g. Minsky (1986)). Together, the processing
elements make up a system of complicated interactions, analogous to one
in Figure 1.1.

Finally, as our third point we suggested that Figure 1.1 could illus-
trate the research community that studies vision. Given that vision may
be studied on many partially overlapping levels of abstraction, including
molecular, biochemical, neural, computational, psychological and cultural
levels (see e.g. the scope of Palmer (1999)), it is not surprising that the work
towards understanding vision is very multidisciplinary, with contributions
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coming from diverse research areas including neurophysiology, vision re-
search, brain research, neurophysiology, cognitive science, psychology, bio-
chemistry, physics, mathematics, statistics, computer science, artificial in-
telligence, machine learning, and even economics. Subsequently these fields
have brought their own research traditions and tend to have characteristic
scopes for the questions they are addressing, possibly incomprehensible to
a researcher from a different background1. Often there are contradicting
results regarding vision even from inside a single discipline, but the differ-
ent areas also fruitfully interact with each other, and the situation can be
summed up as not being completely unlike the one shown in Figure 1.1.

1.1 Vision as computational processing

In this thesis, vision is studied on the abstraction level of information trans-
formations. Central to this idea is a model system that receives natural
visual input, and performs transformations on the input to produce useful
behaviour (some kind of desired functionality). These transformations that
we call visual processing are assumed to be partly fixed (roughly correspond-
ing to optimization that has been done by evolution) and partly learned
from exposure to visual data (corresponding to plasticity during the lifetime
of an organism). In this setting, the exposure to data and some specified
goals are used to adapt parameters of the processing mechanisms, i.e. the
mechanisms may belong to some fixed function classes, but the function
parameters are learned from experience to attain the goals. A major part
of this thesis concerns learning different functions from visual data. We are
also interested in statistical properties of such data, as learning, statistics
and statistically meaningful behaviour are closely connected.

In the scope of this work, visual processing is modelled to operate on
the abstraction level of algebra on real numbers, vectors, and functions
of such. Combined and tuned appropriately, these models represent and
process abstract information, typically in arbitrary units. Aspects of lower
levels, for example how real neurons are formed from molecules or how
they actually transmit information or produce an electric discharge, are
taken to be below the used level of abstraction (but these lower-level issues
may still be important for higher-level function, see e.g. A. J. Bell (1999)).
Likewise, it should be emphasized that in this thesis we do not propose

1I recently participated in a workshop on “neuroinformatics”, and saw a poster that
used the abstraction level of dynamical systems and biochemistry in neuronal modelling.
The presentation was quite beyond me. Likewise, had I asked how the proposed model
helped in some high-level functionality, I might have seen a blank stare matching my
own.



4 1 On studying vision

new models of neurons, nor are we proposing biologically plausible learn-
ing algorithms. Neither are we presenting new, improved mechanisms for
computer vision. On the contrary, it could be claimed that in such regards,
the mechanisms studied in this thesis do not incorporate all the complexity
of current systems level biology, nor do they meet the finesse of the state
of the art computer vision systems. This is mainly because of traditions in
philosophy of science suggesting we should not complicate issues needlessly
(an idea often known as Occam’s razor, after William of Ockham, c. 1288
- c. 1348, later elaborated by several others, e.g. Mach (1882)), but it is
also a matter of practical tractability. Hence, as we study computation
and phenomena, we pick the most simple and feasible computation we can
think of, given that it produces or verifies some of the phenomena we are
interested in. Subsequently, with some control on the complexity, we can
more easily reason about the limitations of the approach, think of possible
extensions and consider resemblances to natural processing.

The main underlying hypothesis in our setting is that vision is amenable
to computational simulation (as in e.g. Churchland and Sejnowski (1992)).
Should this computational hypothesis be true, it would mean that mathe-
matical descriptions can mechanically explain and replicate the transforma-
tions from the environmental visual data to the eventual animal perceptions
and behaviours. To chart the validity of the computational hypothesis, we
can in principle search among the multitude of mathematical descriptions
(models) by requiring that the mathematical description, when simulated,
can produce appropriate behaviours on the given visual inputs. In this
thesis, we perform this search for suitable models by adapting the model
system parameters to natural visual data and some behavioural objectives.

The benefit of using behavioural objectives and a large amount of natu-
ral image data to guide selection of mathematical models is that it allows us
to study and estimate model mechanisms of visual function without having
to resort to neurophysiological experimentation. Although the results can
be compared to neurophysiological data, the models can also be evaluated
with relation to the quality of behaviour they exhibit. Then, this approach
to studying vision can be taken to combine natural image statistics research
(Simoncelli & Olshausen, 2001) with the more goal-oriented methodology
from computer vision and machine learning research. In this thesis we call
this combination the ecology-driven approach, and we will elaborate on the
connotations of the name in Chapter 3.

Should computational modelling of high-level vision succeed, the scope
of applications would be enormous. Already in the eighties, methods from
the machine vision community were in production use in tasks such as ma-
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chine inspection of factory products (Robinson & Miller, 1989). At the
time, this success was made possible by the tightly controlled factory con-
ditions. Later, statistically fitted neural network models could be deployed
in e.g. cheque recognition (LeCun et al., 1998), a problem that is more chal-
lenging due to the letters on the cheques having been written by humans.
Currently, computer vision methods are advanced enough to be deployed
in even more demanding settings, such as in autonomous planetary ex-
ploration vehicles (Matthies et al., 2007). As the research progresses, old
applications such as autonomous robotics, face recognition and biometrics
are expected to become more successful, and yet new applications may
become feasible. One example of a future application is a personal assis-
tant for browsing, filtering, searching, and recommending visual media; this
problem can be taken as particularly demanding as semantics and feelings
affect our judgments regarding visual content. Also, as the understanding
of the visual processing mechanisms in humans and primates grows, neural
interfaces transmitting sensory information directly in and out of the brain
may greatly improve, allowing revolutions in e.g. entertainment, prostheses
development, and quite possibly in society in general.

In the scope of this thesis, it should be prudently admitted that the
results we present here do not trivially alleviate such future applications
as described above. Here, our results are related to learning simple and
abstracted mechanisms of visual processing from natural visual data. In
particular, we add to the surmounting evidence that meaningful visual fea-
tures and processing can be learned from the natural visual data, and we
explore how including certain nonlinearities to the processing affects the
emerging mechanisms. Our analyses of the models and the input data en-
largens our understanding of the complex statistical structure of the visual
input, and thus may not only help in the efforts to realize visual processing
in machines, but also in understanding biological vision.

1.2 Thesis organization

The rest of this thesis is organized as follows. In Chapter 2 we outline
our view on visual processing and describe some of the problems that are
currently understood to be associated with it. Next, we review some of what
is known of the operation of natural visual systems and how they process
visual information. In Chapter 3 we describe the modelling approach used
in this thesis, along with its historical connections. In Chapter 4, we give
a review of the statistical estimation methods and learning objectives we
have used, along with an account of some of the challenges related to the
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application of such methods. We also discuss the properties of the used
visual datasets in the same chapter. Then, in Chapter 5 we overview the
technical content of this thesis with additional discussion and hindsight
that was not part of the original publications. Finally, Chapter 6 concludes
with a speculative outlook at possible future directions and developments.
The main technical content of this thesis is appended to the end as reprints
of the original publications.

We recommend the following reading order: readers familiar with vision
research and machine learning should skip to the publications at the end
of this thesis and then return to read Chapter 5. For other audiences,
Chapter 2 and Chapter 3 provide introductory material. The publications
at the end could be glanced next, and should the technical learning methods
require some additional explanations, Chapter 4 provides a starting point.
Although Chapter 5 reviews the publications of the thesis, the provided
discussions may be more understandable after studying the publications.
The last chapter, Chapter 6, concludes in a nontechnical manner.



1.2 Thesis organization 7

Figure 1.1: Hell, the right panel of Garden of Earthly Delights, by Hierony-
mus Bosch, ca. 1504. Currently in Museo del Prado, Madrid.
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Chapter 2

Visual processing

“Sans [...] le canard de Vaucanson vous n’auriez rien qui fit ressouvenir
de la gloire de la France.” – Voltaire

We start our account of modelling-based vision research by recalling the
underlying fundamental hypothesis. This hypothesis is that mathematical
models can be constructed that are functionally similar to the biological
visual systems, albeit in simulation. To put it another way, it is expected
that if the mathematical mechanisms are designed appropriately, they can
replicate behaviour at some required level of analysis. For example, a model
of a real neuron could be expected to predict the responses of the real neuron
when both are subjected to the same stimulations. A model of a network of
such neurons could be required to reproduce the dynamic behaviours that
such networks have in biological systems. Further, a yet higher-level model
might be formulated to perform a task like object recognition.

It is important to note that as all such models are essentially evaluated
on a (digital) computer, it follows that the mathematics involved are nec-
essarily mechanistic. Should such simulations be able to replicate arbitrary
visual function to any required level of precision, this would mean that
vision in itself is computable in the sense of Turing computability1.

Here we accept these underlying premises for now, and consider visual
processing as a process where photons are caught from the environment
to form measurements that are further transformed by the visual system
to support ecologically useful behaviour. It is of some interest how to

1In general, “computable” should not be confused with “computational”. Although in
this thesis we do work in the paradigm of “computational science”, i.e. use computing and
large datasets as tools for scientific discovery, here this setting has also the consequence
that if the visual functions under study can be eventually simulated by computation, we
have shown them to be “computable”.

9



10 2 Visual processing

characterize this process. Should the characterization be laid out in terms
of chemistry, or perhaps physics? In Chapter 1 we mentioned that vision
research is a multidisciplinary effort. This is true, but when the goal of
the research is to provide a mathematical model that takes some form of
visual input and makes some computations on it to generate an output,
on a philosophical level we converge to a single discipline of information
processing. This is because mathematics work by manipulating abstract
objects such as values or concepts, that is, data. Mathematical models of
vision can never directly manipulate some mysterious quantas of nature, but
only their abstracted representations in the form of some input data. The
data is no less data, whether it contains measurements describing photons,
concentrations, voltages, or time-series of electric pulses. Similarly, the
only thing mathematical models ever output is information. It follows that
computational models as presented by vision research (Marr, 1982; Palmer,
1999) and theoretical neuroscience (Churchland & Sejnowski, 1992; Dayan
& Abbott, 2001; Eliasmith, 2007) are efforts in designing mechanisms for
information processing and transformation.

But is this view appropriate? If vision (and more generally, cognition)
would be amenable to mechanistic modelling in the sense of classic mechan-
ics and such mathematical descriptions as can be simulated on computers,
then very little separation would be left between animals and machines.
Interestingly, for those who would prefer bio-mysticism over the mechanis-
tically definable, at least a few other possibilities remain. One is that some
functionality would be amenable to mathematical description, but the de-
scription being necessarily such that it can not be evaluated on a Turing
machine in a reasonable time (see Copeland (2000)), for example due to
hypothetical involvement of quantum phenomena (Penrose (1994, 1997)).
As these issues do not seem to greatly concern the mainstream neuroscience
(see e.g. Litt et al. (2006)), we feel justified to leave these issues to future
philosophers and move on to overview the challenges involved in processing
of visual information.

2.1 Challenges of seeing

The process of seeing classically starts from the stage where the properties
of the environment are measured. In this, visual systems and cameras are
in the same line of business: both use photons from the environment as
their input. The eyes and the camera, both in their own way, measure the
densities and wavelengths of the photonic bombardment from the environ-
ment. Thus in essence the early retinal image in the eye, a photographic
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A B

Figure 2.1: A) A greyscale picture of 16 shades represented as hexadec-
imals. B) The same picture in a more ordinary representation as shades
of grey. Although the information is roughly the same in both images, the
character-composed image seems difficult to interpret for the human visual
system. On the other hand, the character image on the left is analogous to
the initial numeric representation that computers and digital cameras use
for greyscale images.

image, and an image on a computer can be taken to be similar as they
count the amount of light at different positions across a spatial map, as well
as incorporating information about the wavelengths of the light (colours).
These low-level measurements are then collected continuously over time by
a (video) camera or the retina to produce a stream of visual information for
further analysis (for details regarding this sampling of visual information,
see e.g. Sonka et al. (2007)).

In the nineteenth century, the replication of the visual scene (as in cam-
era obscura, a simple photographic device involving a painter) was thought
to be all that there is to seeing. As we now know, a photograph of a scene
understands very little of it. Figure 2.1 shows that simply replicating the
scene contents does not equal perception in human vision either: although
Figure 2.1A can be seen well, its symbolic representation does not allow
the later human visual processing to make sense of it. On the contrary,
Figure 2.1B allows useful perceptions, while it has roughly the same infor-
mation as Figure 2.1A. Now, given that images represented appropriately
can lead to useful percepts, what are the processes that transform the grey-
level image into a perception, and what kind of challenges do they face? In
Figure 2.2 we list some of the grand challenges related to visual processing,
and we will discuss them briefly in the following.
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• Core issue

– Ill-posedness of the inversion problem

• Visual variation and natural transformations

– Arbitrariness in location, orientation, and distance of “things”

– Intra-class diversity of visual properties of “things”

– Variability due to illumination, shadows, occlusions, and colour

• Semantic concerns

– Visual interpretation may require “understanding”

• Ecological aspects

– Requirement for quick and prioritized processing

– Requirement for plasticity and learning

Figure 2.2: Grand challenges that visual systems face in the natural envi-
ronment as perceived by the author.

2.1.1 Ill-posedness

A central challenge of vision is that both retinal and camera images are
two-dimensional projections of the three-dimensional external reality (for
a description of the optics involved, see e.g. Palmer (1999); Sonka et al.
(2007)). The external reality cannot uniquely be reconstructed from only
two such projections – many different states of reality can map to the
same image, or to two stereo images. One simple example is to think of
one object occluding something from our sight. Although we can make
some more or less conscious inferences regarding how the world should look
behind the occluding surface, in practice any number of different things
could lurk there. This problem does not have a unique solution; the best
any system can do is to make educated guesses about the unseen parts of
the world, based on its prior experiences and inbuilt biases. Collecting and
consolidating such experience into a model system clearly is a problem in
itself.

2.1.2 Visual variation and natural transformations

Another problem in seeing is that perceptually similar images may not be
similar in terms of the input representation and such metrics as are typically
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Figure 2.3: According to Euclidean distance applied in the greyscale pixel
space, the flanking images at the two sides are closer to the uniform grey
image in the middle than to each other.

considered in elementary mathematics. In terms of linear algebra, an image
– such as the one on the retina – is a point in a multidimensional space.
A digital greyscale photograph of 1024 × 1024 variables (in the case of
images, the variables are called pixels) is a point in a space of roughly a
million dimensions. Now imagine an object of interest to be first positioned
on the left in the image, and then on the right in the image. Although
the objects of interest are the same, if we consider metrics such as the
Euclidean distance, these two images are worlds apart. This is illustrated
in Figure 2.3: if the Euclidean distance is used to measure the closeness
of the images, the left and the right images are closer to the blank grey
image in between than to each other. Not only changes in position, but
also other natural transformations such as changes in rotation and distance
of an object of interest are enough to make the traditional metrics in the
input space return distance estimates that feel incorrect to human intuition.
Similar effects can be attained from the classic metrics by changing lighting
conditions or adding shadows.

The issue is that depending on the viewing conditions, the same object
of interest may really appear very different on the level of the spatial light
intensity configurations that the system receives as input. It is known
that these differences may pose difficulties for artificial systems (e.g. Pinto
et al. (2008)), whereas the human visual processing can often discount
the confounding factors and identify the object in question. A lower-level
example can be given from the context of colour processing: an object of
a certain colour is necessarily represented differently to the retina under
different lighting conditions, yet the human visual system is often able to
infer the correct object colour; this phenomenon is called colour constancy
(Land & McCann, 1971). However, human vision is not totally invariant to
all natural transformations, but only to some extent (Kingdom et al., 2007;
Kravitz et al., 2008), and one challenge for modelling human-like vision is
to achieve similar invariances in a model system.
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2.1.3 Semantic concerns

Suppose for a moment that we had an artificial visual system that would
take an image and always represent the objects of interest in some stan-
dardized, object-centered coordinate system where the object representa-
tion could be easily matched against stored memories of objects, without
having to worry about issues such as position and lighting. Yet this would
not ultimately solve the problem of e.g. object recognition. The textbook
example is the recognition of chairs. Imagine you had memorized a set
of prototypes of chairs. These might already look wildly different, but
nevertheless, by themselves this collection would not explicitly capture or
highlight the “semantic” rule that a chair is something that can be sat
upon (Gibson, 1979). Hence, we can not easily disentangle all visual func-
tion from cognitive, semantic issues. This was already recognized by Koffka
(1935), though it is commonly – and perhaps conveniently – forgotten by
many modellers working in the modern computer vision and learning-based
vision paradigms. Here, although such concerns have not been forgotten,
we have to admit that semantic issues are also outside the scope of the
models examined in this thesis.

2.1.4 Ecological aspects

In nature, visual systems do not exist in conditions where leisure rumina-
tion could always be performed on the scene before acting on it. Instead,
evolutionary pressure prompts the approaches to be fast: threats need to
be recognized quickly to be able to react appropriately. In such cases, there
may not be time for a serial processor to run sluggish comparisons between
thousands of stored prototypes to see if the currently seen visual element is
dangerous. It seems also reasonable that vision does not need to be equally
fast for everything, and nor it is. Instead, natural visual processing seems
to prioritize important aspects such as threats (Fox et al., 2000) and sex-
ual saliency (Anokhin et al., 2006). Hence speed and biases of processing
can be seen as constraints to natural systems and subsequently reasonable
requirements for model systems as well.

Another issue related to ecological aspects is adaptability. In some re-
gards, the visual processing mechanisms are encoded in the genetic code
(DNA, deoxyribonucleic acid), and in others, the mechanisms are learned
for each animal anew. Although the interactions and divisions between na-
ture and nurture are not yet completely understood, it is clear that adaptive
approaches may have evolutionary edge in being able to learn from expe-
rience and incorporate new information: the natural environment and its



2.2 Biological vision 15

events are not static or deterministic from the viewpoint of the animal.
In humans, vision seems especially plastic. For example, object identities
are learned during the lifetime, and this learning may require only a single
glance at the object. Whatever the model systems are, eventually they
also should be amenable to quick learning and adaptive visual behaviour
to match their natural counterparts.

In this thesis, learning different types of visual processing from the
natural visual experience is a central subject that will recur in the sections
and chapters to come.

2.2 Biological vision

We have seen that visual processing can be an interwoven affair of different,
complex issues. At the moment there is no unified, accepted theory that
could describe vision and allow vision to be simulated in general. However,
most animals implement some kind of vision, and at the level relevant
to the species in question, these natural systems can handle the grand
challenges we listed in Figure 2.2. Although it remains an open question
how these systems precisely work, it is clear that investigating biological
vision is one way to shed more light on the required processes2, just as
studies in artificial vision can help to understand biological processing and
the problems it faces.

In this section we give a brief overview on the current opinion regarding
the early visual processing in biological systems. Although the research
we cite is based on studying a variety of species – such as cats, monkeys,
and humans – on the level of our account, these differences can be taken
as unimportant, as the mammalian mechanisms of vision tend to be made
up from qualitatively similar components. Here we consider these natural
visual mechanisms largely from the viewpoint of data transformations, i.e.
how they transform and route visual information in the early visual pro-
cessing. We also review some propositions from the literature regarding the
functional significance of such transformations.

2.2.1 Neural processing in the visual system

After the influential works of Ramón y Cajal, c. 1852 - c. 1934, the clas-
sic building blocks of computation in the brain have been thought to be
the cells called neurons. According to the neuron doctrine that Ramón y

2In Chapter 3 we will describe a complementary approach where natural environment
is studied to provide suggestive answers to questions about vision.
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Cajal proposed (see e.g. Bullock et al. (2005)), neurons perform the bulk
of the signal processing in the brain regardless of the area of the brain in
question. A single neuron is thought to perform only a relatively simple
computation, whereas higher-level functionality is considered to arise from
the joint interaction of interconnected neurons of diverse types. This prac-
tically amounts to saying that every mental activity is in correspondence
with some neuronal computation, an idea often attributed to McCulloch
and Pitts (1943).

For convenience, we show a drawing of a neuron in Figure 2.4A, where
the typical neuronal parts are clearly visible. Figure 2.4B shows a corre-
sponding artificial neuron model, as to be described on page 18. In Fig-
ure 2.4A, the blob in the middle is called soma, and dendrites are the
spindly fibers that neurons “receive” their inputs with. The neuron re-
lays the results of its processing through the axon, which is the protrud-
ing spike extending upwards from the soma in Figure 2.4A. The axons
allow neurons to communicate with other neurons (but possibly also with
themselves) through connections called synapses. The actual information
is transmitted via the axon by the neuron firing a time-series of electric,
binary discharges called spike trains that get converted into chemicals at
the synapses. For details, see e.g. Churchland and Sejnowski (1992); Dayan
and Abbott (2001).

Neural coding and receptive fields. One way to attempt to under-
stand the computation that a neuron carries out is to provide the studied
neuron some input (possibly indirectly) and see how its spike trains are
affected. But how to measure this change in the firing? One longstanding
possibility is that the number of spikes as averaged over some time window
is how neuron outputs represent information (Adrian & Zotterman, 1926),
suggesting the relevant measurements to be firing rates or firing frequen-
cies. The corresponding representation that a neuron creates for its inputs
is in this case called a rate coding scheme (for a review see e.g. Dayan and
Abbott (2001)). Subsequently, to see how the firing is affected by stimulus
change, we could look at the changes in the firing rates. Yet this is by no
means the only possibility of how the spike trains could code for informa-
tion; for example, in the more recent idea of temporal coding it is thought
that the amount of time passed between spikes may also be an informative
quantity. A spike train, and its rate- and temporal codes are shown in
Figure 2.5.

As stated, visual neurons can be studied in the rate coding paradigm
by displaying stimuli to the retina and measuring changes on the neural
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Figure 2.4: A) A neuron as drawn by Ramón y Cajal, ca. 1899. The
extensions around the blob (soma) are dendrites, and the long upwards-
poking extension is the axon. B) A schematic of a simple artificial neuron
model reading inputs xi and returning output value s = g(wTx + b).

firing rate. Although close-to-zero firing rate does not entail that a neu-
ron was not participating in the encoding of the currently shown stimu-
lus (Churchland & Sejnowski, 1992), examining the rate-coding responses
of single neurons has led to some practical characterizations of their in-
put/output relationships. In such studies it was found that visual neurons
might respond only to modulation at some part of the visual field, and in
a literal sense this spatial region was then labelled the neuron’s receptive
field. Early studies (e.g. Hubel and Wiesel (1959)) proposed that modu-
lation of light intersecting the receptive field is what alters the firing rate
of the neuron, whereas modulation outside the receptive field has no effect
(but see also Bair (2005)). In more recent literature, the receptive field is
taken to denote the shape of the favourite input stimulus for the neuron,
i.e. the stimulus that coaxes the highest firing rate from the neuron. To
illustrate the kind of stimuli that simple visual neurons might prefer in the
rate coding setting, some receptive field models are shown in Figure 2.6.
In the figure, black and white code for inhibitory and excitatory effects of
a dot of light at that spatial location, respectively.
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Figure 2.5: Interpreting a neuron’s output. A) An artificial spike train from
a thresholded Poisson process. B) Counting the firing rate (frequency) in
a localized time window estimates a rate code. Here a Gaussian weighting
window was used to linearly filter the spike train in A. C) In temporal
coding, the time elapsed between subsequent spikes carries relevant infor-
mation. In this plot, a mark at time t denotes the number of time units
(here discrete) that passed between spike at t and the previous spike. It
is assumed that neurons have non-negligible recharging times, and thus a
zero-height marking at time t can be used to denote that no spike occurred
at that point.

Neuron as a function. Discussion in terms of receptive fields provides
a high-level abstraction of how light may affect the output rates of the
simplest visual neurons, but how exactly do the neurons compute their
responses? Instead of getting lost in the elaborate swamp of the current
opinion, here we illustrate one possible process by showing a simple, classic
model of neural computation of an integrate-and-fire neuron (McCulloch
& Pitts, 1943). This model, also known as perceptron after the learning
algorithm of Rosenblatt (1958), computes its response rate s to input x as

s = g(wTx + b), (2.1)

where the magnitude of each coefficient in w represents the synaptic strength
of the corresponding neural connection, and the sign of wi encodes whether
the connection i is excitatory or inhibitory (we do not explicitly consider
interneurons here). Unlike in real neurons, depending on the nonlinearity
g(), the response rate s may be negative. In that case the response may be
interpreted as a difference to some base level of firing, or the model may be
taken to model two neurons in one. If g() is half-wave rectification, then the
output is always non-negative, and the bias term b has the interpretation
of representing the firing threshold. The inputs received in x by the neuron
may be output rates of other neurons.

It can be seen that in the context of the model of eq. (2.1), the vectors
w are practically linear filters, and the whole model implements simple
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A B C D

Figure 2.6: The receptive field of a neuron is the spatial area of the visual
field where modulations can cause the neuron to fire. Commonly the term
also denotes the visual shape the neuron responds most actively to. In
these images, black corresponds to inhibitory effects and white to excitatory
effects that spots of light have on the firing rate when they are presented
at the corresponding spatial locations. Spots of light introduced at the
base level (grey) locations have no effect on the firing rate in these models.
The units are arbitrary, and these simple receptive field models do not
incorporate possible spatiotemporal aspects. A-B) Two centre-surround
receptive field models, an ON-centre, OFF-surround receptive field, as well
as an OFF-centre and ON-surround one. These models would respond
strongly to white and black spots, providing that they do not extend to
the surround. C-D) Oriented receptive field models. The receptive field in
C responds strongly to a diagonal white bar if its orientation matches the
main axis of elongation of the receptive field. The field in D would prefer
a vertical step edge.

nonlinear filtering. In general, all the model neurons having the general
form of eq. (2.1) are called perceptrons. One such perceptron was shown
schematically in Figure 2.4B. As visual images can also be represented as
vectors x by reshaping them (i.e. n×n pixel matrix becomes a vector of n2

dimensions) and the same can be done to spatial filters, any of the receptive
fields of Figure 2.6 could be plugged into eq. (2.1) as w to get a simple
model of neural computation that can be simulated numerically. Given a
monotonously increasing g(), this model would then predict a steady-state
rate-coding response s to any stimuli x, with a property that among all
stimuli of fixed norm, the receptive field w itself would be the stimulus x∗

to give the highest response s∗.

Neural networks and model plausibility. If perceptrons are lay-
ered into networks, universal function approximators are attained (Hornik
et al., 1989). This has the consequence that in principle any computation
that can be carried out by a function can be approximated by a layered
network of perceptrons (or functionally equivalent real neurons), and subse-
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quently more complex computations could be achieved by assembling such
simple components as parts of more complex networks. This approach is
often called connectionism. However, even if models similar to perceptron
are used in computational studies (e.g. Serre, Oliva, and Poggio (2007)),
it should be kept in mind that reducing neurons to perceptrons is a gross
simplification. One reason is that the only aspects that vary in percep-
trons are the parameters w and b and the used nonlinearity g(). In con-
trast, real neurons can vary in several more dimensions: some classification
schemes suggest that mammalian retinas alone have approximately 55 dif-
ferent types of neurons (Masland, 2001). In addition, the influence that
neurons can exert on one another can be much more complicated and non-
linear than what is possible with eq. (2.1). The cortical connections also
include recurrencies.

Just as the perceptron model of a neuron can be said to be convenient
but an exaggerated simplification, the rate-coding idea that such models
typically implement has also been under recent debate, and not only from
the direction of temporal coding that we mentioned earlier: recent find-
ings suggest that some neurons fire in different manners such as in bursts
(Krahe & Gabbiani, 2004), and instead each neuron encoding information
independently, behaviour such as synchronous firings in neural populations
have been observed (Gray, 1999; Jermakowicz & Casagrande, 2007). Yet
more theoretical proposals exist claiming that real neurons might not signal
the stimuli presented, but the amount of difference of what is seen to what
is expected to be seen (Rao & Ballard, 1999; T. S. Lee & Mumford, 2003).
Basically the rate coding idea (and especially that of steady-state models)
is convenient for mathematical modelling as it often allows cheap computer
simulation and tractable parameter learning. Subsequently, equating neu-
rons with some simple fixed functions such as the one of eq. (2.1) remains
tempting. This simplification would be more acceptable, if, for a given in-
put, a real neuron would always return the same firing sequence or rate,
just as a function does. However, simple high-level phenomena suffices to
illustrate that visual processing and neuronal operation do not work as
static functions do: looking at a bi-stable image – such as the Necker cube
shown on page 44 in Figure 3.4B – demonstrates that it is commonly dif-
ficult for a human viewer to hold a fixed interpretation of such images for
long. It follows that the substrate of perception is not stable or static in
the manner that response of eq. (2.1) would be given any representation
of the Necker cube as x.
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2.2.2 Visual modules and pathways

The classic view of visual processing has been that of a conveyor belt where
information is processed and modified by stages of neurons, where each
stage does some particular kind of processing before passing the information
to the next stage (e.g. Marr (1982)). Although this feedforward view seems
to be appropriate in some situations (see e.g. Serre, Oliva, and Poggio
(2007)), a growing body of recent research embraces the contrary view
that visual processing is not a stagewise pipeline with a beginning and an
end, but that it may resemble a cyclical process (e.g. A. J. Bell (1999);
Rao and Ballard (1999); T. S. Lee and Mumford (2003); Grossberg (2003);
Bullier (2004); Olshausen and Field (2005); Gilbert and Sigman (2007)).
Still, convincing evidence exists that brain is not a confounding concoction
of homogeneous porridge, but that it can be meaningfully subdivided in
different ways, for example into visual areas (Essen, 2004). Commonly at
least the gross anatomical units such as the retina, the optical tract and
the thalamus are agreed to exist as anatomical entities in mammals. These
three parts make up a major pathway of visual information from the eyes,
and they are shown for clarity in Figure 2.7. Receiving input from the
retina, lateral geniculate nucleus (LGN) in the thalamus further feeds into
V1 (primary visual cortex), the first cortical visual area at the back of the
head. But not even this initial stream is a purely feedforward information
queue from the eyes to V1: according to some measurements, only 5-10%
of the total inputs to the thalamus are directly from the retina, whereas
a larger amount comes as feedback inputs from the cortex (Sherman &
Guillery, 2002).

However, although the brain can be subdivided into components such
as the retina, LGN, V1, and further areas, this picture is a compromise,
as these areas are not necessarily devoted to a single function, nor do they
operate independently. Regarding the first issue, evidence is starting to
accumulate that in V1, the same neurons may perform different kinds of
computations, where the nature of the current computation may depend on
how much time has passed since the stimulus onset (Roelfsema et al., 2007).
On the level of cortical areas, there may also be interactions between very
different neural systems, as for example it is known than sight can affect
hearing (Sams et al., 1991), suggesting that not even visual and auditory
“subsystems” are independent.

The idea where the signal first enters the retina, and then travels for-
ward via the waypoints of thalamus, V1, and further, is sometimes called
the classic visual hierarchy (for details on the taxonomy see e.g. Felleman
and Essen (1991); Essen (2004)). Although it can be argued that this
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Figure 2.7: The primary pathway of visual information from retina to V1
goes through the LGN in thalamus, as illustrated by a computer science
student. The two fiber bundles from the eyes cross at the optic chiasm.
Not to scale.

hierarchy might not be a hierarchy functionally, it can still be said that
the further we go from the retina in this scheme, the less detailed is our
understanding regarding the precise nature of the computations that are
performed. We will now cursorily overview the early elements in the classic
visual processing view and describe what is known of their computational
purposes, as well as what can be reasoned about the visual systems from
the properties of these elements.

Retina. The first and perhaps the most researched mechanism in visual
processing is the retina (for reviews, see e.g. Hood (1998); Meister and Berry
(1999); Masland (2001)). The mammalian retina contains approximately 55
different types of neurons, though not all of them are necessarily required for
perception. For example, the retinal melanopsin positive (spindly) ganglion
cells are considered to be related to the maintenance of circadian rhythms.
For perception, arguably the most important cells are the rods and cones,
utilized for night and day vision, respectively. These cells are responsible
for measuring the amounts and properties of the incoming photons.

The retinal characteristics can be used to illustrate that the perceived
world is an inferred construction and not an honest replication of the ex-
ternal reality. For example, the cones are densely packed in the fovea,
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explaining the higher resolution in the center of the visual field. The res-
olution near the edges of the visual field is much worse, though we are
often not consciously aware of this. A similar phenomenon happens with
the well-known retinal blind spot and with retinal lesions and scotomas:
the missing contents are apparently predicted by the visual system in a
process called filling-in (Ramachandran & Gregory, 1991). Also, the fact
that the rods and cones are actually shadowed by blood vessels (e.g. Adams
and Horton (2002)) does not reach conscious perception. Further, although
we have two types of cells to sample the photons, this does not result us
in perceiving two different modes of vision, nor are there separate rod or
cone pathways leaving the retina. These examples from retinal physiology
combined with psychophysical measurements suffice to illustrate that the
perception is a construction whose mechanisms may not become apparent
by simple introspection.

But what computational purpose does the retina serve? One accepted
function for the retina is sampling, the estimation of amounts, wavelengths
and positions of photons that reach the eye. Retina appears to be a very
sophisticated device for this purpose, as it is both matched and adaptive
to the statistics of the environment (Tadmor & Tolhurst, 2000; Mante et
al., 2005), possibly attempting to transmit the visual data efficiently using
the limited signalling capacities (Laughlin, 1981). Also, the retina mainly
does not transmit light levels per se, but centre surround differences by
the operation of retinal ganglion cells (see Figure 2.6A,B for abstractions
of receptive fields of two such cells). In the case of the ON-centre cell, the
neuron fires strongly if a white light hits the center, as long as the white
light does not extend to the surround. Such cells are often modelled by a
difference of two Gaussian receptive fields, where a difference of responses to
two Gaussians is computed as the cell response, see (Meister & Berry, 1999).
In image processing terms, the ganglion cell performs centre-surround, or
bandpass filtering (Sonka et al., 2007). It has been suggested that one
function of such filtering in the retina is to whiten the signal (Atick and
Redlich (1992), also D. J. Graham et al. (2006)), meaning that all spatial
frequencies will have approximately the same power in the output. This
addresses a problem with the power spectrum of natural scenes, which
are dominated by low frequencies, their power decreasing approximately
following a power law (for a review, see e.g. Billock (2000), and Section 3.2.1
of this thesis). Whitening also has the consequence of making the covariance
structure of the data an identity matrix, i.e. the responses of the centre-
surround neurons may become approximately decorrelated over the data in
general. We will briefly return to models of whitening in Section 4.3.
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After the retinal processing, according to some new results and classifi-
cation schemes, as many as eight pathways may leave from the retina to the
LGN (Casagrande & Xu, 2004). In the classic taxonomy, the best known of
such pathways are the parvocellular pathway, which codes for static stim-
uli (form and colour), and the magnocellular pathway, which is concerned
with temporal aspects, i.e. what moves in the environment. These classic
pathways are reviewed e.g. in DeYoe and Essen (1988); Livingstone and
Hubel (1988), and they end up in different layers in the thalamus.

Thalamus. After the retina, the next distinctive area to receive the vi-
sual signal is the lateral geniculate nucleus (LGN) in the thalamus (Sherman
& Guillery, 2002). The role of this processing stage is not well understood,
possibly due to most of its inputs coming from cortical sources, not from
the retina. The cortical inputs to the thalamus are often thought to be re-
lated to attentional modulation, that is, the responses of the LGN ganglion
cells are affected by later-stage attention. If this attentional component is
removed, the LGN ganglion cells appear to behave similarly to their retinal
ganglion cell counterparts, i.e. their receptive fields have similar center sur-
round organization. Perhaps due to this similarity, computational models
of visual operation that do not include attentional effects do not model
effects of LGN, as if LGN did not exist or was a simple relay station3. As
with the V1 area later, LGN is layered, and different layers e.g. read affer-
ents from different retinas (Sherman & Guillery, 2002). The LGN cells are
known to fire in burst mode while the animal is watching natural scenes
(Wang et al., 2007) and they have been suggested to code signals with more
emphasis on temporal patterns than later V1 neurons do (Kumbhani et al.,
2007). These findings take us further from being able to take LGN as a
simple relay station, yet the functional significance of these new results is
not yet well understood.

V1. The primary visual cortex (area V1) is the first cortical area to
receive visual input, and it has been extensively studied since the initial
work of Hubel and Wiesel (1959), followed e.g. by Movshon et al. (1978b,
1978a); Ringach (2002), and others. For a brief review of the classic results,
see Carandini (2006), and for a critical outlook, see Olshausen and Field
(2005).

In V1, some of the receptive fields for the first time take clearly orien-

3For example, models such as in Olshausen and Field (1997); A. J. Bell and Sejnowski
(1997); Hateren and Schaaf (1998); Hyvärinen and Hoyer (2000); Hyvärinen, Hoyer, and
Inki (2001) do not have an LGN component. Perhaps due to this, these models are often
called receptive field models, not models of the primary visual pathway.
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tation selective shapes, somewhat resembling Gabor filters (e.g. Daugman
(1985), see Figure 2.6C,D for illustration). The cells having such recep-
tive fields are typically called simple cells while being operationally likened
to linear filters that are localized, oriented, and bandpass, and whose re-
sponse is later rectified (Heeger, 1992a), and possibly influenced by later
lateral feedback (e.g. Heeger (1992b); Schwartz and Simoncelli (2001)). To
put it another way, discounting the feedback effects, the classic view of a
simple cell computation can be implemented using the perceptron model,
as defined in eq. (2.1) and shown in Figure 2.4B. A simple cell model is
obtained simply by setting the weights of the perceptron to encode the neu-
ron’s receptive field, giving the perceptron an appropriate firing threshold,
and choosing the used nonlinearity to be halfwave rectification.

The hypotheses for the purposes of the Gabor-like filters found in V1
range from feature or edge detection theories (Hubel & Wiesel, 1959) to
local Fourier analysis of the scene content (De Valois & De Valois, 1980).
On the other hand, it has also been shown that receptive fields of V1 simple
cells are particularly effective for simultaneous measurements of frequency,
orientation and spatial position (Daugman, 1985). The simple cell receptive
fields also allow for sparse coding of the natural visual environment (Field,
1994; Olshausen & Field, 1997). Another class of cells found in V1, the
complex cells are often modelled as combinations of rectified simple cell
responses, and traditionally taken to compute phase-independent responses
to edges and bars (Pollen & Ronner, 1983).

However, as so many other things in visual neuroscience, the concepts
of simple and complex cells are under some debate. For example, some
authors suggest that this dichotomy to two cell types may be only weakly
supported (Chance et al., 1999; Mechler & Ringach, 2002), and yet other
theories claim that instead of being a simple pass-through stage for ini-
tial visual data analysis, V1 could be a general high-resolution buffer or a
scratchboard (T. S. Lee & Mumford, 2003). If time is taken into account,
recent results have shown that cells in V1 actively participate in differ-
ent computations at different times after stimulus onset (Roelfsema et al.,
2007). These findings seem to call for readjustment of the classic feedfor-
ward view, where V1 cells first perform some simple functionality, and then
pass the data on for some more complex processing in subsequent stages.
On the contrary, V1 seems to be re-utilized in this further processing as well.

Later areas. The areas following V1 are typically considered to han-
dle motion processing, object identification, colour processing, and so on
(Palmer, 1999), with the property that the further we get from the retina,
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the neuronal receptive fields get larger and larger spatially, whereas their
tuning becomes tighter. For example, in area IT (inferotemporal cortex)
that is commonly considered to be involved in object recognition, a recep-
tive field might be more invariant to position, size and orientation of the
shown stimulus, but be tightly tuned to more abstract properties such as
shape (Tanaka, 1996) Although relatively little is known of the actual com-
putations carried out by these later areas, there already exists a large body
of models for high-level tasks such as object recognition. These high-level
models are typically designed by engineers to solve the actual problem of
object recognition, and sometimes they disregard all biological constraints
and plausibility. Yet even such attempts can give valuable insight into
vision in general. We will discuss such models in Section 3.2.3.

2.2.3 Formation and plasticity of visual function

So far we have described the challenges of seeing and the early visual mech-
anisms that partake in addressing these challenges for biological vision. We
will now briefly consider the reasons why the visual mechanisms are as they
are. Looking from afar, the visual mechanisms can be taken to originate
from the interaction between evolution and the properties of the environ-
ment. Evolution, on a timescale spanning generations of animals, exerts
pressure not only towards optimizing the function of animals as entities,
but also towards optimizing the functional quality of their parts (Alexander,
1996). This kind of optimization results in genetically determined differ-
ences between species, such as whether the animal will grow compound
eyes typical to insects or the more familiar retinal eyes we know from ver-
tebrates. In the scope of this thesis, we take the genetic determination that
forces a certain solution mechanism to correspond to a technical problem
of model class selection. To give an example, in model selection we might
have to decide whether we pick our model from the function class of all the
possible perceptrons, or some other class of functions. We will discuss the
model selection issue further in Section 4.2.2; here we simply note that it
is interesting that the evolutionary convergence towards a certain kind of
solution may lead to a dead end (just as a model class choice may do). For
example, the compound eye is a solution to sampling has a poor resolu-
tion and a design that seems difficult to improve further by evolution-like
mechanisms (Nilsson, 1989).

As well as the genetic code getting optimized by evolution, biological
systems have evolved to change their own function during the lifetime of the
system. These changes that may span timescales ranging from seconds to
years have also to do with how the biological mechanisms are; consider, for
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example, that the optimization of function – such as learning to recognize
a new object – necessarily alters some structures in the visual system.

Here we divide the changes that occur in visual processing during the
lifetime into two separate categories that we call adaptation and learn-
ing. By adaptation, we mean such rapid, non-permanent changes that are
caused by alterations in the environmental conditions. These rapid adapta-
tion mechanisms could include for example the retinal light level adaptation
(Cleland & Freeman, 1988; Hood, 1998; Mante et al., 2005) that adjusts
the retinal processing for the current lighting conditions. A classic model
of how such adaptation could work is the Naka-Rushton equation for light
adaptation (Naka & Rushton, 1966). Given a vectorized grey-scale image
x of length n, the pointwise equation gives

x̂i =
xc

i

xc
i + (1/n

∑n
j=1 xj)c

, (2.2)

where c is a fixed parameter. Thus, the adaptation in the model depends
on the average lightness level of the scene.

To the same category with light adaptation we include the various gain
control phenomena appearing at various stages of visual processing, for
example in V1 (Heeger, 1992b; Schwartz & Simoncelli, 2001; Finn et al.,
2007; Duong & Freeman, 2007). These kind of adaptation mechanisms
appear related to such useful activities as maximization of neuronal infor-
mation transfer (Laughlin, 1981) as well as minimization of dependencies
in the neural codes (Schwartz & Simoncelli, 2001). In other words, the
adaptation mechanisms perform real-time optimization of visual process-
ing. However, in the current work our focus is on learning, and the reader
interested in adaptation is referred to Kohn (2007).

By learning we denote the processes that cause slower and more lasting
effects to visual processing. Here we consider such phenomena as the reor-
ganization of cortical maps after lesions (Kaas et al., 1990) and the remem-
bering of previously encountered objects as results of learning, although in
actuality these results may be due to different physiological origins.

The type of learning we are considering has been traditionally taken to
originate from changes to synaptic strengths between neurons, and to the
neuronal firing thresholds (Dayan & Abbott, 2001). Hebb (1964) proposed
that these synaptic weights were changed by co-activity, i.e. the neurons
that fired at the same time were to enhance the synaptic strength between
them. Later, this learning paradigm became known as Hebbian learning,
and it is an example of an algorithm in the sense that the description spec-
ifies how learning is done, but not its objective. However, it can be shown
that Hebbian learning corresponds to the objective of maximizing neuronal
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response variances (e.g. Dayan and Abbott (2001)), just as Principal Com-
ponents Analysis (PCA) does (see Hyvärinen, Karhunen, and Oja (2001),
also briefly described in Section 4.3).

In model systems such as the perceptrons of eq. (2.1), the learning sim-
ulating synaptic strength change would modify the weights w and the firing
threshold b of the models. But does this modification have any connection
to biological learning as it is currently known? At the time of writing,
the intuitive Hebbian learning and simple synaptic strength modification
has been supplanted by a host of low-level learning phenomena, includ-
ing short- and long-term potentiation (STP/LTP), and the corresponding
depressions (STD/LTD), possibly mediated through mechanisms such as
spike-time dependent plasticity (STDP, i.e. Dan and Poo (2006)). But in
computational studies, learning works solely through modifying values of
scalars and vectors with arithmetic operations. In order to incorporate sim-
ulations of biochemical mechanisms of potentiation to change scalars and
vectors, a convincing account should be presented of biochemical learning
being somehow superior in attaining some particular functionality. Mean-
while, models and their estimation are plausibly two different issues, and
models that exhibit some functional properties have those properties re-
gardless of how their parameters were obtained. In this thesis we will try
to keep the models as simple as possible, and we will further discuss the
benefits of this choice in Section 4.2.

We conclude this section by summarizing that the biological visual pro-
cessing and its impressive capabilities seem to be due to optimization done
at different, possibly overlapping timescales. These timescales include the
grand evolutionary scale, but also the scales of days and even of seconds.
None of these adjustments to form and function of visual processing happen
in a void, but in a continuous interaction with the rich, natural environ-
ment. In the next chapter, we will describe how these realizations about
the formation of natural visual systems can be utilized in computational
modelling of visual processing.



Chapter 3

Ecology-driven modelling of vision

To attain models of visual processing, we make the following conceptual seg-
regations in this thesis: we assume some level of analysis (a mechanism),
its environment (data) and a purpose for the processing (learning objec-
tives and constraints). In addition, we select some optimization (learning)
algorithm to adapt the mechanism. Now, given the data, the optimization
algorithm is used to modify the mechanism parameters to try to meet the
learning objective and the constraints as well as possible. As an example,
consider making the following choices. First, assume a mechanism (model
class) of a function s = g(wTx + b) of eq. (2.1), and further choices of
g(y) = y and b = 0 (making the mechanism a linear filter model). Next, se-
lect a set of vectorized natural image patches to represent the environment
(multiple x), and a goal that the response s should have as high variance
on the data as possible. The preferred model is then a single linear pro-
jection that explains as much of the data variation as possible. Finally, to
keep the model w bounded, enforce an additional constraint ||w||2 = 1.
The task of the learning algorithm is then to find suitable parameters for
w. For natural image data, the optimal w under these conditions would
be a non-oriented low-pass filter, as the linear computation estimating the
mean has the highest variance out of all the linear mappings on natural
images (see e.g. the first PCA component in Hancock et al. (1992), or in
A. J. Bell and Sejnowski (1997)). The attained processing with g(wTx+ b)
that computes the mean of x is thus an emergent property arising from
the interplay of the function class, the constraints, the given environmental
data and the learning algorithm used.

The above optimization setting is a concise example of how learning
visual models can be carried out in the absence of physiological measure-
ment data: we do not have such data, nor are we attempting to fit neuronal
models to it. Instead, we work in the paradigm of information processing

29
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and assume that the physiological neurons and networks are processors of
sensory information. Further, we assume that their task is to process and
modify information in ways that are optimized for either subsequent pro-
cessing or to fulfil some more immediate goal (Marr, 1982; Glimcher, 2003).
This setting as a whole is what we call the ecology-driven approach to visual
modelling.

A benefit of the ecology-driven approach is that it is possible to evaluate
the learned models by measuring how well they work in the light of the
specified objectives. And despite the fact that no physiological data was
used, we can compare the learned models to machinery found in physiology:
suppose first that a learned mechanism is particularly good at some task
and at odds with physiology. This is an interesting result helping us to
understand vision better, as it is by no means the case that some decent
solution to visual processing was unique, or that the optimization done by
evolution should have found the best solution to some particular problem.
On the other hand, if the learning results in a model that has resemblance
to physiology in some ways, this gives an interesting hypothesis that the
physiological mechanism is also doing well with relation to the objective
we had specified for the model. This kind of emergence allows predicting a
functional explanation for the corresponding biological processing.

3.1 Historical background

The setting that we call the ecology-driven approach is a mixture of several
very common ideas that can be traced back at least to Darwin, c. 1809
- c. 1882. The main underlying principle is to consider the biological
processing mechanisms as functional entities that have been optimized by
evolution. Exaggerating and simplifying, the mechanisms have survived
natural selection under the “law of the jungle”. Hence, Darwin can have
been said to have brought optimization to the ecology-driven approach.

But what is this Darwinian jungle like? As we already described in
Section 2.1, the signals the retina encounters are not made of such sim-
ple percepts as introspection may lead us to believe. This was recognized
relatively early by e.g. James (1899), who emphasized the complexity of
the visual world. But albeit complex, clearly the natural conditions are
not arbitrary. From these grounds, it is not a long leap to suppose that
the visual machineries are particularly good in addressing just the kind of
complexity that exists in the nature. Subsequently, the school of Gestalt
psychology encouraged to study the environment in order to understand
vision (as in e.g. Gibson (1979)). These historical developments deliver
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the idea that natural environments (data) are the relevant and challenging
working conditions for the visual mechanisms.

Getting more specific from the vague goal of evolutionary fitness, it was
Marr who popularized the idea that individual visual mechanisms may have
more specific functional purposes (Marr, 1982). In his work, Marr admon-
ished the then-typical straightforward approaches to visual modelling. The
problem was that with e.g. neurophysiological data, it is perfectly possible
to make a neuron model – of, say, a V1 simple cell – without any account
of the purpose the neuron serves: simply create a model that responds sim-
ilarly to a real neuron to the presented stimuli. Forgetting for a moment
the stochastic and interactive nature of neurons, at the worst such a model
could be a large table of input-output mappings. Contrary to this kind
of modelling that explains nothing, Marr argued that the purposes of the
processing should be understood (Marr, 1982). Thus, by promoting pur-
pose, Marr resounded Mach’s economical principle (Mach, 1882) and paved
way for e.g. the study of neuroeconomics (Glimcher, 2003) and the realiza-
tion that the whole idea of neurons encoding and representing information
is only meaningful if there is a decoder to interpret and make use of the
relayed information (deCharms & Zador, 2000; Barlow, 2001).

We have now collected the main ideas of the ecology-driven approach:
optimization, ecologically valid environmental data, and learning objectives
(or purpose) for the model. Only the actors are missing from this scene
we have portrayed. These actors, the models, and the methods to fit their
parameters and evaluate them, are due to the recent advances in probabilis-
tic modelling, computational learning theory and machine learning (Duda
et al., 2000; Hastie et al., 2001; Bishop, 2006). These fields examine the
conditions required to make learning from data feasible. They are also the
source of the learning methodologies used in this thesis.

The reason why we do not call the ecology-driven approach “machine
learning” is mainly connotational. Although machine learning methodology
is utilized in this thesis, our emphasis differs from that of typical machine
learning, as we are not particularly interested in the technical properties of
learning algorithms nor in deriving new ones, unless the existing ones are
deemed insufficient in some crucial way. Instead, in our setting the learn-
ing algorithm is more or less a tool that is used to estimate mechanisms
for information processing, and it is these estimated mechanisms and their
properties that are of interest. Specifically, we are interested in the nature
of the emergent computations, should they help us either in solving some
particular visual processing task or in understanding visual processing to
some larger degree. This is contrary to typical attitudes in machine learn-
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ing, where the properties of the data are often not carefully analysed and
where the learned models may be considered black boxes. For example,
in the context of machine learning and probabilistic models, Bishop claims
that “model parameters such as w are of little direct interest” (Bishop
(2006), p. 364). Clearly such stances do not reflect the ones taken in this
thesis1.

3.2 Statistics and function

The ecology-driven approach implicitly assumes that the environment is
experienced as samples and that the world is uncertain from the viewpoint
of the visual system, as we do not know for sure what kind of sample is
attained ten minutes from now, and nor can we exactly know the current
state of the world based on the current sensory sample alone. A prime
example of the latter is the inverse problem mentioned in Section 2.1: due
to occlusions, different states of the world can account for the seen image.
The best that can be done in this situation is to behave statistically well,
i.e. make the choices and inferences that seem appropriate based on our
previous experiences, possibly coupling along previously received environ-
mental feedback. Hence, behaviour is partly based on sensory input statis-
tics, i.e. the behaviour is probabilistic2, and thus appropriate behaviour
requires measurements of the input statistics (or probabilities) to be able
to make predictions about the environment, see e.g. Barlow (2001). These
measurements can then be used to carry out such subsequent probabilistic
inferences as discussed e.g. in Helmholtz (1867); T. S. Lee and Mumford
(2003); Glimcher (2003); Körding and Wolpert (2004).

3.2.1 Natural image statistics

It is relatively easy to estimate how frequently a coin lands as heads, or
the correlation between two different coins being tossed (usually zero), and
then base inferences and decisions on empirical frequency estimates. But
what are the frequencies of different constituents in the natural visual envi-
ronment? Further, what are these constituents, and how do they relate to
each other? For example, can the presence of one constituent be predicted
from some others? How do we detect the presence of the constituents from

1Note that even in the wildest Bayesian procedures of integrating out parameters,
some concrete entities must remain in order to carry out the model function, and it is
these entities we are interested in, here encoded in part by the parameters such as w.

2The word ’probabilistic’ as in ’a probabilistic model’ here means that the behaviour
is grounded on statistical experience, and not that the behaviour is in some way random.
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the retinal inputs in the first place, in order to base any decisions on their
presence or absence?

Generally, we can study what kind of elements and statistical regu-
larities exist in the natural environment, and then examine if and how
the natural visual systems extract these elements or reflect their statistical
regularities. In this thesis, the way to study the environmental statistics
is through the statistical characteristics of natural, photographic images.
This is equivalent to using photographic images as an approximation of the
signal that is received by the retina and then processed further. A central
property of natural, photographic images is that they force the modeller
to face the complexity that is present in the natural environment. This
contrasts to the artificial stimuli such as sine gratings used in research ar-
eas such as psychophysics, where artificial data remains a valid research
tool (Rust & Movshon, 2005). However, artificial data suffers from eco-
logical invalidity, as it is quite clear that the visual systems did not evolve
to survive in a world consisting of sine gratings, but rather in one that is,
as William James famously put it, a “great blooming, buzzing confusion”
(James, 1899). Working in a significantly more tidy artificial world can
help in understanding vision, but it can also lull the modeller into a false
sense of tidiness and security, as well as lure to presumptions that may not
be ultimately tenable (for example presuming that segmentation can be
completed before recognition, see Section 3.3).

There is now ample evidence that the statistical structure of natural
images and the processing mechanisms of the early visual system are in-
terrelated in various ways (e.g. Laughlin (1981); Atick and Redlich (1992);
Ruderman (1994); A. J. Bell and Sejnowski (1997); Olshausen and Field
(1997); Hateren and Schaaf (1998); Sigman et al. (2001); Elder and Gold-
berg (2002); Mante et al. (2005); Kingdom et al. (2007), for a review see
e.g. Simoncelli and Olshausen (2001)). Also research areas that have tra-
ditionally used artificial stimuli are now considering experiments based on
more natural stimuli (Felsen & Dan, 2005), but see also Rust and Movshon
(2005); Pinto et al. (2008). In addition, a lot of applied work in computer
vision, content-based image retrieval and low-level image modelling can be
taken to analyse or utilize the statistical regularities present in the data.

The tight connection between the environmental characteristics and the
appropriate processing is understandable, as it can be argued that incor-
porating some kind of exploitation of statistical properties in the data
can be useful for a wide variety of tasks ranging from low- to high-level
ones. For example, the statistical regularities can be utilized in very gen-
eral frameworks, such as efficient coding and data compression (e.g. Barlow
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(1969); Cover and Thomas (2006)), probabilistic modelling and inference
(Helmholtz, 1867; Bishop, 2006), economical behaviour (Glimcher, 2003),
and so on.

Thus, the study of the statistical characteristics of visual input can
be motivated from several fundamental premises. As the data dimen-
sionality of natural images is high, this line of analysis became possible
only after the computing infrastructures reached acceptable computational
power-per-cost ratios. Subsequently, a substantial amount of research has
been carried out to study the statistical properties of natural images (e.g.
Ruderman (1994, 1997); Thomson (1999); Zetzsche and Krieger (1999);
Brady and Field (2000); Simoncelli and Olshausen (2001); A. B. Lee et al.
(2001); Torralba and Oliva (2003); Johnson and Baker (2004); Simoncelli
(2005)). At the simplest, these studies measure well-known statistical char-
acteristics of large sets of natural images (Ruderman, 1997; Thomson, 1999;
Zetzsche & Krieger, 1999). One such characteristic could be the average
Fourier power spectrum, corresponding to the autocorrelation function of
the data and its second order dependency structure (i.e. covariances). This
analysis reveals that natural images commonly follow a power law structure
1/fα, where f is the spatial frequency, and α a coefficient typically close to
2 (for a review, see Billock (2000)). The lowest frequencies then have the
highest power, corresponding to strongest pixel correlations being between
nearby pixels. This characterizes one type of redundancy in the images.
But as roughly similar power spectra and other simple statistics can be
attained from simple artificial data as well (Ruderman, 1997; A. B. Lee et
al., 2001), this illustrates that such simple statistics do not yet capture the
rich statistical structure of natural images (as demonstrated in Figure 3.1).

More involved research on natural image statistics considers statistical
regularities between responses of filters (Johnson & Baker, 2004; Simoncelli,
2005). Here, linear filters such as those resembling V1 simple cell receptive
fields are applied on the images (see Figure 2.6C,D), and the statistical
dependencies in the filter responses are analysed. With appropriate gain-
control applied to such filter responses, it has been shown that pairwise
dependencies are minimized, giving an interesting hypothesis regarding the
function of gain-control in V1 (Schwartz & Simoncelli, 2001).

In this thesis we often consider a setting where instead of estimating
predefined statistical descriptors of the data by some fixed computation, we
attempt to learn the computation that fulfils some predefined objectives,
and this learning is based on the natural image data and constraints. The
models learned in this manner then incorporate the statistical aspects of the
data in various ways, ranging e.g. from capturing higher-order statistical
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regularities of the data to performing object recognition on natural images.
In the following, we will briefly overview some statistical models of this
kind. They have been classified either as models of visual input or as
models of visual function, and we will start by describing the visual input
models.

3.2.2 Statistical models of visual input

A model of visual input is one that given an image x, returns the density
of the estimated distribution at that point, i.e. px(x). As the only train-
ing data required for estimating densities px(·) is a set of vectors x, this
learning method is called unsupervised (Becker & Zemel, 2003) as there is
no feedback either from the environment or from a teacher.

One possible learning constraint in unsupervised learning comes from
the assumption regarding the functional family of the density of x. For
example, this family could be assumed to be Gaussian. In that case, if we
wished to estimate the parameters of the model so that our observed data
were maximally likely under the model, the model learning would amount
to estimating the multivariate mean and covariance from a set of training
images (Bishop, 2006). In the case of the Gaussian distribution, these two
sets of parameters suffice to specify the distribution exactly.

However, it would be surprising if the rich variability of the visual world
could be captured in the few parameters of the Gaussian density. This
would entail that more complex dependencies than covariances would not
exist in the data, and that the Fourier spectrum would be sufficient to
capture the statistical structure of the visual environment: similarly to the
Gaussian model, the Fourier spectrum also misses regularities beyond the
second order. However, the visual reality is not as unstructured. This is
clear from Figure 3.1 where we show a sampled image from a Gaussian
model whose parameters capture the spectral decay common to natural
images (Billock (2000); for the sampling recipe, see Simoncelli (2005)).
Clearly the image resembles natural scenery very little. This lack in the
Gaussian model can be somewhat addressed by assuming more structured
distributions, and depending on the distribution in question and the success
in learning its parameters, the resulting statistical models can be applied
to purposes such as de-noising and image compression (e.g. Portilla et al.
(2003); Simoncelli (2005)).

Although the mentioned Gaussian model can be used to generate new
images by sampling (and in theory this holds for any probability density),
the model is holistic in the sense that it does not explicitly describe how
the images are formed. Another subclass of input models, often called
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Figure 3.1: An image drawn from a Gaussian model with an approximately
1/fα decay in the Fourier power spectrum, using parameter α = 2.1.

generative models, are ones that make the assumptions regarding the image
formation process explicit. Perhaps the best known generative model is the
linear superposition model (e.g. A. J. Bell and Sejnowski (1997); Hateren
and Schaaf (1998)),

x = As =

n∑

i=1

siai, (3.1)

where the si are stochastic scalar coefficients (hidden variables) of the model
that are used to weight n fixed image templates ai in a linear sum. The
benefit of eq. (3.1) is that it makes the assumed process of image generation
explicit: the model represents the image x using the templates in A, as
visualized in Figure 3.2. A further benefit is that considering an invertible
A in the linear model of eq. (3.1), finding the coefficients in s is particularly
simple for a given x. The coefficients can be attained with

s = A−1x = Wx, (3.2)

i.e. by linear filtering. The coefficients s are then the responses to sim-
ple linear filtrations, and explains why we denoted them similarly to the
responses of neural models in the previous chapter.

It should be noted that the decomposition of eq. (3.1) is by no means
unique for some given dataset. On the contrary, without further con-
straints, any square and invertible A is sufficient, and the particular choice
of A will affect the statistical characteristics of the stochastic variables s.
Also, instead of being square, A can be under- or overcomplete, and in
some cases eq. (3.1) may hold only approximately after optimization of A
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= s1· ( ) + s2· ( ) + ... + sn· ( )

Figure 3.2: In a linear superposition model, images or image patches are
represented as linear sums of image templates. Each template (ai in the
text) is weighted by some image-specific scalar coefficient si to generate
the image. The coefficients in s provide a representation for the image in a
system defined by the templates.

and s for a given set of vectors x. Also, if A was invertible, we could equiv-
alently optimize W, trying to attain some particular statistical properties
for s. Then the approach would in essence amount to projection pursuit
(Friedman, 1987). The invertibility of A also allows us to relate the density
of s to the density of x as

px(x) = px(As) = |detA|ps(s), (3.3)

from the well-known result about the density of invertible transforms (see
e.g. Hyvärinen, Karhunen, and Oja (2001), p.35). In effect, if s has a more
tractable distribution than x, then knowing A allows us to get a more
simple model for px(·) by eq. (3.3). In such a case, A could be thought
of as a mixing matrix that needs to be found in order to recover the more
simple hidden variables s.

In practice, the estimation of A can be further constrained by specify-
ing some statistical objectives for the hidden variables s. The objectives
studied in the publications of this thesis will be reviewed in Section 4.1,
but for now we appetize the reader with some examples from the previ-
ous research: in particular we mention that we can optimize the model
for the sparseness of the hidden variables (Olshausen & Field, 1996), for
the independence of the coefficients (A. J. Bell & Sejnowski, 1997; Hateren
& Schaaf, 1998), or for the robustness of the representation (Doi et al.,
2007). Of these, sparseness can have utility in conserving metabolic energy
in biological systems (Levy & Baxter, 1996), but also in attaining better
signal-to-noise ratios and in assisting in feature detection (Field, 1994). In
addition, sparseness is intimately connected to independence (Olshausen &
Field, 1997), and this latter property is beneficial for making probabilistic
inference more tractable (as will be explained in Section 4.1.1). The ro-
bustness objective, on the other hand, tries to attain visual processing that
is not fragile against internal or external noise. Yet further unsupervised
objectives can be envisioned if the inputs x are spatiotemporal data (such
as video segments). In that case, objectives such as temporal coherence
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(Becker, 1992; Hurri & Hyvärinen, 2003) and slowness (Berkes & Wiskott,
2005) become applicable. In such approaches, the idea is to learn repre-
sentational mechanisms whose responses change coherently or slowly over
time.

An interesting result is that in the context of the linear superposition
models and their simple extensions, practically all the objectives mentioned
above lead to representing images in terms of features or filters that are
localized, oriented, and bandpass. The learned filters resemble both V1
simple cells and the Gabor functions that were used to model receptive
fields in Figure 2.6C,D on page 19. How the learned receptive fields actually
look like can be seen from most of the papers mentioned above, or from
Publication 5 of this thesis. These various examples of “emergence” of
Gabor-like filtering suggests that the Gabor-like image decomposition may
be beneficial for several slightly different low-level purposes.

One problem with the linear superposition models is that if A is invert-
ible, then given s and A, the signal x can be reconstructed perfectly. This
shows that filtering with W is not discarding any information, and that the
representations are “autistic” in the sense that the models will use the coef-
ficients s to represent aspects of natural scenes that are not required for any
of the usually imaginable high level tasks, i.e. the model mechanisms are
happy to faithfully create authentic reconstructions of meaningless clutter
or stochastic stimuli such as textures and noise. Although we can see this
kind of complexity (i.e. it is relayed to the conscious level), it is question-
able if such modelling approaches can be extended for higher-level nonlinear
modelling, as it arguably becomes more important to concentrate on the
relevant aspects of the stimuli and abstract away behaviourally irrelevant
detail. To put it another way, for high-level vision it may become more
important to consider what the data representations or encodings are used
for (deCharms & Zador, 2000; Barlow, 2001; Eliasmith, 2007). For exam-
ple, it seems unlikely that a brain could contain a different neuron for every
imaginable combinatorial configuration of some elementary parts such as
edges. Instead, the stored representations (or memories) are more likely
to be made only of ecologically important visual configurations, and doing
this requires ability to ignore irrelevant information and combinations.

Another issue with the linear superposition models stems from the fact
that the generative process they specify is not compatible with the natural
image formation process of the physical reality. Instead of summing trans-
parent templates, the real formation process of natural images is more
closely analogous to one where opaque surfaces occlude each other from
view (Ruderman, 1997; A. B. Lee et al., 2001). Unfortunately, although
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image generation from such occlusion models is easy, it seems an open re-
search problem how to invert the computation, i.e. to answer the question
how a given image should be represented using a set of templates and some
occlusion operator. Also, using such models to give probabilities for images
seems difficult. This is likely the main reason for the prevalence of the lin-
ear superposition models that are differentiable and hence mathematically
convenient.

3.2.3 Statistical models of visual function

From a high-level viewpoint, the objectives of the previous section were
indirect as the resulting models were not optimized to solve any particular
high-level task for some given single x, and it has been proposed that
such simple objectives may be insufficient to explain visual mechanisms
(Baddeley, 1996). However, the ecology-driven approach is by no means
limited to modelling visual data using low-level, unsupervised objectives.
Instead, we can directly model some visual function. A model of visual
function is one that given an image, performs some task on the image, such
as edge detection or object recognition. Both of these practically amount
to modelling decisions given an image or some region of it. For modelling
decision making, explicit density modelling of the data distribution may
not be needed.

The direct modelling of visual function can be said to have been pio-
neered by works such as Roberts (1965) on edge detection, although the
early computer vision models were not in general based on data-driven
statistical estimation. Later, the visual processing theories and functional
emphasis of Marr (1982) inspired a host of research that progressed by di-
viding the grand problem of perception into functional subproblems and
then solving these subproblems separately. Common problems included
e.g. the already mentioned object recognition, but also scene segmentation
(Jain & Farrokhnia, 1991; Shi & Malik, 2000; Sharon et al., 2006), colour
constancy (Land & McCann, 1971), representations by more specific and
invariant features (Lowe, 2004), and so on. Typical to these approaches is
the underlying hope that eventually these independent solutions could be
designed to work reliably and fast, and then combined into a fully opera-
tional general visual system.

In addition to the early computer vision approaches that were more
based on engineering than on learning, the statistically learned models of
visual function have lately become more prominent. Statistical approaches
are very common especially in object detection or recognition (e.g. Turk
and Pentland (1991); Riesenhuber and Poggio (2000); Schneiderman and
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Kanade (2002); Ullman et al. (2002); Viola and Jones (2003); Amit et al.
(2004); Agarwal et al. (2004); LeCun et al. (2004); Fei-Fei et al. (2006);
Serre, Wolf, et al. (2007); Leibe et al. (2008)). Typically these methods
are based on teaching with labelled examples, a setting that is often called
supervised learning (Duda et al., 2000). In supervised learning, instead of
having only a set of vectors x as training examples, a set of pairs (x, y)
are provided, where each example x is supplied with a truth-value y from
a teacher, for example the correct action to take (but y could also be a
vector). The discrepancy between the action selected by the model and
the action suggested by the environment can easily be converted into a
feedback signal penalizing or rewarding the actions taken by the model and
subsequently to update the model parameters.

For object recognition, the truth-value y could be identities of the ob-
jects in the image x, and the task of the learning would be to tune the
model parameters so that the model can predict well the objects present in
new images that were not used in the training. As the model parameters in
these cases are more or less learned from just the images of the objects in
question and the corresponding labels, this approach is prone to the earlier
criticism in Section 2.1.3, as it is implausible that the methods would learn
e.g. the semantic meaning of chairs from chair images alone. However, the
models resulting from supervised learning provide an interesting first ap-
proximation to objects recognition, as well as one that is very successful in
favourable conditions (Serre, Oliva, & Poggio, 2007).

An interesting by-product from modelling of object recognition is the
commentary the successful models allow on earlier theories of visual data
representation. In particular, the object recognition successes suggest that
3D reconstruction of surfaces (Marr, 1982) or decomposition of scenes into
3D primitives such as geons (Biederman, 1987) may not be universally re-
quired as preprocessing steps for all high-level visual functions. On the
contrary, quite good recognition rates (in non-pathological conditions) can
be attained with methods that do not perform any such explicit recon-
structions (e.g. LeCun et al. (2004); Serre, Wolf, et al. (2007)). Another
point worth mentioning is that these models also demonstrate that neural
mechanisms such as the centre-surround in the retina and the Gabor-filter
like machinery in the V1 (as described in Section 2.2) may not be strictly
necessary for object recognition either, as a variety of computational sys-
tems (Turk & Pentland, 1991; Ullman et al., 2002) are able to recognize
objects decently without using Gabor-like filters.

The fact that it is possible to carry out visual function in different ways
is parallelled in how such functional mechanisms can be implemented. Here
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we wish to emphasize the point that explicit modelling of visual input is not
required for modelling of visual function. On the contrary, although models
of visual function can be based on models of visual input px(x) and applica-
tion of Bayesian methods (Bishop, 2006), this is not strictly required, and
recognition may be based on direct functional modelling (as in LeCun et al.
(2004); Serre, Oliva, and Poggio (2007)). One reason why direct modelling
of function may be preferable is that it may be unnecessarily complicated
to solve the problem through the estimation of the density of the data. We
will illustrate this through a slightly technical example in Figure 3.3. There,
Figure 3.3A shows a density of two multinomial variables x1 and x2, where
each variable can have discrete values from the range [1, 1024]. Suppose
that due to some external rule, pairs with w1x1 + x2 < b are acceptable
(objects) and the rest are unacceptable (non-objects). To put it another
way, in supervised learning the instances x have been decided by someone
to correspond to outcomes y, possibly based on a feeling. Then, assuming
the decision rule does not change over time, the decision can be modelled
with a mapping f(x) 7→ y. In the case of our example, f() would evaluate
the truth value of the inequality that we specified before. Suppose further
that a’priori it is unknown how f() is computed. This is a reasonable as-
sumption in tasks such as object recognition, where we can easily tell which
objects are present in the image, but where we cannot as easily specify how
we reach this decision given the pixels. However, supervised learning can
attempt to estimate an approximation for the decision function based on
set of pairs (x, y). A conceptually simple way to proceed would be through
modelling p(x, y), and then selecting the ŷ that has maximal density for
given x. But already with the example case and density p(x), this would
require the estimation of frequencies of roughly a million possible pairs to
get just p(x), and this would arguably be less complex than estimating the
whole p(x, y). The former is illustrated in Figure 3.3B, where we used a
massive amount of 107 examples sampled from the distribution to estimate
the density p(x). Subsequently it can be understood that the amount of
labelled samples (x, y) needed to get a good joint density estimate could
be enormous. A slightly simpler alternative would proceed through the
modelling of p(x|y). In that case, we would need to separately estimate the
frequencies of pairs on the different sides of the red dividing line in Fig-
ure 3.3A, but not gaining a major reduction in the number of parameters
to estimate. However, if we decided to approximate the decision surface
with a hyperplane, the parameter complexity would be brought down from
the order of a million parameters to just two parameters in the case of our
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Figure 3.3: A) Visualization of an arbitrary fractal density p(x) of two
multinomial variables x1 and x2. The shading shows the frequency of each
of the 10242 possible ordered pairs (x1, x2). Each such unique pair corre-
sponds to a parameter in the multinomial density. The red dividing line
is an arbitrary decision surface of only two parameters. B) A maximum
likelihood estimate of the density in A, after seeing 107 examples sampled
from the true distribution. With 106 samples, the shape is only barely
recognizable (not shown).

example3. To summarize, modelling of function can require significantly
fewer parameters than density estimation, and thus function may be easier
to learn. We will return to these issues in Section 4.2, where we discuss the
connections between model complexity and learning in the light of statis-
tical theory.

In this thesis, we study direct models of visual function in object recog-
nition in Publication 2 and Publication 3. Yet, an important question con-
cerns the philosophical underpinnings of such efforts in general: to what
extent is it tenable to model different visual functions and operations iso-
lated from each other? We will devote the next section to discussing this
question.

3Note that Figure 3.3 does have regularity, suggesting that some simple function might
exist to compute p(x). However, recovering the unknown function may be challenging
from just a few samples of data x ∼ px(·).
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3.3 Are there independent mechanisms in percep-

tion?

The approaches we have discussed either try to formulate a probabilistic
model for the input data, or present a data-driven model for some visual
function. From the viewpoint of a visual system, both approaches make
functional independence assumptions (not exactly the same as statistical
independence). By functional independence we mean the hypothesis that
there are some functions that can be carried out optimally without any
interaction between the functional mechanisms.

In the case of the unsupervised models of input data, there is a fun-
damental independence assumption between the levels of analysis: the ob-
jectives mentioned in Section 3.2.2 are low-level ones, and they do not
explicitly tune the representations towards being optimized for any such
behavioural function that animals can be observed to perform on the macro
scale, including foraging, mating, avoiding obstacles and so on. Bridging
this gap between objective levels would seem to require a feedback sig-
nal from the environment, turning the approach essentially into supervised
learning. Yet other, less fundamental functional independence assumptions
can be made on the level of the models themselves. To give an example, in
eq. (3.2), each si is computed independently by a dot product, and these
computations in no way influence one another (whereas in natural neu-
ral systems, neurons may affect computations of nearby neurons through
lateral connections (Dayan & Abbott, 2001)).

Also supervised learning can make suspicious independence assump-
tions, although this setting is often used to learn behaviour closer to the
macro scale. In the context of supervised models, common assumptions
include that objects to be recognized are independent of their spatial envi-
ronments, that images can be segmented before interpreted, or that object
parts such as edges can be detected before the object itself. In the two
last cases, this entails the existence of early visual processing mechanisms
that feed later mechanisms, but that are independent of them; the func-
tional dependency structure is one-directional. But are these assumptions
tenable?

For some tasks, assuming functional independence seems well founded.
For example, motion and shape could be relatively close to statistical in-
dependence in the visual environment, and have so different characteristics
that they could require different kinds of processing machineries. This is
reflected in the existence of separate processing streams for “what” and
“where” in the biological systems (Ungerleider & Mishkin, 1982). Unfor-
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A B

Figure 3.4: A) A Kanizsa triangle that causes percepts of illusionary con-
tours. B) A Necker cube as an example of bi-stable perception.

tunately, many problems that are attempted to be solved separately in the
literature do not seem to be segregated in human vision. One example
of such a problem is local edge detection. In a traditional edge detecting
setting, a local image area (corresponding to a receptive field) is analysed
to decide whether it contains an edge or not (e.g. Roberts (1965)), and this
decision is final. For example, a perceptron could attempt to perform such
edge detection. But what if the edge is very faint, or does not exist, but
according to some global analysis, actually should be there? The result is
that an incorrect judgment may be passed on to further processing. Such
behaviour is not agreeing with the human visual system that typically can
perceive missing edges as illusionary contours, as edges that are not there
but yet there is a feeling as if they were (for a review see Eagleman (2001)).
One such example is the famous Kanizsa triangle, shown in Figure 3.4A.
As neurons react to illusionary edges already at the level of V1 (T. S. Lee
& Nguyen, 2001), this reveals a mode of non-local analysis, where the re-
sponses of the local operators are influenced by responses of other units.

The purely local edge detection described above fails to mimic human
perception as it assumes independence between spatial analysers, and does
not model the neural interactions of natural visual processing. Another
example where isolated local mechanisms fail is segmentation. For example,
the Kanizsa triangle in Figure 3.4A suffices to illustrate the difficulty of
separating figure (the triangle) from background, as there is no difference
either in texture between the triangle and the background (both are uniform
white), nor is there a separating, closed contour. Natural images featuring
camouflaged animals are another example where the animal can be correctly
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segmented from the background only after it has been recognized, possibly
by some of its distinct parts or other cues (see the famous Dalmatian image
in e.g. Palmer (1999), p.267). This latter example illustrates that human
perception is not “completed” by some static segmentation algorithm, but
by one that is influenced by experience acquired during the lifetime, an idea
already proposed by James (1899). The conclusion is that segmentation
cannot be a preprocessing step that is completed before recognition, and nor
can it be a visual subproblem that is studied separately from recognition.

It thus seems that in natural visual processing, many visual subproblems
are not considered in isolation. On the contrary, perception seems more like
a process of unconscious inference (Helmholtz, 1867). In such a setting,
the hidden variables regarding the unknown world states are inferred by
combining measurement data and prior beliefs, hopefully ending in some
maximally likely interpretation fulfilling ecological constraints. Again, the
Kanizsa triangle in Figure 3.4A is an example of this: given the biases of
the human visual system, most people interpret the figure to represent a
white triangle occluding three black discs, instead of taking the discs as
three black “pac-men”. In this case the inference is called unconscious as
no rationalization or logical thinking seems to be involved in making the
interpretation. Further, these inferences are dynamic and do not necessarily
converge to a stable interpretation, i.e. there may not be a “final” output
of visual processing. A classic example of this is the Necker cube, shown
in Figure 3.4B. For most people, the perception of the Necker cube is bi-
stable, as it seems difficult to decide which side of the cube is the front side
and which is the back, the interpretation oscillating over time.

This kind of dynamic inference in the biological systems may be sup-
ported by feedback, and it is well-known that most of the connections in
natural visual systems are feedback, not feedforward connections (for a
review see e.g. Gilbert and Sigman (2007)). These connections carry infor-
mation either from one neuron to another in the same area (lateral connec-
tions), or relay information back from higher visual areas to earlier ones.
Although some reports claim that some functionality such as rapid object
detection can be carried out without feedback processing (e.g. Serre, Wolf,
et al. (2007)), this claim appears mainly to hold for conditions where there
are no obfuscating factors present. If the situation is more complex involv-
ing e.g. problems due to lighting, occlusion, camouflage or simply variance
in spatial location of the objects to be recognized, object detection may
start to involve aspects of more involved inference, including reasoning,
visual search and scene interpretation. In such situations it is plausible
that looped or feedback processing becomes more important: recent results
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suggest that feedback has a major role in such processing phenomena as
top-down control (e.g. Bar et al. (2006); Saalmann et al. (2007), for a brief
review see Miller and D’Esposito (2005)), figure-ground segregation (Hupe
et al., 1998) and contour integration at the level of V1 (W. Li et al., 2008),
but also featuring in contextual modulation when viewing natural images
(Felsen et al., 2005) as well as in visual illusions (T. S. Lee & Nguyen,
2001). Finally, feedback processing has been proposed to be required for
conscious perception (for reviews, see e.g. Tong (2003); Fahrenfort et al.
(2008)),

What these research reports amount to is a strong account against the
traditional approaches where more or less arbitrary problems are studied
in isolation, either isolation on the level of analysis or isolated from other
problems. Based on such recent results as mentioned above, it has started
to look more questionable whether such independent areas or clear func-
tional segregations exist in the cortex as had been previously proposed
(Livingstone & Hubel, 1988). Some theorists already argue that high-level
aspects of neural processing in general can neither be segregated from low-
level processing (A. J. Bell, 1999) nor from each other: these latter claims
include e.g. the nonseparability of perception and cognition (Chalmers et
al., 1992), of the connectedness of perceiving, remembering and acting
(Thelen et al., 2001). Supportive arguments have even been put forth
regarding entanglement of cognitive and affective aspects of biological pro-
cessing (Pessoa, 2008).

To model and chart the dependencies and interactions between tasks
and modules seems one of the great challenges for future modelling. This is
demanding due to the difficulty of learning parameters for dynamic systems
where multiple components interact over time. Although some interplay be-
tween high- and low-level aspects is modelled in Publication 2 of this thesis,
here we do not actually model dynamic feedback phenomena in the sense of
unconscious inference (Helmholtz, 1867) or Bayesian message passing (see
Bishop (2006)). Some studies about dynamic interactions have already
been published (Z. Li, 1998; Maass et al., 2002; T. S. Lee & Mumford,
2003; Grossberg, 2003; Deco & Lee, 2004; Deco & Rolls, 2004) that may
be more compatible with theories of cognition that attempt to avoid the
computational approach (e.g. Gelder (1995)). Likewise, some recent studies
have taken critical attitudes towards reductionistic, isolated investigation
of low-level function (e.g. Olshausen and Field (2005)). In the future we
are likely to have a better understanding as to what kind of visual func-
tionality benefits from feedback processing, and what can be handled with
the traditional isolated models.



Chapter 4

Statistical modelling, methods,

and visual data

We now turn from the more general issues to the practical details of learn-
ing the model parameters in the ecology-driven approach. In particular,
we describe the methods we applied in the research for the included pub-
lications. We also review some of the issues that should be kept in mind
when using such methods. In addition, these issues also allow us to provide
modern support for minimalistic philosophies such as the Occam’s razor
mentioned in the first chapter.

4.1 Modelling with different objectives

As discussed in Sections 3.2.2 and 3.2.3, model parameters can be estimated
with relation to different principles and learning objectives. These learning
objectives in connection with the data, the constraints and the estimation
algorithm designate how the eventual learned model turns out. These fac-
tors also have a say in the functional properties of the model when it is
used in visual processing.

In the publications of this thesis, we have studied four different ob-
jectives for estimating model parameters: independence maximization, re-
sponse energy optimization, object detection accuracy, and feature selec-
tion. Here, the first two objectives lead to statistical models of visual input
(as in Section 3.2.2), and the latter two to statistical models of visual func-
tion (as in Section 3.2.3). These objectives will be briefly reviewed in the
following.

47
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4.1.1 Independence objective

One of the main tools we use to learn models in the publications of this
thesis is Independent Component Analysis (ICA), see e.g. Jutten and Her-
ault (1991); Comon (1994); A. Bell and Sejnowski (1995) and Hyvärinen,
Karhunen, and Oja (2001) for a textbook that this brief overview is mostly
based on. The linear ICA is an example of a linear superposition model
x = As, as was described in eq. (3.1) and shown in Figure 3.2 on page 37.
As the approach tries to model the density of the data, it is a model of
visual input (Section 3.2.2). In particular, the task of the learning is to es-
timate A in a manner that the coefficients s are as statistically independent
from each other as possible. Often ICA is proposed in the context of an
idea that the signals x received from the environment would be linear mix-
tures of several different independent components. As an example, a sound
heard might be composed of sounds from several independent sources. The
purpose of ICA then is to attempt to find transformations that separate
the mixed signal back into its original signal templates ai and their weights
si.

Here we do not assume that a linear transformation can decompose
natural images to truly independent components, not only because the real
generative process is nonlinear (A. B. Lee et al., 2001), but also due to
the contrary having been empirically shown (Schwartz & Simoncelli, 2001;
Hyvärinen, Hoyer, & Inki, 2001). Instead we motivate the independence
maximization from the viewpoint that even approximative independence
may have utility. In particular, we are interested in the consequences that
independence maximization transformation may have for further probabilis-
tic modelling using the coefficients s. Now, considering a non-singular A in
the linear superposition model, then in the first place px(x) = |detA|ps(s),
e.g. Hyvärinen, Karhunen, and Oja (2001). Further, if the dimensions of
s are independent, the joint distribution of the variables is factorizable
(Papoulis, 1991), allowing eq. (3.3) to simplify into the following decom-
position of the density of x,

px(x) = |detA|ps1
(s1)ps2

(s2) . . . psn
(sn). (4.1)

Sometimes the processing that attains eq. (4.1) is called a factorial coding
(Field, 1994). The benefit of such a decomposition is that the potentially
intractable density px can be represented in terms of n one-dimensional
marginal distributions psi

. These marginal distributions can be signifi-
cantly simpler to estimate and handle: for the sake of argument, consider
k binomial random variables. Then, the number of parameters in the joint
distribution may grow as O(2k) if the variables are dependent. But, should
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the variables be independent, this complexity is reduced to O(k) parame-
ters. Another benefit of factorial densities is that it is very simple to sample
new data from them, as it suffices to sample separately from each marginal
psi

(si) to get a random vector s ∼ ps(·). In the case of linear superposition
model, eq. (3.1) can then be used to construct the actual image.

In practice, eq. (4.1) may hold only approximately for A estimated
by ICA, and the subsequent inferences utilizing such factorization may be
biased accordingly. Also, the linear superposition model may not closely
correspond to the way that the data in question was formed. Nevertheless,
ICA presents an interesting and tractable starting point that can suggest
meaningful decomposition of natural images, especially in terms of finding
image constituent types with weak dependencies. One intuitively pleasing
example of this is the segregation of shape and colour in ICA modelling
of colour images. In that case, some ICA features in A turn out to code
for colours, and others for shapes (Hoyer & Hyvärinen, 2000), although
the division is only approximative (possibly due to the fact that for a lin-
ear model, there can not be a spatial colour change template without it
including a shape).

It should be emphasized that the transformation performed by ICA may
not be helpful for arbitrary further processing. For example, if the linear
transform that ICA performs in eq. (3.2) is invertible, all the information
in x is retained, and learning algorithms may be able to incorporate the
inverse of the ICA transform by W into their learned models, should their
objective functions prefer that. Subsequently, the learning may be oblivious
to the ICA transform having been performed in the first place. For further
similar reasoning, see (Vicente et al., 2007).

The only ICA learning algorithm applied in the publications of this
thesis is the FastICA algorithm (Hyvärinen, 1999). This choice is mainly
due to the fast convergence of the method and the finding that the qualita-
tive differences between the models learned by the different ICA methods
are often small (Hyvärinen, Karhunen, & Oja, 2001). Although we do not
go into the algorithmic details of the efficiency behind FastICA here (the
reader is referred to Hyvärinen, Karhunen, and Oja (2001)), a few words
are in order regarding the principles that the estimation relies on.

At its core, FastICA assumes that input data x is whitened and here
we denote such data as z. The data being white means that it has a mean
E[z] = 0 and covariance E[zzT ] = I, where I is the identity matrix. Start-
ing from x, these properties can be attained by removing the empiric means
of each variable of x, followed by a whitening transform, as described in Sec-
tion 4.3. The whitening transformation has the effect that the dependencies
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as described by covariances are eradicated, and hence the optimization that
FastICA performs is necessarily based on higher-order statistics beyond co-
variances. In effect, FastICA tries to search for a matrix W that among
the different possible decorrelating transforms has the smallest higher-order
statistical dependencies between the dimensions of s. In FastICA, this is
approached through the realization that non-Gaussianity and independence
are related, as due to the central limit theorem, sums of independent ran-
dom variables tend towards Gaussianity under suitable conditions. Then,
it makes sense to attempt to search for projection directions that are not
composed of sums of several independent variables and deviate from Gaus-
sianity. A practical way towards this is to maximize such higher-order
statistics that are fixed for any Gaussian data. For example, the fourth
moment or kurtosis of the filter responses could be maximized (Hyvärinen,
Karhunen, & Oja, 2001). As non-Gaussian properties such as high kurtosis
are also the distinguishing property of sparse random variables, FastICA
and sparse coding approaches are closely connected (Olshausen & Field,
1997).

One caveat of linear ICA estimation is that it may not converge if the
data contains more than one Gaussian direction (Hyvärinen, Karhunen, &
Oja, 2001). The reason for this is that the Gaussian subspace does not
have any structure beyond that of covariances, and hence all projection
directions in W with relation to it appear equally good. But due to the
real generative process of natural images, image data do not seem to have
such Gaussian subspaces. Another potential source of problems is that to
the ICA estimation in practice requires preprocessing and dimensionality
reduction, neither of which are exactly part of the probabilistic formula-
tion of the invertible linear ICA. We will discuss preprocessing further in
Section 4.3.

4.1.2 Response energy objective

Although the perceptual environment has properties that may be close to
independent in general (for example, location, shape, colour, and motion) it
is nontrivial to recover these properties from the input images. In particu-
lar, linear filters do not appear to be flexible enough to recover independent
properties from natural images without residual dependencies remaining in
the filter outputs. One well-known class of residual dependencies is that of
energy dependencies: the filter responses can be correlated if the response
signs are discounted. In other words, the covariance between |si| and |sj |
for i 6= j tends to be non-zero when the two responses originate from two
different linear filtrations. These energy dependencies do not seem to be
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due to the used filter parameter estimation method, but rather because
of the nature of the data and the linearity of the filtering. These depen-
dencies have been studied in previous work e.g. by including a nonlinear
normalization of the filter outputs to the model (Schwartz & Simoncelli,
2001), leading to reduction in these kinds of dependencies, but also in
learning complex cell models (Hyvärinen & Hoyer, 2000) and in forming
topographic organizations for a bank of linear filters (Hyvärinen, Hoyer, &
Inki, 2001).

In Publication 6, we study the learning of parameters for a subclass of
quadratic filters by optimizing filter response energies. In particular, we as-
sume that model responses are computed nonlinearly as s = (wTx)(vTx),
and then optimize for sparsity of s (for example Ex[|s|]). In Publication 6,
we show that when s originates from such a product, optimizing sparseness
entails optimizing the energy correlations of the paired filters. As this is
also shown to provide implicit sparseness objectives for the underlying lin-
ear filters, the method can be also seen as performing ICA, atleast before
the multiplicative computation of the paired responses takes place. This
relation to ICA is due to the intimate connections between ICA and op-
timization of sparseness (Olshausen & Field, 1997). Thus, as the model
practically includes an underlying ICA model for the linear filters, it can
be seen to belong to the category of models of visual input. In Section 5.2.2
we will describe how both maximization and minimization of response en-
ergies (and thus energy correlations) in this setting can lead to interesting
results and emergent features from natural images.

4.1.3 Object recognition objective

Publication 2 and Publication 3 of this thesis study supervised models of
object recognition, a learning setting that leads to estimation of models of
visual function, as was described in Section 3.2.3. As a reminder, in the
supervised setting we work with training datasets of pairs (x, y) where x is
a vectorized image (or some vector derived from the image), and y is the
preferred response value supplied by a teacher. We also assume here that a
single image either contains an object out of k + 1 known classes C, where
the last class k + 1 is used to denote background or “no object” images.
Then, y ∈ {1, ..., k + 1}.

In Publication 3, the main emphasis is on online selection of visual
features that are used for object recognition, but given such features the
decision mechanism we use is particularly simple. In Publication 3, we
chose to use a Naive Bayes classifier (e.g. Hastie et al. (2001)), and here we
give a more elementary treatment of it. The main simplifying assumption
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in the Naive Bayes classifier is to assume the input variables in x to be
conditionally independent given the class (a simple example of such a case
is shown in Figure 4.1 for convenience). Now consider

P (C = j|x) =
px|C(x|C = j)P (C = j)

px(x)
, (4.2)

where the right hand side follows from the Bayes formula. The Naive Bayes
classifier now predicts the class ŷ that has the highest probability given x,

ŷ = argmax
j∈1,...,k+1

P (C = j|x) (4.3)

= argmax
j∈1,...,k+1

px|C(x|C = j)P (C = j)

px(x)
. (4.4)

As px(x) is equal for each class, it can be ignored, and to learn the classifier
it is sufficient to estimate the probabilities P (x|C = j) and P (C = j) from
the training data. The first quantity, given the assumption of conditional
independence, simplifies to a product of one-dimensional marginal densities,

px|C(x|C = j) =

n∏

i=1

pxi|C(xi|C = j). (4.5)

Now, if the variables xi are binary (as they are in Publication 3, where
we operate on a binary feature space derived from natural images), to
learn the classifier it suffices to compute empiric estimates of marginal
Bernoulli distribution parameters from the training data, i.e. estimate the
probability of one for each feature xi. In addition, we need to measure
the class frequencies P (C = j) from the labels y. In this case, the Naive
Bayes classifier can be implemented very simply as a vector counting the
number of occurrences of each object class, and measuring one additional
vector per class, where each dimension i counts the number of occurrences
of xi = 1 inside that class. These counters can be easily updated one
training example (x, y) at a time. Despite this favourable property and the
simplicity due to the conditional independence assumption, Naive Bayes
classifiers are generally noted to perform well (e.g. Hastie et al. (2001), p.
185).

For Publication 2, we utilized a more involved learning mechanism
called a Support Vector Machine (SVM), e.g. Vapnik (1998); Cristianini
and Shawe-Taylor (2000). This method proceeds directly from optimiza-
tion principles concerning classification accuracy and does not estimate
conditional distributions as were required for the Naive Bayes classifier.
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Figure 4.1: A dataset of two-dimensional examples x from two different
classes, marked with circles and diamonds. The instances of each class
originate from two-dimensional Gaussian distributions with in-equal vari-
ances and means. Although the variables x1 and x2 are correlated over the
data in general, inside each class they are independent of each other, i.e.
the variables are conditionally independent given the class.

In principle this could mean less parameters to fit. The SVM approach
typically incorporates several different ideas, including regularization, mar-
gin maximization and possibility to learn nonlinear classifiers through the
use of kernels. Of these, regularization is used to constrain the complex-
ity of the classifier (see Section 4.2.3) to avoid overfitting. The margin
maximization idea follows from the observation that in high-dimensional
spaces, typically many different decision surfaces allow to classify train-
ing data correctly. In such a case, it seems natural to choose the decision
surface that is furthest away from the examples of the classes (possibly in
some weighted sense, should the classes overlap). Finally, the kernel trick
is equal to fitting a linear classifier after a basis expansion (Hastie et al.,
2001), but with application of kernels, this expansion does not have to be
explicitly performed.

The only SVM variant we consider in Publication 2 is the 1-norm soft
margin linear SVM (note that linear classifiers are not literally linear, as the
decision is a nonlinear operation – if the decision is based on a computation
of wTx, the classifier is commonly called linear). The soft-margin SVM
learning mechanism for binary classification problems (y ∈ {−1, 1}) and l
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training examples is defined as an optimization problem as follows,

minimize wTw + C

l∑

i=1

ξi, (4.6)

subject to yi(w
Txi + b) ≥ 1 − ξi,∀i, (4.7)

ξi ≥ 0,∀i, (4.8)

where w, b, ξi are the parameters to optimize, and wTw can be taken as a
regularizer to suppress solutions w with high norms. The prediction of the
learned classifier is computed as sign(wTx + b), and hence the prediction
is correct for example xi if and only if the left hand side of the inequality
in the constraint (4.7) is positive. But in that constraint, we also prefer
the margin of each prediction to be 1 or more. If that is the case, no extra
benefit is gained in the definition by pushing correctly classified examples
even further from the hyperplane defined by w. But if the margin is smaller
than preferred, or negative, the constraint (4.7) becomes active, and we
incur a penalty in the objective (4.6).

For solving the above optimization problem, as well as for details,
proofs, and bounds about the SVM approach, the reader is referred to
Vapnik (1998); Cristianini and Shawe-Taylor (2000) and the references
therein.

For us, the main reason for using SVMs was that the approach is typ-
ically competitive in a wide variety of learning tasks, and it is not relying
on any independence assumptions between the variables. Also, as the opti-
mization task is typically convex (a quadratic program in the case of 1-norm
soft-margin SVMs), the optimization can be guaranteed to converge to the
globally best solution (Cristianini & Shawe-Taylor, 2000).

A downside of the SVM framework is that the estimation of the common
SVM models is done using batch learning (i.e. all examples are required
to be available at the same time for learning the model). At the time
that we worked on Publication 3, established online mechanisms for SVM
estimation did not exist, and that was the main reason we resorted to the
simpler Naive Bayes approach in that work.

4.1.4 Feature selection objective

With the previous objectives, we assumed that there is a function class with
parameters to tune, for example a set of linear filters. In such a case the
optimization modifies these parameters according to the used objective. As
a consequence, the learned model parameters typically end up representing
features of the data.
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An alternative way to end up with useful features is to select the fea-
tures from the data instead of optimizing the feature parameters. This
approach, called feature selection (Dash & Liu, 1997; Guyon & Elisseeff,
2003) is typical in such machine learning problems where a multitude of
measurements is available for each training instance. In such a setting, we
wish to select a small set of the features that suffice for the classification
or regression problem at hand. In the case of images, the original features
are pixels, and selecting some set of pixels may not be very useful for sub-
sequent tasks. Instead, we can select some more complex visual features,
for example small image templates, and then match them by correlation to
new images (e.g. Ullman et al. (2002)). The resulting binary feature will
then work as an indicator of the template presence.

In general, learning features and learning classification can be seen to
belong to a single continuum: at one end, some high-level feature may
closely reflect the class label (and then very simple classifier may be suf-
ficient), whereas in the other end, the features can be very low-level ones,
such as pixels (and a very complex classifier may be needed). Hence, if
the set of features is selected for a model of some particular function, the
features do not need to faithfully describe the statistical distribution of
the whole visual input. Instead, the selected features are better seen as
simple computations that may allow further processing to be simple, i.e.
they are used to simplify a later model of function. The features do not
need to represent anything of the input that the function does not need. It
follows that features selected for function can also be taxonomized as parts
of modelling visual function rather than the input in general.

In Publication 2 and Publication 3, we selected image template fea-
tures with object recognition in mind. In Publication 2, we studied an
information-theoretic objective to maximize the additional information that
each new feature brings about the class (for a textbook on information the-
ory, see Cover and Thomas (2006)). The actual equations and the proposed
algorithm are described in Publication 2 and not reproduced here.

Measuring the additional information in the traditional way requires
the whole training set of data to be present at the time of learning. In
Publication 3, we proposed a novel, probabilistically grounded approach
to select visual features online in a process that sees one training example
at a time and then discards it. This method is technically described in
Publication 3, and the reader is referred there.

We will discuss feature selection further when we review the correspond-
ing included publications in Sections 5.3.1 and 5.4.
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4.2 Intricacies in statistical learning

A serious challenge in the ecology-driven approach is that statistical mod-
elling is a science in itself, and textbooks on the subject are ripe with
describing and characterizing the issues involved (Vapnik, 1998; Cristian-
ini & Shawe-Taylor, 2000; Duda et al., 2000; Hastie et al., 2001; Bishop,
2006). In the following we will discuss some of these well-known issues, and
to make the presentation more intuitive, we describe how this learning the-
ory supports the classic tradition in science that descriptions and models
should be as simple as possible, but not simpler.

4.2.1 Local optima

If a model is optimized with relation to some objective, the resulting ob-
jective function may have several variable configurations that are the best
possible in their own local neighbourhoods in the parameter space, but
not necessarily globally optimal. This is intuitively explained through the
concept of optimization landscape: assuming that h(f) is the objective
function value for a given model f , then as we try out different parameters
of f (such as the weights in eq. (2.1)), a landscape of objective values of
h is drawn. For example, Figure 3.3 could also represent an optimization
landscape for two parameters x1 and x2 in some optimization problem.
The goal of optimization is then to find the highest peak or the deepest
pit in the landscape, depending on if we are maximizing or minimizing.
Generally, starting from an arbitrary point in an optimization landscape,
the local neighbourhood might not give any indication what the globally
best parameter configuration is, and simply following the gradient of the
landscape can lead to a locally optimal set of the parameters instead of
getting to the globally optimal solution.

A significant exception to the general difficulty of global optimization
are the so-called convex landscapes that only have single optima, allow-
ing for efficient search. Unfortunately, aside convex functions, no function
classes seem to exist that would in a certain sense be “larger” than the
class of convex functions and still guaranteed “tractable” in the optimiza-
tion sense (Kreinovich & Kearfott, 2005). Also, it is well-known that there
is no optimization algorithm that would perform well for all optimization
problems (Schaffer, 1993; Wolpert & Macready, 1997). In practice these
latter results are overly pessimistic, as natural problems tend to have struc-
ture, and a local optimum might be good enough.

The problem of local optima holds for any nonconvex optimization that
tries to fit models to measurements, regardless of the manner the fitting is
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performed. Hence any mathematical theory (e.g. in physics) that is based
on fitting parameters to measurements is prone to being only a locally best
model, and this seems more likely the more complex the related optimiza-
tion landscape is. It should be noted that even if the objective function
is convex, the landscape can still be nonconvex if the model is nonlinear.
As a result, optimization theory would suggest using as simple models as
possible in order to increase the chances of finding good model parameters.

4.2.2 Overfitting and model selection

Suppose for a moment that we could always find the optimal parameters
for our model given the data. Then in a näıve sense, the more complicated
model we can fit to the data, the better, as a more complex function will
always have a better potential to fit the data than a simpler function. But
in the worst case this will result in memorizing the training set. A simple
example of this is curve fitting: allowing a complex curve to be fitted to
noisy data, a learning algorithm may make the curve pass through all the
points, and not learn the “true” curve. An example more in line with the
context of this thesis is to consider the linear superposition model and an
objective of sparseness. Now, if we allow the matrix A to have any number
of features, then each training example xi can be taken as a feature ai, and
subsequently xi can be represented simply by setting the coefficient si to 1
and the rest to zero for all sj , j 6= i. But, given a new x, this model may
however fail to find a sparse representation for the new data point. This
behaviour where the model performs as wanted on the training data but
fails on new data is called overfitting, with its opposite called the ability
to generalize. Overfitting is made more likely by an expressive model class
and an under-constrained objective. As a result, the model can not provide
a concise explanation of the data, and at the extreme, the overfitted model
may fail to explain anything about the data.

Overfitting can be controlled either implicitly or explicitly. Implicit con-
trols include such choices as selecting a simple model class, and reducing
the dimensionality of the input data. Such implicit mechanisms are used in
the ICA experiments of this thesis. The other option is to explicitly con-
trol overfitting during the learning by regularization that penalizes complex
function shapes. Regularization is especially typical in the context of Sup-
port Vector Machines. For example, in the soft-margin objective (4.6), the
term wTw works as a norm-penalizing regularizer (Cristianini & Shawe-
Taylor, 2000), and this kind of regularization is used in Publication 2 of
this thesis. Yet another choice is to perform model selection in the more
traditional sense of using some measure that weights the models confor-
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mance to the data against the models complexity. The Akaike Information
Criterion (AIC) is one example of such a measure, see Akaike (1974). In the
publications of this thesis we do not use such traditional model selection
mechanisms as AIC. Instead, we tend to evaluate the quality and gener-
alization capability of the learned models by a practical, empirical tech-
nique called cross-validation, which involves partitioning the used dataset
and then training and testing the model on separate data partitions (e.g.
Kohavi (1995)).

Hence, in addition to optimization considerations, the philosophical
stance of preferring simple models can also be supported from the view-
point that they are more likely to generalize to new data than complex
models that are more easily overfitted.

4.2.3 Further issues

Not only it is difficult to select a suitably constrained model class, but also it
may be cumbersome to perform the processing as suggested by the model.
For example, in the case of probabilistic models, getting the functional
forms properly normalized (so that they integrate over the data space to
one) typically requires the computation of a tedious integral called the par-
tition function. This has consequences for maximum likelihood parameter
estimation, as the approach requires the evaluation of the partition func-
tion. For more elaborate densities, analytical evaluation of the partition
function is often considered intractable. Techniques such as Markov-Chain
Monte Carlo (J. S. Liu, 2001), Contrastive Divergence (Hinton, 2002) and
Score Matching (Hyvärinen, 2005) can be attempted to alleviate this prob-
lem.

Another issue is that the data often does not follow the assumptions of
the learning method. One concrete example of this is the natural image
data not following the linear superposition model of ICA and eq. (3.1).
Another requirement that we have so far ignored is that strictly speaking,
derivations of many estimation methods (such as the maximum likelihood
estimation) assume the training examples to be independent and identically
distributed (the so-called i.i.d. assumption). Especially in vision where the
visual input is naturally seen in a continuous sequence, it is not ultimately
valid to assume that one moment of visual data would be independent from
the previous moment of data. Further, the data distribution may not be
identical from one moment to the next, for example because living beings
can alter their environments. Nevertheless, the learning methods often seem
to perform well regardless of the data violating the i.i.d. assumption. A
partial explanation for this is that the batch methods are typically invariant
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to the order that the training data is presented in.

A final problem we mention that may have consequences in many mod-
elling attempts is that the learning algorithms and the statistical estimators
they rely on may not be robust. A simple example is the computation of
the empiric mean of k samples yi, computed with 1/k

∑k
i=1 yi. Here a

single erraneous y being far away from the bulk of the data can pull the
weighted sum away from the “true” population mean. In a similar fashion,
more complex model parameterizations and parameter vectors may end up
seriously affected by just a few noisy examples or other outliers in the train-
ing data. These issues may be addressed by using more robust estimators
(such as the median) or removing the rogue samples from the training data
(Huber, 1981; Hampel et al., 1986). In the scope of the publications of
this thesis, image preprocessing and the choices of optimization objectives
(tanh() nonlinearity in FastICA and soft-margin maximization in SVMs)
can be taken to be partly due to enhance robustness.

4.3 Natural image data and its preprocessing

All the publications of this thesis have to do with natural images in one
way or another; in some publications we examine generic low-level models,
decompositions and statistics of natural images that are estimated in an
unsupervised manner, and yet in others we have explored the problem of
learning object recognition from such images. Hence, in all the cases, the
data is a set of natural images, meaning photographic, greyscale images as
captured by a camera. In some studies, natural images are taken to denote
photographs of rural scenes with no man-made objects (e.g. in Frazor and
Geisler (2006)). In this thesis we do not rule out images with man-made
objects; their naturality can be understood by realizing that man-made
objects are natural in the environments of the civilized animal. Hence we
define that natural images are those that portray some ecologically mean-
ingful environment.

For clarity, we show one natural image in Figure 4.2, taken from a set
provided by Hateren and Schaaf (1998), a dataset that we use in the major-
ity of the publication of this thesis. Typical to these images is the relatively
high resolution, and this exactly corresponds to high data dimensionality
in the sense of machine learning should the raw images be considered as
training examples. The input image shown in Figure 4.2 with its resolution
of 1020× 1532 pixels would make a data vector of over a million variables,
each with a precision of 12 bits (in the case of the mentioned dataset).
This resolution seems still smaller than the discerning ability of the human
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Figure 4.2: A typical image of 1020 × 1532 pixels from van Hateren’s and
van der Schaaf’s natural image dataset (image no. 123). Such images are
used as data in the majority of the publications of this thesis. The displayed
image was logarithmically transformed to enhance visibility.

retina (by a näıve comparison to the number of retinal sampling elements
(Williams & Moody, 2004)), but large enough to make such natural images
as reasonable first approximative models of the signal that is received by
the retina.

In studies that estimate statistical models based on natural images, the
visual data is often not used as-is to learn a model, but only after be-
ing subjected to some “preprocessing”, often off-the-sleeve transformations
that are performed on the images, but that may not have been learned from
the data and that may lack analytical motivation. They may also be out-
side the probabilistic modelling framework, and be performed before such
modelling – hence preprocessing can sometimes be taken as an indication
of less rigorous aspects being present in the used modelling approach.

In the case of van Hateren and van der Schaaf’s images, the prepro-
cessing transformations typically applied include a compressive transform
similar to one performed by the retina, as well as block averaging, and
finally whitening (Hateren & Schaaf, 1998). We will now briefly describe
these three steps in the context of this dataset.

A compressive transform such as a logarithm (Hateren & Schaaf, 1998)
or Naka-Rushton equation (Naka and Rushton (1966), also in eq. (2.2))
is used to address the highly skewed intensity distribution of these images.
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Figure 4.3: Intensity distribution of pixels sampled from the van Hateren
and van der Schaaf dataset. A) A histogram of intensities (in cd/m2) of
the raw pixels. The thin right tail is very long but has a negligible density:
90% of the data is dimmer than 4 × 103, a value that is roughly 3% of the
maximum intensity seen in the data. B) The histogram after a logarithmic
transform of the pixels x, log(x + ǫ). The new dynamic range is better
utilized (see text).

This transformation makes the distribution more balanced, as shown in
Figure 4.3. In terms of image processing, natural images with highly skewed
and concentrated histograms can be considered problematic, as they use the
dynamic range inefficiently (Bovik, 2000), and controlling for this can help
information transfer (Laughlin, 1981) in neural coding. In unpublished
experiments, we examined the changes in the dynamic ranges for the used
dataset by doing the following: first, we measured the spread of the studied
image dataset by estimating the difference between the 75% and the 25%
intensity quartiles in each image, and averaged the obtained estimates for
500 randomly selected images from the dataset. We call this the spread
of the distribution. We then compared this average spread to the average
spread computed from artificial data with an uniform distribution having
the same intensity range, and obtained that the spread of van Hateren’s
images is approximately only 3% of the spread of the uniformly distributed
data (i.e. the one that has maximal equalization of its histogram). After
taking a logarithm of the natural images, this relative spread increased to
16%, showing that the new dynamic range is better utilized and that the
distribution tails have been brought to the same scale with the bulk of
the data. A more principled way to compare the dynamic ranges would
have been through entropy (Cover & Thomas, 2006), but the more simple
experiment used here seems sufficient to illustrate the point.
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Although the effect of highly skewed distributions for learning is not
completely understood, such distributions can cause problems for learning
algorithms. This is due to the rare occurrences of very high intensities
(corresponding to the right tail of the distribution) may appear as outliers
in the data, and have very strong effects for e.g. non-robust gradient com-
putations. The compressive transform may mitigate such effects and cause
empirical statistics to behave better (e.g. Ruderman (1994)).

The block averaging, on the other hand, can be done to address noise
and calibration deficiencies in the acquired image data (Hateren & Schaaf,
1998). It also has another kind of smoothing effect on the data: for the
linear intensity version of the used dataset (“.iml” filename extensions), we
measured that approximately only 38% of the discrete intensity values be-
tween zero and the dataset maximum value are actually used (unpublished
experiments). This is likely due to the image capturing process, and not a
sign of such quantification being a natural phenomenon. A block averaging
can smooth away this effect by taking averages of the nearby pixel values.
For example, in 2 × 2 block averaging, each square block of 4 pixels gets
replaced by its mean value. This effectually halves the image resolution,
but the resulting images are still large enough to be intractable as raw data
for many learning methods.

The last preprocessing step often applied is called whitening (or spher-
ing), a transformation that makes the data have an identity covariance, i.e.
the transformed variables are decorrelated. Whitening is required for the
application of certain ICA methods such as FastICA (Hyvärinen, 1999),
and the whitening stage seems reasonable if the objective is to find inde-
pendent directions. This is because whitening removes the second-order
statistical dependencies of the data and allows the further measures of de-
pendency to be oblivious to the data covariance structure. The fact that
covariance can be taken as unity can also be useful for technical derivations
of the learning methods (Hyvärinen, Karhunen, & Oja, 2001).

Whitening can be performed in several ways, for example through fil-
tering (Olshausen & Field, 1996) that mimics retinal processing (Atick &
Redlich, 1992; D. J. Graham et al., 2006), or via Principal Component
Analysis (PCA, e.g. Hyvärinen, Karhunen, and Oja (2001)). In the major-
ity of the publications of this thesis, whitening is performed by the latter
method. Given that PCA is an eigenvalue decomposition of the data co-
variance matrix1, it can be shown that projecting the data to the PCA axes
(eigenvectors) with each axis rescaled by its inverted eigenvalue leads to the

1PCA finds a basis of orthonormal directions where every i + 1:th direction has the
maximal variance on the condition that it is orthogonal to the previous i directions.
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projected data having an identity covariance (e.g. Hyvärinen, Karhunen,
and Oja (2001)). As the covariance matrices of natural data can be close
to singular, dimensions corresponding to very low eigenvalues may need to
be dropped in order to invert the eigenvalues for whitening. This leads
to dimensionality reduction that may also have the salient effect of noise
reduction. In terms of the square error of data reconstruction, PCA is th op-
timal linear method, supporting its application in dimensionality reduction.
Although there does not seem to be a single universal way to choose the
appropriate number of retained dimensions in PCA, in the case of natural
images a reasonable value can be picked heuristically, i.e. by reconstructing
the data and verifying visually if the reconstructions retain an acceptable
amount of visual structure and detail. In natural images, the discarded
PCA components correspond to high frequencies in the Fourier analysis
sense (e.g. Hancock et al. (1992); A. J. Bell and Sejnowski (1997)). This
is in agreement with the 1/fα power spectrum of natural images: the high
frequencies with the least power are discarded. Subsequently, the whiten-
ing that rescales the PCA axes by the eigenvalue inverses boosts the high
frequencies and dampens the low frequencies, effectually corresponding to
making the power spectrum approximately uniform over the data.

Together, the described preprocessing steps can be taken to correspond
to a very simple model of retinal operation. However, it should be noted
that these preprocessing steps are by no means mandatory for all “natu-
ral” image data, as the images may already be preprocessed, either explic-
itly by image processing techniques or implicitly in the cameras that may
capriciously perform diverse operations on the data without the user being
knowledgeable of the algorithms used. Eventually the data we receive and
think of as natural may have already gone through a lot of processing. For
example, for the car detection dataset (Agarwal et al., 2004) that we used
in some of the publications of this thesis, none of the preprocessing steps
mentioned above are called for: the images do not have skewed intensity
distributions, the images are already scaled to a small size of 100×40 pixels
(scaling is effectively similar as block averaging), and we did not examine
the effect of whitening with that data.

Hence static, fixed preprocessing steps are not needed for all images, and
in settings like computer vision or content-based image retrieval, it is not
clear that nonadaptive, fixed preprocessing should be used. In the natural
operating conditions of deployed systems, the images may come from a
wide variety of cameras, have different resolutions and portray a variety
of visual environments. Subsequently, the necessary processing steps must
take into account the nature of each input image individually.
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Chapter 5

Learning visual processing

After overviewing the area of study and the used methodologies, this chap-
ter finally reviews the main technical content of this thesis. The actual
content is included at the end of this thesis as reprints of the original pub-
lications. The original publications have been categorized into four topical
categories, and instead of proceeding in the chronological order of our re-
search, we present the topics with respect to their perceived position in
the classic visual hierarchy (see Section 2.2.2). We start from the pub-
lications studying low-level issues, and move towards higher-level aspects.
The publications studying higher-level phenomena should be taken as more
speculative, as they study the question if something is possible in general,
with less regard to the biological plausibility of the used mechanisms.

In Section 5.1, we describe our results related to learning low-level visual
processing from dependencies in images. Next, Section 5.2 overviews our
attempts towards learning more complex visual features with unsupervised
learning. This is followed by Section 5.3 describing learning mechanisms
for priming. Finally, we conclude with Section 5.4 about online feature
selection for object recognition.

5.1 Low-level statistical dependencies in images

As explained in Section 3.2.1, studies of dependencies in images are not only
motivated by the need to design tractable probabilistic models for natural
image data, but also to understand what is appropriate processing for such
data. Of specific interest is to examine what properties are independent in
natural images, and how such properties could be extracted by the visual
system. This is due to the fact that in both computational modelling as
well as in biological systems, if independent constituents of images can be
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extracted by suitable computations, these parts can be modelled separately
with no need for communication between the involved parties (see also
Section 3.3).

Previous work on learning image dependencies with ICA-like methods
suggests that lines and bars are the independent components of natural
images (Olshausen & Field, 1996; A. J. Bell & Sejnowski, 1997; Hateren
& Schaaf, 1998), although residual dependencies are known to remain
(Hyvärinen & Hoyer, 2000; Schwartz & Simoncelli, 2001; Hyvärinen, Hoyer,
& Inki, 2001; Inki, 2004). ICA-like techniques have also been used to study
colour and stereo images (Hoyer & Hyvärinen, 2000) as well as in spatiotem-
poral (video) data (Hateren & Ruderman, 1998). Here we will examine the
representation and processing that ICA learns from local contrast images.
We also study how the structure of local contrast and local luminance relate
statistically.

5.1.1 Structure of local contrast

Local contrast has been of significant interest to vision research for several
reasons. First, the used artificial test stimuli in psychophysics typically vary
in two primary dimensions that are called luminance and contrast (Peli,
1990; Moulden et al., 1990; Bex & Makous, 2002; Badcock et al., 2005;
Sukumar & Waugh, 2007; Allard & Faubert, 2007). Second, the retinal
ganglion cells encode and transmit the visual data as contrasts according
to the textbook view (Meister & Berry, 1999; Masland, 2001). Third,
recent research suggests that splitting images to luminance and contrast
might allow access to two independent properties of the data (Mante et al.,
2005; Frazor & Geisler, 2006). Thus, it makes sense to examine how the
statistical structure of the images is changed when they are converted to
local contrast images.

In Publication 5, we add to the previous statistical studies of contrast
(Peli, 1990; Brady & Field, 2000) by examining the statistical redundancies
in a certain biologically plausible contrast representation. We show that
the statistical, spatial redundancy structure of these contrast images is not
very different from that of the original intensity images. To compute the
nonlinear measure of local contrast, we first perform the usual whitening
transform on the images (see Section 4.3). In particular, we specify the
applied transform to be centre-surround filtering, roughly similar to the
one of the retinal ganglion cells. After the whitening, we rectify the image
to arrive at a contrast image. These new contrast images are the ones we
subsequently study, first by applying some traditional measurements, and
then by ICA.
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Based on the results described in Publication 5, we suggest that the
contrast transformation does not alter the spatial structure of natural im-
ages in any revolutionary manner. Instead, the contrast images are quite
similar to the original images in terms of the applied statistical techniques:
the Fourier power spectrum of the local contrast images resembles that of
the original images, having a power-law like correlation structure on aver-
age. This suggests that the decorrelation achieved by the centre-surround
whitening transform can be abolished by pointwise rectification. Likewise,
the familiar, localized, oriented and bandpass processing that resembles
Gabor-filtering can be learned by ICA from these contrast images as well.
However, it should be noted that with the contrast transformation included,
the linear filters learned by ICA are nonlinear filters with relation to the
original image data. This learned nonlinear processing may be able to
detect such texture variations that are not salient to linear filtering, just
as second-order filter-rectify-filter processing models can do (Johnson &
Baker, 2004).

5.1.2 Relations between local luminance and contrast

In Publication 7 we extend the previous results of Mante et al. (2005);
Frazor and Geisler (2006). We show that the weak dependencies between
local luminance and contrast as observed by single variable analysis are no
longer the norm in a spatial setting, where multiple measurements of local
luminance and contrast are available. Instead, the local contrast measure-
ments become highly predictable from the local luminance measurements,
and optimization for independence leads to processing that integrates lu-
minance and contrast instead of segregating them. Thus, contrary to pre-
vious proposals of independent processing of luminance and contrast (e.g.
Sukumar and Waugh (2007); Allard and Faubert (2007)), our results sug-
gest that these two properties are highly redundant, and at least based on
independence arguments, there is no immediate reason to suppose separate
pathways or other segregations for spatial processing of these qualities.

The main difference between our approach and that of Mante et al.
(2005) is that the latter considers local luminance and contrast for gain
control of retinal ganglion cells and not as actual information to be encoded
and transmitted. For purposes such as retinal gain control, taking the local
luminance and contrast as independent may remain meaningful, as one
gain controlled neuron may have to tune its gain according to the data
under its own receptive field, and in this local context, the variables of
local luminance and contrast are typically only weakly dependent (Frazor &
Geisler, 2006). Our results add to this understanding by showing that later
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spatial processing may not trivially benefit from similar local luminance
and contrast split, which would be the case if the split allowed the system
to access two independent channels of spatial information.

Together, Publication 5 and Publication 7 lead to question the func-
tional significance of having an explicit spatial contrast representation in
the first place. For example, numerous models of object detection (e.g.
Riesenhuber and Poggio (2000); Schneiderman and Kanade (2002); Viola
and Jones (2003); Amit et al. (2004); LeCun et al. (2004); Agarwal et al.
(2004); Fei-Fei et al. (2006); Leibe et al. (2008)) do not resort to computing
an explicit contrast image in the sense of our publications, and neither they
follow the psychophysical idea of a strict dichotomy between luminance and
contrast.

Instead of being directly useful for spatial analysis, it remains a pos-
sibility that contrast may have more use in gain control and dependency
reduction than being something worth explicit representation (see the dis-
cussion on ’variance fields’ in Simoncelli (2005)). However, it is known that
signed contrasts, in terms of wavelet coding (Daubechies, 1992), can be used
to attain coding-efficient image representations with only a few variables
representing luminance (or base levels) and the most representing signed
contrasts. This kind of coding, and Gabor and V1-like transforms in gen-
eral, can assist in tasks such as object recognition (Jain et al., 1997; Serre,
Wolf, et al., 2007) and segmentation (Jain & Farrokhnia, 1991; Sharon et
al., 2006). Nevertheless, the practical utility of unsigned contrast as studied
in Publication 5 and Publication 7 remains to be explored.

5.2 Quadratic processing

As we saw in the previous section, ICA on natural images usually leads to
emergence of features that resemble lines and bars. Some simple nonlinear
image preprocessing such as the contrast transformations we examined may
be insufficient to attain more interesting results with ICA. These more in-
teresting results could include representations of more complex visual struc-
tures, and learning the corresponding features would give a hopeful outlook
towards acquiring higher-level visual processing machinery with the used
methodology: some higher-level processing may have the representation of
more structured visual shapes as a prerequisite. For example, it has been
shown that more structured features than simple lines and bars are useful
in object recognition (Ullman et al., 2002) and also that as we move further
on the cortex from V1 to areas such as V2 and V4, we start to encounter
neurons that are tuned to more structured features than simple edges and
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bars (Hegdé & Essen, 2000; Heider et al., 2000; Ito & Komatsu, 2004; An-
zai et al., 2007). In particular, these medium-complexity neurons seem to
prefer visual stimuli that resemble feature combinations.

In this section we study the question how similar medium-complexity
features could be learned in an unsupervised manner. Of some interest
is to examine whether the approaches of ICA and sparse coding could be
extended in some way to account for the formation of more structured fea-
tures and the corresponding filtering. As it is difficult to make linear filter
models more specific for detection of feature combinations while remain-
ing inactive for their constituents (Zetzsche & Krieger, 1999), nonlinear
processing and modelling seems called for.

5.2.1 Quadratic processing by ICA

In Publication 4 and Publication 6 we examined whether extending the
usual linear models to quadratic ones would allow to learn visual fea-
tures tuned to more complex image properties than edges and bars, and
found positive evidence for this. In Publication 4, we performed a sim-
ple quadratic basis expansion (Hastie et al., 2001) on the input data, af-
ter which linear ICA learning was applied. This led to the emergence of
quadratic filters that responded to combinations of Gabor-like, features,
but not to the features alone. Thus, on a qualitative level this behaviour
corresponded to one observed in V2, where some neurons appear to have
preference for feature conjunctions (Hegdé & Essen, 2000; Heider et al.,
2000; Ito & Komatsu, 2004; Anzai et al., 2007).

It is interesting that our model learned preference for conjunctions, as
this result differs from those previously obtained with ICA on similarly
transformed data (Bartsch & Obermayer, 2003; Hashimoto, 2003; Theis &
Nakamura, 2004) and also from those obtained with other two-layer models
(Hoyer & Hyvärinen, 2001; Berkes & Wiskott, 2005; Köster & Hyvärinen,
2007). In all the mentioned studies, typically simple and complex cell
behaviour of V1 were learned. However, reading Theis and Nakamura
(2004) carefully shows that feature combinations were also learned with
their quadratic model, but the authors did not focus on the conjunctive
processing in the analysis of their results.

It should be noted that there are some open problems related to ap-
plying ICA on transformed data in the way we did. First, it is not well
understood why one should look for independent components in a quadratic
space, or why the quadratic space should be represented in particular. Al-
though meaningful features were learned by the model, these questions still
lack satisfactory theoretical answers. Second, in further, unpublished ex-
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periments performed after Publication 4, we found out that the method
we proposed is also able to learn conjunctive structure on noise data. In
particular, consider an ICA model learned on Laplacian white noise data
of n dimensions taken through the homogeneous quadratic basis expan-
sion, with no dimensionality reduction. In this case, we found out that
the learned models will have n directions weighting the n squared origi-
nal dimensions while exhibiting no paired structure, whereas the remaining
n(n − 1)/2 components become essentially conjunctive. This emergence
happens even though it is unlikely that the Laplacian noise data had some
hidden conjunctive features. Instead, the learned structures can be un-
derstood through the learned model W, which is in this case an identity
matrix, up to the permutation of the columns and the signs of the columns.
Decomposing the related quadratic forms for each projection direction in
such a matrix results in a split to non-conjunctive and conjunctive compo-
nents as we described. However, the learned W does not have such a form
for arbitrary data: for Gaussian white noise, the components do not end
up as such that could be characterized as exhibiting paired structure. And,
as is to be expected, the underlying learned filters do not resemble Gabors
with either Laplacian or Gaussian data.

Finally, a remark is in order regarding the enterprise of attempting to
learn more complex visual structures from the data using the principle of
independence maximization. Consider a corner, made of two edges. Now,
if independence is maximized, detectors for the corner and detectors for the
edges can not exist together, as the activation of the corner detector would
predict activation of the edge detectors. Hence with maximization of in-
dependence, random variables reacting both to objects and their parts can
not coexist if there is a constraint that responses must be perfectly inde-
pendent. To conclude, the independence maximization approach would at
least need to allow dependencies between features of different levels of com-
plexity, perhaps corresponding to allowing dependencies between different
layers of a multilayer model. If perfect independence is required between
all elements of such systems, compound features are unlikely to be formed1.

1Note that the result of Publication 4 does not contradict this theoretical claim: the
model is forced to estimate a predefined number of features from the data, and it is forced
to do the best it can, even if there are not as many independent directions in the data.
Further, we did not optimize for the independence of the squared subfilters that make
up each quadratic form.
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5.2.2 Quadratic processing by energy optimization

We followed the study of Publication 4 by another one in Publication
6, where we attempted to replicate the results of Publication 4 in a more
simple setting. To start with, instead of working in a quadratically trans-
formed space, we assumed the response of each component to be a product
of the responses of two linear filters, i.e. s = (wTz)(vTz). We assumed that
all the vectors v and w form an orthogonal basis, and that z is whitened
data. As an objective function, instead of maximizing for independence, we
optimized energy of s, i.e. Ex[|s|], as described in Section 4.1.2. When mini-
mizing energy, paired filters were learned again, similar to those we attained
in Publication 4. The main difference was that now there were no pairs
of features that shared orientation. When maximizing the energy instead,
the method learned opponent orientation filters, i.e. filters that respond
highly positively to one orientation, and highly negatively to another. The
presence of such opponent orientation processes in natural visual systems
appears to remain an open issue, with proponents (Motoyoshi & Kingdom,
2003) and opponents (N. Graham & Wolfson, 2004).

Due to the better scalability of the setting of Publication 6, we were
able to learn the filters in higher resolution, and show that the feature
pairings are not arbitrary, but instead seem to reflect some statistics of
the input data. Interestingly, also in this case the paired filters turned
out to resemble Gabor filters, a phenomenon we discuss to some length
in the paper. But as the used objective is somewhat different from that
of ICA in the quadratic space, this does not allow us to make claims of
the pairings learned with quadratic ICA to be non-arbitrary. Instead, the
work of Publication 6 strengthens the hypothesis that meaningful feature
combinations can be learned from natural image data with appropriate
models and unsupervised objective functions. To what extent the learned
processing resembles the conjunctive behaviour in e.g. V2 neurons remains
to be seen.

Although we have shown that conjunctive, nonlinear processing can be
learned from the visual data in an unsupervised manner, this does not log-
ically force the conclusion that the objectives we use are the reason for the
formation of similar features in biological systems. Instead, as research from
object detection has indicated, features of medium complexity are more
discriminative in object detection than simple Gabor features (Ullman et
al., 2002). Likewise, many recent methods either learn combined features
(LeCun et al., 2004) or use them after manual design (Serre, Wolf, et al.,
2007) for state of the art object detection results. Hence higher-level ob-
jectives might call for the presence of conjunctive processing as found in
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V2 neurophysiology.

At the time of writing this, we have not yet shown that the emergent
paired features or filters have any practical use. For inherently 2D problems
such as corner detection, it is known that tighter tuning can be attained
with quadratic filtering than linear filtering (Krieger & Zetzsche, 1996;
Zetzsche & Krieger, 1999). Clearly our conjunctive filters have very tight
tunings for angles and corners, but nevertheless some kind of quantitative
analysis should be performed as future work. One option is to validate these
unsupervised features in object recognition to verify if better classification
accuracies could be attained. Yet quadratic features could also be learned
for object recognition to start with, possibly using established methods such
as the backpropagation algorithm (Rumelhart et al., 1986). In a partially
fixed setting where the first layer were defined to be Gabor filters, this
question has already been studied (Weber & Casasent, 2001).

5.3 Simple priming mechanisms

Typically in feedforward network models (Riesenhuber & Poggio, 2000;
LeCun et al., 2004; Serre, Wolf, et al., 2007), and in the models of the
previous sections, all features are computed regardless of what the input
or task is. For example, in the case of the quadratic features we learned
in Section 5.2, both constituents in the pairs (wTz)(vTz) are evaluated
regardless of z. If the purpose of the computation was to detect a corner
made of two constituents, it could be possible to stop or postpone the
evaluation of the second constituent in the case that the first one returned
a value close to zero. Contrary to this kind of conditional processing, in the
traditional feedforward view the neural processing evaluates more and more
complicated features, finally culminating in a stage that evaluates a full set
of object models, picking the best matching object model (or background)
as the detected one. But does natural vision operate in this manner? Is it
the best way to proceed, and is it an efficient way to recognize objects?

Some studies argue that natural visual systems might not work in this
way, and suggest an alternative view where computations would be guided
by quick preliminary analyses or prior expectations (Bar, 2003). For ex-
ample, the later visual areas in natural visual processing can shape their
selectivity based on interactions with the earlier areas (Jehee et al., 2007),
the later areas thus being primed by information from the earlier process-
ing. Also, it is known that in natural processing, the information does
not exactly proceed in a first-come-first-served manner through a series of
stages as in a waterfall, but instead there are overlaps due to latencies of
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different areas (Bullier, 2004). In principle this would allow one area to be
already primed before more detailed information reaches it through some
slower pathway.

Several studies of object detection have examined ideas where the later
computations are somehow dictated by the earlier ones, usually in an at-
tempt to reduce the number of performed computations in different ways
(Mirmehdi et al., 1999; Viola & Jones, 2001; Blanchard & Geman, 2005).
One of the most famous examples of this approach for object detection is
the cascade model by Viola and Jones (2003), reminiscent of decision trees,
where the test instances x are routed in a tree-like model towards decisive
nodes using simple attribute tests (Quinlan, 1993). In the cascade model,
instead of learning a balanced tree of attribute tests, a sequence of very
simple rejective classifiers are learned, and the input x is either rejected by
the classifier (“there is no way that an object of interest is present in x”)
or passed on to the next classifier for further analysis. By proper tuning
of the rejective classifiers, high recognition rates can be achieved and yet
most examples x can be rejected after only a few simple tests.

5.3.1 Low-frequency priming

The hypothesis of low-frequency priming (Bar, 2003) is a specific priming
hypothesis that suggests that a low-frequency version of the scene could be
processed first in natural vision, and the results of this computation could
be used to prime the subsequent later processing. In natural systems,
this may be alleviated by different streams of information that process
at different speeds (Bullier, 2004), and in computational models of object
recognition it is parallelled by coarse-to-fine processing (Amit et al., 2004),
where the processing starts with coarse or low frequency representations
and moves towards more detailed and specific processing.

In Publication 2 we examined the applicability of low-frequency prim-
ing in a parts-based object recognition paradigm (Ullman et al., 2002;
Schneiderman & Kanade, 2002; Agarwal et al., 2004; Leibe et al., 2008). In
this approach, each object is represented as a set of object parts, or small
image fragments. A simple realization of the parts-based setting could be
one where the image representation for classification is a binary vector,
where each dimension xi corresponds to a fragment i. If the fragment is
found in the image, the value of xi is set to 1, otherwise to 0. A classifier is
then learned from pairs of such feature vectors and their labellings (x, y) in
a supervised manner, for example by an SVM method (see Section 4.1.3).

To represent the image in the parts-based model, in typical approaches
all the parts known to the system are tested to see if they are present in the
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current image. Although the tests can be restricted to be performed near
the likely spatial locations of such features, the parts-based approach in
this simple form is reminiscent of the bag-of-words approach known in text
document classification (Manning & Schütze, 1999). For text documents,
counting the number of word occurrences can be done reasonably fast,
but with images, the number of possible object parts in terms of small
fragments can be large, and it may be computationally demanding to test
for presences of all the parts known by the system in all image locations. For
this reason we examined in Publication 2 whether some quick computations
would allow us to decide which parts to test.

We designed the method of the Publication 2 as follows. First, a linear
classifier to do object vs. background classification was learned separately
for each object class to be recognized. These initial classifiers were intended
to work as a quick test to choose between three different options: 1) decide
that the image contains no object known by the system, 2) decide that
we remain uncertain, or, 3) decide a certain object has been recognized.
In cases 1 and 3, the evaluation stops and a decision of the object class is
made. In the case 2, the actual decision is delegated to be performed by one
or more instances of object-specific parts-based classifiers. As a result of
the pruning performed by these initial classifiers, often not all parts known
by the system have to be evaluated. The specific decision rules between the
three options and the subsequent routing of the instances are described in
Publication 2. For more recent work and detail on this kind of delegation
approach, see Autio (2008).

To be computationally as fast as possible, the initial linear classifiers
were designed to work in the greyscale pixel space and trained by an SVM
soft margin method. As a result, the weights w learned for each object
class by the SVM are practically holistic, global templates, as shown in
Figure 5.1B.

We examined whether the low-frequency priming would be applicable
in the scope of these initial linear mechanisms, i.e. does the linear SVM
classifier succeed in the initial pruning task, relying on low-frequency in-
formation. We evaluated this by processing the training images with vary-
ing degrees of Gaussian blur, as shown in Figure 5.1A, the blur increas-
ing towards the right. What is interesting in these blurred cases is that
the learned receptive fields look even less like the target object class, but
more like noise, as shown in Figure 5.1B. But despite this, they classify
the training instances correctly and succeed in working as initial pruning
mechanisms when evaluated by cross-validation.

A few problems arise from our methodological choice of using linear clas-
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Figure 5.1: A) An example of a training image for car detection with
varying amounts of Gaussian blur, with blur variance σ2 ∈ {0.5, 1, 2}. B)
“Receptive fields” learned by a linear support vector machine for detection
of cars, when the training images had been blurred as in A. An interesting
property of these receptive fields is that they all are sufficient to classify the
whole training set correctly, yet they do not closely resemble car templates.

sifiers on the raw greyscale images. First, the cortical object-specific neu-
rons are considered highly specific and nonlinear (Tanaka, 1996), whereas
in a linear classifier the nonlinearity is a simple thresholding operation.
This already makes it implausible that our linear classifiers would be oper-
ationally similar to the usually encountered neurons in the inferotemporal
cortex. The receptive fields in Figure 5.1B may explain why the evolution
is unlikely to have resorted to as a simple model as we used. Consider one
of the receptive fields w that is essentially used by testing the inequality
wTx > b for object presence, where b is a threshold. It is well-known that
the highest activation that wTx can have with fixed-norm w and x is at-
tained by the choice x = w. But this means that the model based on w
predicts w to look as much the object as possible, and −w the opposite. It
can clearly be seen from Figure 5.1B that neither case is true. Even if the
receptive field w had been learned to look like a car, clearly −w would still
look like one, only with its colours inverted. Despite this, the linear classi-
fier would claim it to be background. This creates some serious problems
that do not seem to be addressable with linear classifiers. First, the model
of Publication 2 will accept examples as objects that look like the receptive
fields of Figure 5.1B, but that may not pass as the target objects to human
vision. On the positive side, this illustrates the limitations of the typical
machine learning practice: the training data of objects and backgrounds
that we used to train the model of Figure 5.1B does not include such “back-
ground” images that would have prevented the learner from estimating a
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function that behaves badly by predicting an object to be present in such
senseless images as the receptive fields we showed. And even if the dataset
had contained such images, the fact that both x and −x would represent
cars can not be consolidated within a linear classifier framework. The linear
separation of the training dataset of Publication 2 testifies to the fact that
without understanding the properties of the data and the problem at hand,
such invalid models as estimated by machine learning methods may not be
caught by blindly cross-validating on some dataset alone, but require both
the understanding of the data, the problem, and the learned models, just
as we suggested in Section 3.1.

Besides the initial linear model we used, the class of rejective cascades
in general can be criticized for the fact that they can make unalterable
decisions, and should the initial decisions be wrong, this can not be re-
paired by later processing, as there is none. It is possible to speculate that
yet different approaches are used by natural systems that could resemble
evidence-guided inference loops that stop only after the most demanding
of analyses have been carried out (possibly in Bayesian models of object
detection – consider for example the hypothesis testing in Fei-Fei et al.
(2006)).

5.3.2 Gists of visual scenes

Although the low-frequency priming study of Publication 2 was motivated
to investigate a hypothesis from biology (Bar, 2003), in principle we could
try to base the priming on any computations with informative outputs, and
not necessarily just on low-frequency data. In Publication 1, we examined
if a so-called spectral representation (X. Liu & Cheng, 2003) could be used
as a source of quickly computable information that roughly delivers the gist
of the current scene. This gist could possibly be used to rapidly infer the
current environmental context, for example if we are indoors or outdoors,
or in a forest or on a plain, as statistics of such visual environments are
arguably different (Torralba & Oliva, 2003).

The spectral representation we studied is made up of activity histograms
of a V1-like bank of filters. To get a better intuition of the representation,
imagine a Gabor-filter in some particular orientation and frequency, and
then convolve this filter over the input image, and finally compute a his-
togram of the convolution response. Such marginal histograms from dif-
ferent filters concatenated into a vector form the spectral representation.
In Publication 1 we studied the information content of such a nonlinear
representation by ICA, with the underlying filters also learned by ICA and
not specified as Gabor filters. We demonstrated tentative evidence towards
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the ICA components of this nonlinear representation being able to capture
something of the gists of the scenes. The extent that the gist was captured
by the components was comparatively evaluated against a few other meth-
ods by näıve human subjects, and the results of the ICA-based method
were found to be preferable to e.g. PCA-based results. However, we never
succeeded in qualitatively describing what higher-level or holistic aspects
of the scene the learned ICA components represented.

In hindsight, we think that the information content of the spectral rep-
resentation as we used it may be relatively poor. The problem is that the
linear ICA on natural images practically learns the same filters in different
spatial locations. But when two slightly differently positioned filter masks
are convolved over larger images, and ignoring negligible border effects, the
marginal histograms are almost identical. Hence, unless the representation
is augmented suitably, for example by multiscale analysis (as in X. Liu and
Cheng (2003)), its capability to relate the global structure of the image
may be weak. However, at least for the ICA analysis of the representation,
we could not find clear benefits in resorting to the multiscale version of the
spectral representation. It is also prudent to admit that in Publication 1,
the images were not standardized or gain-controlled to bring them to some
uniform scale, and hence we speculate that some of the learned features
may be capturing some rather simple concepts from the images, such as
the amount of global illumination or the amount of contrast oriented to
some specific direction.

5.4 Online feature selection

The work of Publication 2 and that of Ullman et al. (2002); Schneiderman
and Kanade (2002); Leibe et al. (2008), and others, demonstrate that to
some degree of success, object recognition can be based on small image
fragments (local templates) given that they are informative regarding the
class of the object. In contrast to the traditional neural network models
(e.g. LeCun et al. (2004)), in the usual parts-based approaches these local
templates are not adjusted or tuned in any way. Instead, they are simply
used as they were found from the data, and the main learning process
concerns their selection. A design choice in Ullman et al. (2002) and in
Publication 2 is that these features are selected with a batch mechanism:
a large set of object and non-object images are expected to be available,
and the selection is done using information theoretic criterion regarding the
discriminability of the features. Although other feature selection methods
could be easily applied for parts-based modelling (see Dash and Liu (1997);
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Guyon and Elisseeff (2003) for reviews on feature selection), these selection
methods largely work in the batch setting, requiring all training data at
once.

For the research of Publication 3, we started from the simple ob-
servation that for humans, learning to recognize objects seems to be very
different to the framework of supervised learning: in natural conditions,
an object is perceived, someone perhaps tells us its category (but not nec-
essarily), and possibly we are later able to recognize the same object and
remember its name (if we were told it). We seem to be able to do this even
without going through a whole training set of objects and non-objects. We
hence asked if the features used for object recognition could be collected as
they are encountered, image by image, in an incremental or online manner.

Publication 3 answers this question affirmatively, and we propose a few
simple methods to perform this kind of online feature acquisition. An addi-
tional benefit of the proposed approach and the algorithms is that they are
by no means limited to vision, but could in principle be used and extended
for any selection problem. In particular, they could be used to select from
any sets of functions or mechanisms as they are encountered in the envi-
ronment. We suggest that this is a very natural approach. As an allegory,
consider that we have a pile of textbooks on elementary mathematics, and
we wish to solve the problem of long division efficiently. Do we develop
an algorithm from scratch, or would it be more effective to scan the book
pile, and acquire one? In Publication 3 the philosophy is that we might
as well acquire the algorithm, and we evaluated the idea in the context of
acquiring visual processing mechanisms from the environment. In terms of
our example, note that not only we proposed collecting the patches (“the
numbers to divide with”), we also proposed that the computation itself
(“how to perform long division”) could be acquired during the lifetime of
the system; possibly from a teacher or another system.

With a bit of reflection, it seemed that a setting as general as the one
we proposed in Publication 3 could not be novel. It soon turned out that
although such online selection approaches have not lately been in the lime-
light of vision or machine learning research, similar settings have definitely
been studied. In 1992, Poggio et al. presented a model for perceptual
learning (Poggio et al., 1992), where new nodes were added to a neural net-
work in the course of learning. Similar dynamically growing networks have
also been studied in the scope Adaptive Resonance Theory (ART) networks
(Carpenter & Grossberg, 2003). The selection of cases to the database in
Case-Based Reasoning (CBR) approach to image interpretation (Perner,
2001) is semantically similar to our approach. More lately, the online fea-
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ture selection problem has been studied as streamwise selection (Zhou et
al., 2006). Further, this problem setting is even better known in economics
as portfolio selection (Elton et al., 2002), and regards the maintenance of
a set of good stocks (features). In statistics, similar problems are investi-
gated under the subfield of sequential analysis (Lai, 2001). As adapting the
methods from statistics did not seem straightforward in our setting (and
we were not aware of e.g. Poggio et al. (1992); Perner (2001); Carpenter
and Grossberg (2003) at the time of Publication 3), it remains to be exam-
ined how the algorithms we proposed in Publication 3 compare to selection
algorithms proposed in these other research traditions. We leave this as
future work.

Finally, the methods we proposed in Publication 3 are intimately con-
nected to the assumption that the usefulness of the acquired features can be
evaluated, in our case against a training signal. Although we demonstrated
in Section 5.2 that more complex, inherently two-dimensional features can
be learned from visual data with unsupervised techniques, it would be
interesting to understand better the acquisition of such features in an un-
supervised setting so that they would end up corresponding to meaningful
object parts and not just angles and corners. We note that replicating such
acquisition may require different datasets than the commonly used one
from Hateren and Schaaf (1998), as that set can be argued not to contain
frequently recurring object shapes that would retain their shape across in-
stances (i.e. the typical objects in that set – such as trees and bushes – look
very different in a low-level sense from one instance to another). There is
some work towards the direction of learning medium-complexity features in
unsupervised manner, see (Edelman et al., 2002; Ranzato et al., 2007), and
in a slightly more supervised setting (Shams & von der Malsburg, 2002).
Carrying on from such approaches may turn out worthwhile.
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Chapter 6

Conclusion

In the scope of this thesis we worked in the setting of ecology-driven ap-
proach to modelling of vision. We presented new results by learning visual
processing from natural images using various objectives, while examining
the roles that some simple nonlinearities could play in the learning pro-
cess. Often the resulting models exhibited intuitively meaningful visual
processing, and the knowledge gained from these experiments may help us
understand the nature of the visual data and the problems of vision to a
greater extent.

It can be said that directly, our learned models did not turn out to
solve any of the grand challenges of vision. A’posteriori, this is somewhat
expected, as it is becoming increasingly clear that the ecology-driven ap-
proach is still in its infancy, and a significant amount of work remains to
be done. In particular, there is a large gap between the natural reality
and ecology as reduced to natural images and learning objectives. In the
bulk of today’s machine learning, the model and the learning algorithm
are passive viewers of the data (but see also Sutton and Barto (1998)), as
neither the learning algorithm nor the resulting processing mechanism can
move around in the world and sample its own training examples. In con-
trast, animals can utilize their motor systems to look at their surroundings
with much more freedom. The limitation to passive models is becoming
increasingly untenable, as knowledge regarding the interconnectedness of
different aspects of perception, embodiment and action in natural systems
grows (e.g. A. J. Bell (1999); Thelen et al. (2001); Wilson (2002)). It is
understandable that in the current learning settings with either too spe-
cific or too nonspecific objectives, the statistical methodology may lack all
incentive to emerge such interesting processing properties as figure/ground
segregation, depth perception, or understanding that objects may occlude
one another. Even less will the statistical approach spontaneously develop
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capability for passing such visual Turing tests as described in Chapter 1.

Our opinion is that it may be time to move on from the constraining
settings of supervised and unsupervised learning and incorporate even more
ecology into the ecology-driven approach. For us, this means acknowledging
the fact that pathological exceptions aside, each real-life visual apparatus
is a part of an embodied system that interacts with its environment and
has objectives molded by evolutionary pressure. That carrots should be
appreciated and whips avoided are not two absolute truths dictated in
some holy book of objectives, but indirect consequences following from the
necessities of carbon-based life. In other words, it is the entity and the
environment that together define the salient and the nonsalient, and what
should be transformed, represented, or ignored.

Accepting these facts does not necessarily lead to anything overly com-
plicated or intractable: we could start by modelling very simple visuomotor
learning systems such as that in the bee or the fruit fly, similarly as both
evolution and Brooks (1999) have found the simple mechanisms first. Es-
sentially in the limits of their capabilities, the embodied model systems
could explore the world and subsequently learn about its structure. This
would not be unlike how infants learn about the natural constraints and
properties of the world by manipulating objects and interacting with their
environment (Rochat, 1989). It should be emphasized that the proposed
approach is not at all whimsical, as tentative embodied visual learning ef-
forts are already underway in robotics (e.g. Krichmar and Edelman (2005);
Kassahun et al. (2007)). Further, it should be pointed out that making the
ecological approach more ecological does not require physical robotics, as
more and more realistic virtual environments are being developed, some of
them published as open source, and some likely to become standards. In
such modern environments, experiments could be carried out in simulation
with smaller risks of oversimplification than the blocks world experiments
in the seventies had (as described e.g. in Marr (1982); Palmer (1999)).

Regardless of how the current modelling frameworks are extended, sta-
tistical models, learning and inference appear to remain central method-
ological tools, as the uncertain and partially observable nature of the ex-
ternal world will remain. However, the idea of systems that interact with
the environment and each other seems to call for new, dynamic learning
paradigms and algorithms. The idea also forces us to consider how aspects
like motor control and location awareness are incorporated into the frame-
work of vision and learning. Nevertheless, facing this complexity seems
worthwhile, as embracing these more general settings of learning could even-
tually result in models of visual behaviour that can make distinctions based
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on such old Gestalt concepts as affordance. Perhaps one day some model
will recognize the odd-looking object for a chair because it affords to be
sat upon. When some model eventually makes that realization, we can say
that the models of recognition are no longer “mere template matchers” but
ones that realize Helmholtz’ classic proposal of perception as (un)conscious
inference (Helmholtz, 1867).
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00014 Helsingin yliopisto FIN-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Kumpula Science Library, P.O. Box 64, FIN-00014 University of
Helsinki, Finland.

A-2000-2 B. Heikkinen: Generalization of document structures and document assembly. 179
pp. (Ph.D. Thesis).

A-2000-3 P. Kähkipuro: Performance modeling framework for CORBA based distributed sys-
tems. 151+15 pp. (Ph.D. Thesis).

A-2000-4 K. Lemström: String matching techniques for music retrieval. 56+56 pp. (Ph.D.Thesis).

A-2000-5 T. Karvi: Partially defined Lotos specifications and their refinement relations. 157
pp. (Ph.D.Thesis).

A-2001-1 J. Rousu: Efficient range partitioning in classification learning. 68+74 pp. (Ph.D.
Thesis)

A-2001-2 M. Salmenkivi: Computational methods for intensity models. 145 pp. (Ph.D. Thesis)

A-2001-3 K. Fredriksson: Rotation invariant template matching. 138 pp. (Ph.D. Thesis)

A-2002-1 A.-P. Tuovinen: Object-oriented engineering of visual languages. 185 pp. (Ph.D.
Thesis)

A-2002-2 V. Ollikainen: Simulation techniques for disease gene localization in isolated popula-
tions. 149+5 pp. (Ph.D. Thesis)

A-2002-3 J. Vilo: Discovery from biosequences. 149 pp. (Ph.D. Thesis)

A-2003-1 J. Lindström: Optimistic concurrency control methods for real-time database systems.
111 pp. (Ph.D. Thesis)

A-2003-2 H. Helin: Supporting nomadic agent-based applications in the FIPA agent architec-
ture. 200+17 pp. (Ph.D. Thesis)

A-2003-3 S. Campadello: Middleware infrastructure for distributed mobile applications. 164
pp. (Ph.D. Thesis)

A-2003-4 J. Taina: Design and analysis of a distributed database architecture for IN/GSM data.
130 pp. (Ph.D. Thesis)

A-2003-5 J. Kurhila: Considering individual differences in computer-supported special and ele-
mentary education. 135 pp. (Ph.D. Thesis)
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