Learning Nonstationary Models of Normal Network Traffic
for Detecting Novel Attacks

Matthew V. Mahoney and Philip K. Chan
Department of Computer Sciences
Florida Institute of Technology
Melbourne, FL 32901

{mmahoney,pkc}@cs.fit.edu

ABSTRACT

detedion at ead level. We distinguish between a network 1DS,

Traditonal intrusion detection systems (IDS) detect attacks by which monitors traffic to and from the host, and a host based IDS,

comparing current behavior to signatures of known attadks. One
main drawbadk is the inability of deteding new attads which do
not have known signatures. In this paper we propose aleaning
algorithm that constructs models of normal behavior from attad-
free network traffic. Behavior that deviates from the leaned
norma model signals possble novel attadks. Our IDSisuniquein
two respeds. Firdt, it is norstationary, modeling probabiliti es
based onthe time sincethe last event rather than on average rate.
This prevents adarm floods. Sewnd the IDS leans protocol
vocabularies (at the data link through application layers) in order
to deted unknown attadks that attempt to exploit implementation
errors in poaly tested feaures of the target software. On the
1999 DARPA IDS evauation ceta set [9], we detea 70 o 180
attacks (with 100false darms), about evenly divided between user
behavioral anomalies (IP addresses and pats, as modeled by most
other systems) and protocol anomalies. Because our methods are
unconventional, there is a significant non-overlap of our IDS with
the origind DARPA participants, which implies that they could
be combined to increase coverage.

1. INTRODUCTION

One important face of computer seaurity is intrusion
detedion - simply knowing whether a system has been
compromised, or if an attadk has been attempted. There ae two
general approaches to this problem: signaure detedion, where we
look for patterns sgnaling well known attacks, and anamaly
detedion, where we look for deviations from normal behavior to
signal possbly novel attacks. Signature detecion works well, but
has the obvious disadvantage that it will not deted new attads.
Anomaly detedion hes the disadvantage that it cannat discern
intent. It can orly signal that something is unuwsual, but not
necessarily hostile, thus generating false alarms.

A complete intrusion detedion system (IDS) might monitor
network traffic, server and operating system events, and file
system integrity, using both signature detection and anomaly

Permission to make digital or hard copies of all or part of this work for

which monitors the state of the host. These systems differ in the
types of attadks they can deted. A network IDS deteds probes
(such as port scans), denia of service (DOS) attadks (such as
server floods), and remote-to-locd (R2L) attacks in which an
attacker withou user level access gains the dility to exeate
commands locdly. A host based system can deted R2L and user-
to-root (U2R) attacks, where an attadker with user level access
gains the privileges of another user (usualy roat). A haost based
system must reside on the system it monitors, while a network
IDS can be physicdly separated and monitor multiple hosts on a
locd network. Also, becaise anetwork IDS monitors inpu (and

output) rather than state, it can detect failed attacks (e.g. probes).

In this paper, we focus on network anomaly detedion, which
is esentiadly the madine leaning problem of modeling normal
network traffic from a training set. However, the aromaly
detedion task differs from the dasdcd clasdficdion task in
machine leaning since only one dassexists in the training data.
That is, in anomaly detedion we try to lean the charaderistics of
one dass and determines if an urseen instance belongs to the
same class.

Most network anomaly systems such as ADAM [3], NIDES
[1], and SPADE [18] monitor IP addresses, ports, and TCP state.
This caches user misbehavior, such as attempting to access a
passvord proteded service (becaise the source aldress is
unuwsual) or probing a norexistent service (becaise the destination
address and pat are unwsual). However, this misses attadks on
pubic servers or the TCP/IP stadk that might otherwise be
deteded becaise of anomalies in other parts of the protocol.
Often these anomalies occur becaise of software arors in the
attadking or victim program, becaise of anomalous output after a
succesdul attadk, or because of misguided attempts to elude the
IDS. Our IDS has two norstationary comporents developed and
tested on the 1999 DARPA IDS evaluation test set [9], which
simulates a locd network under attadk. The first comporent is a
paket header anomaly detedor (PHAD) which monitors the
entire data link, network, and transport layer, withou any
precmnceptions about which fields might be useful. The second
comporent is an applicaion layer anomay detedor (ALAD)

personal or classroom use is granted without fee provided that copies are which combines a traditional user modd based on TCP

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SIGKDD ’'02, July 23-26, 2002, Edmonton, Alberta, Canada.
Copyright 2002 ACM 1-58113-567-X/02/0007...$5.00.

conredions with a model of text-based protocols such as HTTP,
FTP, and SMTP. Both systems lean which attributes are useful
for anomaly detedion, and then use anorstationary mode, in
which events receve higher scores if no novel values have been
seen for along time. We evaluate its performance on the DARPA
IDS evaluation cbta set and investigate the cntribution d user
vs. software anomalies toward detection.

The rest of this paper is organized as follows. In Section 2,
we discuss related work in network anomaly detection. In 3, we
describe nonstationary modeling in genera, and then PHAD and
ALAD. In 4, we describe the DARPA IDS evauation data set. In
5, we test our IDS and describe the five types of anomalies found.
In 6 we describe our implementation and its run time
performance. In 7, we conclude and describe future work.

2. RELATED WORK

Early work in anomaly detection was host based. Forrest et.
al. [5] demonstrated that when software errorsin UNIX servers or
operating system services (suid root programs) are exploited in an
R2L or U2R attack, that they deviate from the normal pattern of
system calls. When compromised, these programs execute code
on the behalf of the attacker (usually a shell), rather than the code
intended by the developer (such as a DNS name server or print
queue manager). Forrest detected these attacks by training an n-
gram model (n = 3 to 6) as the system ran normally. More recent
work has focused on better models, such as state machines [17],
or neural networks [6]. Solaris makes system call information
available through its basic security module (BSM) service for this
purpose.

Network intrusion detection istypically rule based. Itisfairly
straightforward to write a rule in SNORT [15] or BRO [12] for
example, to reject any packet addressed to a nonexistent host or
service, or to write rules restricting services to a range of trusted
addresses. However, it is a little more challenging to relieve the
network administrator of the task of keeping the rules updated by
monitoring the traffic to determine normal usage patterns.
However, systems such as ADAM [3], NIDES [1], and SPADE
[18] do this. ADAM (Audit Data and Mining) is a combination
anomaly detector and classifier trained on both attack-free traffic
and traffic with labeled attacks. It monitors port numbers, IP
addresses and subnets, and TCP state. The system learns rules
such as "if the first 3 bytes of the source IP address is X, then the
destination port is Y with probability p". It aso aggregates
packets over a time window. ADAM uses a naive Bayes
classifier, which means that if a packet belongs to some class
(normal, known attack, or unknown attack), then the probabilities
for each condition (such as IP address = X and port = V) are
assumed to be independent. ADAM has separate training modes
and detection modes.

NIDES [1], like ADAM, monitors ports and addresses.
Instead of using explicit training data, it builds a model of long
term behavior over a period of hours or days, which is assumed to
contain few or no attacks. If short term behavior (seconds, or a
single packets) differs significantly, then an aarm is raised.
NIDES does not model known attacks; instead it is used as a
component of EMERALD [11], which includes host and network
based signature detection for known attacks.

SPADE [18] is a SNORT plug-in that detects anomalies in
network traffic. Like NIDES and ADAM, it is based on port
numbers and IP addresses. SPADE estimates probabilities by
counting incoming server requests (TCP SYN packets) in a way
that favors newer data over old, and assigns high anomaly scores
to low probability events. It uses several user selectable statistical
models, including a Bayes classifier, and no explicit training
period. It is supplemented by SNORT rules that use signature
detection for known attacks. SNORT rules are more powerful, in
that they can test any part of the packet including string matching
in the application payload. To alow examination of the

application layer, SNORT includes plug-ins that reassemble IP
fragments and TCP streams.

ADAM, NIDES, and SPADE only model source and
destination addresses and ports and TCP connection state, which
catches many attempts to access restricted or nonexistent services.
However, there are two reasons that we should monitor the other
attributes of the TCP/IP protocols. Firgt, there are many probes
and DOS attacks that work by sending maformed or unusua
packets to the victim, for example queso, teardrop, and land [8].
Queso is a fingerprinting probe that determines the operating
system using characteristic responses to unusual packets, such as
packets with the TCP reserved flags set. Teardrop crashes stacks
that cannot cope with overlapping IP fragments. Land crashes
stacks that cannot cope with a spoofed |P source address equal to
the destination. Attacks are necessarily different from normal
traffic because they exploit bugs, and bugs are most likely to be
found in the parts of the software that were tested the least during
norma use. A dtrict anomaly model would catch many of
these attacks [16], but currently all anomaly models that monitor
these attributes are hard coded rather than learned.

Second, an attacker may deliberately use malformed or
unusua packets to hide attacks from an IDS application layer.
Techniques include the deliberate use of bad checksums, unusual
TCP flags or IP options, invalid sequence numbers, spoofed
addresses, duplicate TCP packets with differing payloads, packets
with short TTL values that expire between the target and IDS, and
so on [14]. These techniques exploit bugs in the IDS or
incomplete implementation of the protocols. Unfortunately, this
is a common problem. For example, Handley et. al. [7] studied
four commercia intrusion detection systems and found that none
of them reassembled fragmented IP packets, a legal but rarely
used feature of the IP protocol.

3. LEARNING NONSTATIONARY
MODELS

The goal of intrusion detection is, for any given event x, to
assign odds that x is hostile, e.g.,

odds (x_is_hostile) = P(attack|x) / P(no_attack|x)
By Bayes law, we can write:

P(attack|x) = P(x|attack)P(attack) / P(x)
P(no_attack|x) = P(x|no_attack)P(no_attack) / P(x)

By dividing these equations, and letting odds(attack) = P(attack) /
P(no_attack), we have:

odds(x_is_hostile) = odds(attack)P(x|attack) / P(x | no_attack)

We have factored the intrusion detection problem into three terms:
odds(attack), the background rate of attacks, P(xattack), a
signature detection model, and 1 / P(x|no_attack), an anomay
detection model. In this paper, we address only the anomaly
detection component, 1 / P(x|no_attack). Thus, we model attack-
free data, and assign (like SPADE) anomaly scores inversely
proportional to the probability of an event based on this training.
Anomaly detection models like ADAM, NIDES, and SPADE
are stationary, in that P(x) depends on the average rate of x in
training and is independent of time. For example, the probability
of observing some particular IP address is estimated by counting

the number of observations in training and dividing by the total
number of observations. However, this may be incorrect. Paxson
and Floyd [13] showed that many types of network processes,
such as the rate of a particular type of packet, have self-similar or
fractal behavior. This is a nonstationary model, one in which no
sample, no matter how short or long, can predict the rate of events
for any other sample. Instead, they found that events tend to
occur in bursts separated by long gaps on al time scales, from
milliseconds to months. We believe this behavior is due to
changes of state in the system, such as programs being started,
users logging in, software and hardware upgrades, and so on.

We can adapt to state changes by exponentially decaying the
training counts to favor recent events, and many models do just
that. One problem with this approach is that we have to choose
either a decay rate (haf life) or a maximum count in an ad-hoc
manner. We avoid this problem by taking training decay to the
extreme, and discarding all events (an attribute having some
particular value) before the most recent occurrence. In our model,
the best predictor of an event is the time since it last occurred. |If
an event x last occurred t seconds ago, then the probability that x
will occur again within one second is 1/t. We do not care about
any events prior to the most recent occurrence of x.

In an anomaly detection system, we are most interested in
those events that have the lowest probability. As a simplification,
we assign anomaly scores only to those events that have never
occurred in training, because these are certainly the least likely.
We use the PPMC model of novel events, which is aso used in
data compression [2]. This model states that if an experiment is
performed n times and r different outcomes are observed, then the
probability that the next outcome will not be one of theser values
is approximately r/n. Stated another way, the fraction of events
that were novel in training is r/n, and we expect that rate to
continue. This probably overestimates the probability that the
next outcome will be novel, since most of the novel events
probably occurred early during training. Nevertheless, we useit.

Because we have separate training data (without attacks) and
test data (with attacks), we cannot simply assign an anomaly score
of 1/P(x) = n/r. If we did, then a subsequent occurrence of x
would receive the same score, even though we know (by our
nonstationary argument) that a second occurrence is very likely
now. We aso cannot add it to our model, because the data is no
longer attack-free. Instead, we record the time of the event, and
assign subsequent occurrences a score of t/P(x) = tn/r, where t is
the time since the previous anomaly. On the first occurrence of x,
t is the time since the last novel observation in training.

An IDS monitors a large number of attributes of a message,
each of which can have many possible outcomes. For each
attribute with a value never observed in training, an anomaly
score of tn/r is computed, and the sum of these is then assigned to
the message. If this sum exceeds a threshold, then an aarm is
signaled.

anomaly score = Z; tiny/r;, where attribute i is novel in training

In the next two sections, we describe two models, PHAD and
ALAD. In PHAD (packet header anomaly detection), the message
is a single network packet, and the attributes are the fields of the
packet header. In ALAD (application layer anomaly detection),
the message is an incoming server TCP connection. The
attributes are the application protocol keywords, opening and
closing TCP flags, source address, and destination address and

port number. Our IDS consists of both components running at the
sametime.

3.1. Packet Header Anomaly Detection

(PHAD)

PHAD monitors 33 fields from the Ethernet, |P, and transport
layer (TCP, UDP, or ICMP) packet header. Each field is one to
four bytes, divided as nearly as possible on byte boundaries as
specified by the RFCs (request for comments) that specify the
protocols, athough we had to combine fields smaller than 8 bits
(such asthe TCP flags) or split fields longer than 32 bits (such as
the Ethernet addresses).

The value of each field is an integer. Depending on the size
of the field, the value could range from 0 to 2%2 - 1. Becauseit is
impractical to represent every observed value from such a large
range, and because we wish to generalize over continuous values,
we represent the set of observed values with a set of contiguous
ranges or clusters. Each new observed value forms a cluster by
itself. If the number of clusters exceeds a limit, C, then we merge
the two closest ones into a single cluster. For example, if C=3
and we have { 3-5, 8, 10-15, 20}, then we merge the two closest to
form {3-5, 8-15, 20}. For the purposes of anomaly detection, the
number of novel values, r, is the number of times the set of
clustersis updated.

Table 1. The PHAD model after training on "inside" week 3 of the
DARPA DS data set [9].

Attribute r/n Al | oned Val ues

Et hernet Size 508/ 12814738 42 60-1181 1182...
Et her Dest Hi 9/ 12814738 x0000C0 x00105A. ..
Et her Dest Lo 12/ 12814738 x000009 x09B949. ..
Et her Src Hi 6/ 12814738 Xx0000C0 x00105A. ..

Ether Src Lo
Et her Protocol

9/ 12814738
4/ 12814738

x09B949 x13E981. ..
x0136 x0800 x0806. . .

| P Header Len 1/ 12715589 x45

IP TGOS 4/ 12715589 x00 x08 x10 xCO

I P Length 527/ 12715589 38- 1500

IP Frag ID 4117/ 12715589 0- 65461 65462. . .

IP Frag Ptr 2/ 12715589 x0000 x4000

IP TTL 10/ 12715589 2 32 60 62-64
127-128 254- 255

I P Protocol 3/ 12715589 16 17

| P Checksum 1/ 12715589 xFFFF

| P Source Addr 293/12715589 12.2.169.104...

| P Dest Addr 287/ 12715589 0.67.97.110...

TCP Source Port 3546/10617293 20-135 139 515...

TCP Dest Port 3545/ 10617293 20-135 139 515...

TCP Seq Num 5455/ 10617293 0-395954185. ..
TCP Ack Num 4235/ 10617293 0- 395954185. . .
TCP Header Len 2/10617293 x50 x60

TCP Fl ags 9/ 10617293 x02 x04 x10...

TCP W ndow Si ze 1016/ 10617293 0-5374 5406-10028. ..
TCP Checksum 1/10617293 xFFFF

TCP URG Pt r 2/ 10617293 01

TCP Options 2/ 611126 x02040218 x020405B4
UCP Source Port 6052/2091127 53 123 137-138...
UDP Dest Port 6050/ 2091127 53 123 137-138...

UDP Length 128/ 2091127 25 27 29...
UDP Checksum 2/2091127 x0000 xFFFF
| CVP Type 3/ 7169 038
| CMP Code 3/ 7169 013
| CVP Checksum 1/7169 xFFFF

Table 1 shows the result of training PHAD with C = 32 on
"inside" week 3 (7 days of attack free network traffic) from the
DARPA IDS data set [9]. It shows the name of each attribute

(field in the packet header), the observed values of nand r, and a
partia list of the observed values or clusters. For example, the
first line says that out of 12,814,738 packets with an Ethernet size
field (al of them in this case), there were 508 cases where the list
of clusters had to be updated. Three of these clusters are 42, 60-
1181, and 1182. The last two could have been merged, but were
not because C was never exceeded. The maximum value of this
field isactually 1514,

For most fields, we do not care what they are for, beyond their
role in parsing the packet header. We made an exception for the
checksum fields by computing them and substituting their
computed values. Although our god is to have the IDS learn as
much of the protocol as possible on its own, we felt it was
unreasonable for a machine learning program to learn the
checksum agorithm. A value of xFFFF isa correct checksum.

There is a wide range of C for which PHAD gives good
results. We found in [10] that using C = 32 detects dightly more
attacks than using either C = 1000, or using a hash function (with
range 1000) and a bitmap. These all work about the same because
the fields which generate the highest anomaly scores are those
with small r (r < 32), in which case the models are equivalent
(except for hash collisions, which are rare for small r).

3.2. Application Layer Anomaly Detection
(ALAD)

The second component of our anomaly detection model is the
application layer anomaly detector (ALAD). Instead of assigning
anomaly scores to each packet, it assigns a score to an incoming
server TCP connection. TCP connections are reassembled from
packets. ALAD, unlike PHAD, is configured knowing the range
of IP addresses it is supposed to protect, and it distinguishes
server ports (0-1023) from client ports (1024-65535). We do this
because most attacks are initiated by the attacker (rather than by
waiting for avictim), and are therefore against servers rather than
clients.

We tested a large number of attributes and their combinations
that we believed might make good models, and settled on five that
gave the best performance individualy (high detection rate at a
fixed false alarm rate) on the DARPA |IDS evauation data set [9].
These are:

1. P(src IP | dest IP), where src IP is the external source
address of the client making the request, and dest IP is the
loca host address. This differs from PHAD in that the
probability is conditional (a separate model for each local
dest IP), only for TCP, and only for server connections
(destination port < 1024). In training, this model learns the
normal set of clients or users for each host. In effect, this
models the set of clients allowed on arestricted service.

2. P(srclIP|dest IP, dest port). This mode is like (1) except
that there is a separate model for each server on each host. It
learns the normal set of clients for each server, which may be
differ across the servers on asingle host.

3. P(dest IP, dest port). This model learns the set of local
servers which normally receive requests. It should catch
probes that attempt to access nonexistent hosts or services.

4. P(TCP flags | dest port). This model learns the set of
normal TCP flag sequences for the first, next to last, and last
packet of a connection. A normal sequence is SYN (request
to open), FIN-ACK (request to close and acknowledge the
previous packet), and ACK (acknowledge the FIN). The
model generalizes across hosts, but is separate for each port

number, because the port number usually indicates the type
of service (mail, web, FTP, telnet, etc.). An anomaly can
result if a connection fails or is opened or closed abnormally,
possibly indicating an abuse of a service.

5. P(keyword | dest port). This model examines the text in the
incoming request from the reassembled TCP stream to learn
the dlowable set of keywords for each application layer
protocol. A keyword is defined as the first word on a line of
input, i.e. the text between a linefeed and the following
space. ALAD examines only the first 1000 bytes, which is
sufficient for most requests. It also examines only the header
part (ending with a blank line) of SMTP (mail) and HTTP
(web) requests, because the header is more rigidly structured
and easier to model than the body (text of email messages or
form uploads). An anomaly indicates the use of ararely used
feature of the protocol, which is common in many R2L
attacks.

Aswith PHAD, the anomaly scoreistn/r, wherer different values

were observed out of n training samples, and it has been t seconds

since the last anomaly was observed. An anomaly occurs only if
the value has never been observed in training. For example, Table

2 shows the keyword model for ports 80, 25, and 21, which are

the three ports with the highest n/r values.

Table 2. ALAD models for P(keyword | dest port) for ports 80,
25, and 21 after training on "inside" week 3 of the DARPA IDS
evaluation data set [9].

Al | owed Val ues
Accept - Char set :
Accept - Encodi ng:
Accept - Language:
Accept :

Cache- Control :
Connecti on:

CET

Attribute r/n
80 (HTTP) 13/ 83650

Host :

| f - Modi fi ed- Si nce:
Negoti at e:

Pr agna:

Referer:
User - Agent :

(34 values...)

(11 values...)

34/ 142610
11/ 16822

25 (SMTP)
21 (FTP)

The first line of Table 2 says that out of 83,650 TCP
connections to port 80, that only 13 different keywords were
observed. These keywords are listed in the third column.

The total score assigned to a TCP connection is the sum of the
tn/r scores assigned by each of the five components. The keyword
model might contribute more than one score because there could
be more than one novel keyword.

4. THE 1999 DARPA IDSDATA SET

In 1998 and 1999, DARPA sponsored a project at Lincoln
Labs to evaluate intrusion detection systems [9]. They set up a
simulated local area network with a variety of different hosts and
a simulated Internet connection and attacked it with a variety of
published exploits. For each of the two tests, a number of
intrusion detection systems were evaluated on their ability to
detect these attacks given the network traffic, daily file system
dumps, audit logs, and BSM (Solaris system call) logs. Each
evaluation had two phases. During the first phase, participants
were given data to develop their systems that included both attack

free periods and labeled attacks (time, victim IP address, and
description of the attack). During the second phase, about six
months later, the participants were given new data sets with
unlabeled attacks, some of them new, and were rated by the
number of detections as a function of false alarm rate. After the
evaluation, the data sets and results were made available to other
researchers in intrusion detection.

The 1999 evauation includes four rea "victim" machines,
running unpatched Sun Solaris 2.5.1, SunOS 4.1.4, Linux 2.0.27,
and Windows NT 4.0, connected to a simulated loca area
network and Internet through a real Cisco router over Ethernet.
The IDS dataincludes audit logs and daily dumps of the operating
system files on each victim machine, Solaris BSM (system call)
logs, and two network traffic sniffer logs, one "inside" between
the router and victims, and the other "outside" between the router
and the Internet. The first phase consisted of 3 weeks of data.
Weeks 1 and 3 contained no attacks, and were made available for
training anomaly detection systems. Week 2 contained labeled
attack data for testing. The second phase consisted of ten days
(weeks 4 and 5) containing 201 instances of 58 different attacks,
about haf of which were novel with respect to the first phase.
Attacks were taken mostly from published sources such as
security mailing lists and cracker-oriented web sites. A few were
developed in-house for known vulnerabilities for which exploit
code was not available.

Eight organizations submitted 18 intrusion detection systems
for evaluation. An attack is counted as detected if the IDS
correctly identifies the |P address of the victim or attacker and the
time of any portion of the attack interval within 60 seconds. The
IDS was aso required to assign a score to each alarm so that the
number of attacks and false alarms could be varied by discarding
alarms below athreshold. Duplicate detections of the same attack
are counted only once, but every false dlarm is counted. The top
results reported by [9, Table 6] at afalse darm rate of 10 per day
(100 total) are shown in Table 3.

Table 3. Top results of the 1999 DARPA IDS evauation at 10
false alarms per day [9, Table 6].

System Detections
Expert 1 85/169 (50%)
Expert 2 81/173 (47%)
Dmine 41/102 (40%)
Forensics 15/27 (55%)

The systems were evaluated on the percentage of attacks
detected out of those they were designed to detect. None were
designed to detect al attacks. Some only examined a subset of
the data (e.g. network traffic or file system dumps), or a subset of
the victims (e.g. only Solaris BSM data or NT audit logs). Some
were designed to detect only certain types of attacks (probes,
DOS, R2L, or U2R). Some used only signature detection, and
were therefore not designed to detect attacks not present in the
training data during week 2, athough the top systems used a
combination of signature and anomaly detection.

Lippman reports that 77 of the 201 attack instances were
poorly detected, in that no system detected more than half of the
instances of that type [9, Table 4]. If we take the best results for
each of the 21 attack types, then only 15 instances (19%) were
detected.

To reduce the complexity of our experiments, we examined
only the "inside" network traffic logs. This detects attacks from
internally compromised hosts, but misses external attacks on the
router. We trained the system on 7 days of attack free traffic from
week 3, which consists of 2.9 GB of tcpdump files. We tested on
9 days of traffic during weeks 4 and 5, about 6.0 GB of data. One
day of inside traffic is missing (week 4, day 2), leaving 189
attacks, although 9 of them (selfping, snmpget, and ntfsdos)
generate no evidence in the data we used. This leaves 180
detectable attacks, of which 67 were poorly detected. We did not
make use of the labeled attack data from week 2.

5. EXPERIMENTAL RESULTS

We evaluated PHAD and ALAD by running them at the same
time on the DARPA IDS evauation data set and merging the
results. Each system was trained on week 3 (7 days, attack free)
and evaluated on the 180 detectable labeled attacks from weeks 4
and 5. To merge the results, we set the two thresholds so that
equa numbers of alarms were taken from both systems, and so
that there were 100 total false alarms (10 per day including the
missing day) after removing duplicate aarms. An aarm is
considered a duplicate if it identifies the same IP address and the
same attack time within 60 seconds of a higher ranked alarm from
either system. We chose 60 seconds because DARPA criteria
allows a detection to be counted if the time is correctly identified
within 60 seconds of any portion of the attack period. Also, to be
consistent with DARPA, we count an attack as detected if it
identifies any |P address involved in the attack (either target or
attacker). Multiple detections of the same attack (that remain after
removing duplicates) are counted only once, but all false aarms
are counted.

In Table 4 we show the results of this evauation. In the
column labeled det we list the number of attacks detected out of
the number of detectable instances, which does not include
missing data (week 4, day 2) or the three attack types (ntfsdos,
selfping, snmpget) that generate no inside traffic. Thus, only 180
of the 201 attack instances are listed.

In the last column of Table 4, we describe the PHAD and
ALAD anomalies that led to the detection, prior to removing
duplicate darms. For PHAD, the anomaly is the packet header
field that contributed most to the overal score. For ALAD, each
of the anomalous components (up to 5) are listed. Based on these
descriptions, we adjusted the number of detections (column det)
to remove simulation artifacts and coincidental detections, and to
add detections by Ethernet address rather than IP address, which
would not otherwise be counted by DARPA rules. The latter case
occurs for arppoison, in which PHAD detects anomal ous Ethernet
addresses in non-1P packets. Arppoison disrupts network traffic
by sending spoofed responses to ARP-who-has requests from a
compromised local host so that IP addresses are not correctly
resolved to Ethernet addresses.

The two coincidences are mscan (an anomalous Ethernet
address, overlapping an arppoison attack), and illegalsniffer (a
TCP checksum error). Illegalsniffer is a probe by a compromised
loca host being used to sniff traffic, and is detectable only in the
simulation because it makes reverse DNS lookups to resolve
sniffed IP addresses to host names. Because the attack is
prolonged, and because al of the local hosts are victims,
coincidences are likely.

Table 4. Attacks in the 1999 DARPA IDS data set [9], and the number detected (det) out of the total number in the available data.
Detections are for merged PHAD and ALAD at 100 total false alarms, after removing coincidences and simulation artifacts (TTL field) and
adding detections by Ethernet address (arppoison). Attacks listed do not include the 12 attacks in week 4 day 2 (missing data) or 9 attacks
that leave no evidence in the inside network traffic (selfping, snmpget, and ntfsdos). Hard to detect attacks (identified by *) are those types
which were detected no more than half of the time by any of the 18 original participants[9, Table 4]. Attack descriptions are dueto [8].

Type Attack and description (* = hard to detect) Det How detected

Probe illegalsniffer - compromised local host sniffs traffic 0/2 (1 coincidental TCP checksum error)

Probe ipsweep (clear) - ping random | P addresses 14 1 Ethernet packet size =52, (1 TTL = 253)

Probe *ipsweep (stealthy - slow scan) 0/3 (2TTL = 253)

Probe *Is- DNS zonetransfer 0/2

Probe mscan - test multiple vulnerabilities U1 1 dest IP/port, flags (1 coincidental Ethernet dest)
Probe ntinfoscan - test multiple NT vulnerabilities 2/3 2HTTP"HEAD", 1 FTP"quit", 1 "user", TCPRST, (2 TTL)
Probe portsweep (clear) - test multiple ports 4 1 FIN without ACK, (1 TTL)

Probe *portsweep (stealthy - slow scan) 2/11 2 FIN without ACK, (5TTL)

Probe *queso - malformed packets fingerprint OS 3/4 2 FIN without ACK (1 TTL)

Probe *resetscan - probe with RST to hide from IDS 0/1

Probe satan - test multiple vulnerabilities 2/2 2HTTP/ L SMTP"QUIT", finger /W, IP length, src IP, (TTL)
DOS apache2 - crash web server with long request 3/3 3 source P, 1 HTTP "x" and flags, TCP optionsin reply
DOS *arppoison - spoofed replies to ARP-who-has 3/5 3 Ethernet src/dest address (non-1P packet)

DOS back - crash web server with "GET ////]..." 0/4

DOS crashiis - crash NT webserver 5/7 4 source | P address, 1 unclosed TCP connection
DOS *dosnuke - URG datato NetBIOS crashes Windows 4/4 3 URG pointer, 4 flags= UAPF

DOS land - identical src/dest addr/ports crashes SunOS 0/1

DOS mailbomb - flood SMTP mail server 3/3 3 SMTP lowercase "mail" (1 TTL = 253)

DOS neptune - SYN flood crashes TCP/IP stack 0/4 (2TTL = 253)

DOS pod (ping of death) - oversize | P pkt crashes TCP/IP 4/4 4 1P fragment pointer

DOS processtable - server flood exhausts UNIX processes 13 1 source |P address

DOS smurf - reply flood to forged ping to broadcast address 15 1 source IP address (2 TTL)

DOS syslogd - crash server with forged unresolvable P 0/4

DOS *tcpreset - local spoofed RST closes connections 13 1 TCP connection not opened or closed

DOS teardrop - | P fragments with gaps crashes TCP/IP stack 3/3 3frag ptr

DOS udpstorm - echo/chargen loop flood 2/2 2 UDP checksum error

DOS *warezclient - download illegal filesby FTP 13 1 source IP address

DOS warezmaster - upload illegal filesby FTP 1 1 source |P address

R2L dict (quess telnet/ftp/pop) - dictionary password guessing 3/7 2FTP"user", 1 dest IP/port (POP3), 1 src IP

R2L framespoofer - trojan web page 0/1

R2L ftpwrite - upload "+ +" to .rhosts 0/2

R2L guest - simple password guessing 0/3

R2L httptunnel - backdoor disguised as web traffic 0/2

R2L imap - mailbox server buffer overflow 0/2

R2L named - DNS nameserver buffer overflow 0/3

R2L *ncftp - FTP server buffer overflow 4/5 4 dest IP/port, 1 SMTP "RSET", 3 auth "xxxx,25"
R2L *netbus - backdoor disguised as SMTP mail traffic 2/3 2 source IP address, (3TTL)

R2L *netcat - backdoor disguised as DNS traffic 2/4 1lsrc/dest IP, (1 TTL)

R2L phf - exploit bad Apache CGI script 2/3 2 source |P, 1 null bytein HTTP header

R2L ppmacro - trojan PowerPoint macro in web page 13 1sourcelP (and TTL)

R2L sendmail - SMTP mail server buffer overflow 2/2 2 source |P address, 2 global dest IP, 1 "Sender:"
R2L *sshtrojan - fake ssh client steals password 13 1 source |P address

R2L xlock - fake screensaver steals password 0/3

R2L xsnoop - keystrokes intercepted on open X server 0/3

U2R anypw - NT bug exploit 0/1

U2R casesen - NT bug exploit 2/3 2 FTP upload (dest IP/port 20, flags, FTP "PWD"), (1 TTL)
U2R gect - UNIX suid root buffer overflow 12 1 FTP upload (src IP, flags)

U2R fdformat - UNIX suid root buffer overflow 2/3 2 FTP upload (src IP, flags, FTP"STOR")

U2R ffbconfig - UNIX suid root buffer overflow 12 1 SMTP source | P address (email upload)

U2R *|oadmodule - UNIX trojan shared library 0/2

U2R *perl - UNIX bug exploit 0/4

U2R ps- UNIX bug exploit 0/3

U2R *sechole - NT bug exploit 12 1 FTP upload (dest IP/port, flags, FTP "STOR"), (1 TTL)
U2R *sglattack - database app bug, escape to user shell 0/2

U2R xterm - UNIX suid root buffer overflow 13 1 FTP upload (source IP, dest |P/port)

U2R yaga- NT bug exploit 14 1 FTP upload (src IP, FTP lowercase "user")
Data secret - copy secret files or access unencrypted 0/4

Total 70/180 (39%) ; and 23/65 (35%) of hard to detect attacks

There ae 25 attadks deteded by anomalous TTL vaues in
PHAD, which we believe to be simulation artifads. TTL (timeto
live) is an 8hit courter deaemented eat time an IP padket is
routed in order to expire padets to avoid infinite routing loogs.
Although small TTL values might be used to elude an IDS by
expiring the padet between the IDS and the target [14], this was
not the cae becaise the observed values were large, usually 126
or 253 Such artifads are unfortunate, but probably inevitable,
given the difficulty of simulating the Internet [4]. A likely
explanation for these atifadsis that the machine used to simulate
the dtads was a different red distance from the inside sniffer
than the machines used to simulate the badkground traffic. We
did not count attacks detected solely by TTL.

After adjusting the number of detedions in the det column,
we detedt 70 d 180(3%%) of attadks at 100false darms. Among
the poaly deteded attacks [9, Table 4], we detedt 23 o 77 (30%),
or 23 d 65 (35%) of the 180 dtedable atadks in ou data set,
amost the same rate & for the well deteded attadks. Thisis a
good result becaise an anomaly detedion system such as ours
would na be used by itself, but rather in combination with ather
systems guch as those in the origina evaluation that use signature
detedion a host based techniques. In order for the combination
to be dfedive, there must be asignificant non-overlap, and ou
results $ow that. We shoud aso pant out that when we
developed PHAD and ALAD, we did so with the goal of
improving the overal number of detedions rather than just the
poorly detected attacks.

5.1. Classification of Anomalies

It is interesting to compare the description o ead attad in
Table 4 with the anomaly that led to its detedion. In many cases,
the two seem unrelated, or at the very least, the anomaly could
plausibly occur in benign traffic. For example, there ae severa
buffer overflow attads that exploit poaly written programs that
use C functions such as gets() or strcpy() to write into a buffer
(fixed sized array of charaders) withou cheding the length of the
inpu. An attad will typicaly contain along string that overflows
the buffer and overwrites the return address on the stad of the
target machine. When the exeauting function returns, it instead
jumps to an address sippied by the atader, typicdly a string of
machine ade suppied as part of the same atadking string. The
code is exeauted with the privilege level of the target (often root),
usually to open a shell or plant a backdoor.

We might expea a buffer overflow attadk to generate
anomaliesin the form of long strings of exeautable ade where we
would namally exped to find short strings of text. However, we
do nd have the gpropriate atributes to deted this type of
anomaly. Usudly it is something else that makes the dtad stand
out. For example, ncftp and sendmail are caight becaise they use
perfedly legal, but seldom used keywords, or the keyword is
lower case when most clients use upper case. Many of the U2R
attadks (which a network IDS would namally misg are deteced
because the dtader uploads the exploit program using an FTP
server that is normally used only for downloads. Other attadks are
deteded because the source | P addressis new to the host or server
under attack.

Even when the anomaly is related to the atad, it usualy does
not tell us much abou it. For example, portsweep and queso are
deteded by identicd anomalies, a TCP FIN padket (request to
close @nredion) withou an acmompanying ACK flag set.

Normally ACK would be set in every padket except the first one
in a TCP conredion (a SYN padet, or request to open) to
adknowledge the previous padet. However, the reasons for the
anomdlies are quite different. Portsweep, which probes for open
ports, uses FIN padkets to prevent the conredion attempt from
being logged by the target. Queso tests the resporse by the target
to unwsual or maformed padets to determine what operating
system it is running.
We can classify anomalies into five categories:

Learned signatures - attempts to exploit bugs in the target
Induced anomalies - symptoms of a successful attack.
Evasion anomalies - attempts to elude the IDS.

Attacker errors - bugs in the attacking program.

User behavior - unexpected client addresses.

grwpdE

First, a seaurity vulnerability is an error, whether in software
design, coding, or system configuration. Attadkers exploit these
errors. Becauseit isimpossble to test software completely, some
errors will aways be discovered in software dter it has been
delivered and pu to use. The erors that are least likely to be
discovered and patched are those that occur least often in namal
traffic. Thus, the inpu required to invoke the eror is likely to be
unwual. We cdl such inpu a learned signature anomaly.
Examplesinclude the urgent data in dosnuke or the fragmented |P
padets in pod and teardrop. Most of the time, the IDS leans
only a part of the signature. For example, it does not lean that
the urgent data must be direded to the NetBIOS port, or that the
IP fragments must have gaps or reassmble to more than 64K
bytes.

Seaond, sometimes the anomalous input is missed, but we can
observe anomalous behavior from the target after a successul
attadk. Thisis smilar to Forrest's host based anomaly detedion
technique, except that the symptoms are observed in the output of
the target, rather than in the system cdls that it makes. Examples
include the unusual TCP options generated by apache2 and the
anomalous destination Ethernet addresses resulting from
arppoison victims. We call thesinduced anomalies.

The third type of anomaly we discovered is one in which the
attadker tries to exploit errors in the IDS to hide the atad, for
example, FIN scanning by portsweep to prevent server accesss
from being logged. If the @tempt badkfires, asit doesin this case,
we call it anevasion anomaly.

Fourth, the atadker might introduce abitrary variations in the
data, which we ca consider to be arorsin the dtadking software.
Examples include garbage in the apache2 and phf attacks, the use
of lowercase mmmands in dict, sendmail, and ntinfoscan, and the
UDP chedksum error in udpstorm. We cdl these attacker error
anomalies. Most provide no clues as to the nature of the attack.

Finaly, behavioral anomay detedion models users rather
than software. Most of the U2R attads are discovered becaise
the exploit software is uploaded onan FTP server normally used
for downloads. Many R2L attadks are discovered becaise the
client IP address is not one of the usual users.

Table 5 shows the number of attadks deteded in ead anomaly
category, based onthe anomaly description. The totals are more
than 100% becauise some dtadks are detected by more than ore
type of anomaly. For example, all three apache2 detedions have
an unwua client IP address but one dso has the unusua
keyword "x" (an error), and another induces unwsual TCP options

inthereply. Itisnot aways clear whether an anomaly is an error
or part of the signature, so we use the principle that if the attack
could be easily changed to hide it, then it is an error. For
example, one apache2 attack isamalformed HTTP request:

X
User - Agent: si oux
User - Agent: si oux
User - Agent: si oux
... (repeated thousands of times)

But the other instances, which do not generate the same anomaly,
replace "x" with a norma "GET / HTTP/1.1". The attack
succeeds either way, so we consider "x" to be an error instead of
part of the signature.

Table 5. Detected attacks classified by the type of anomaly, and
the fraction of the 70 total detected attacks detected this way.

Anomaly Det/70 Attacks Detected
Learned 24 (34%) PROBE: ipsweep, mscan, 2 ntinfoscan,
Signature 3 queso, 2 satan; DOS: crashiis, 4

dosnuke, 4 pod, 3 teardrop; R2L: ncftp,
2 sendmail

Induced 5 (7%) DOS: apache2, 3 arppoison, tcpreset

Evasion 3 (4%) PROBE: 3 portsweep

Attacker 10 (14%) DOS: apache2, 3 mailbomb, 2

Error udpstorm; R2L: 2 dict, phf; U2R: yaga
User 38 (54%) PROBE: mscan; DOS: 3 apache?, 5

Behavior crashiis, mailbomb, processtable,
smurf, warazclient, warezmaster; R2L :
dict, mailbomb, 4 ncftp, 2 netbus, 2
netcat, 2 phf, ppmacro, 2 sendmail,
sshtrojan; U2R: 2 casesen, 2 fdformat,
ffbconfig, sechole, xterm, yaga

5.2. Analysisof False Alarms

Table 6 shows the causes of the 100 fase alarms in the
evaluation. A few aarms were generated by more than one
anomaly, so thetotal is more than 100.

Table 6. The 100 top false alarms detected by PHAD and ALAD.

Anomaly Falsealarms
TCP source | P address 35

Keyword (7 SMTP, 4 FTP, 3 auth, 2 HTTP) 16

TTL (timeto live, simulation artifact)

TCP checksum (simulation artifact)

Outgoing TCP connection on server port

TOS (type of service)

Urgent data pointer or URG flags

Bad TCP connection (3 no SYN, no FIN, RST)
Destination address/port

Packet size (Ethernet, IP, UDP)

Other (2 IP fragments, 2 TCP options)

WO OINNNOOO

From table 6 we can see that the types of anomalies that generate
false alarms are generally the same types that detect attacks. For
example, source and destination addresses and outgoing TCP
connections (FTP upload) which are responsible for the
behavioral detections (about half of the total) are also responsible

for amost half of the false alarms. Novel keywords, which detect
most attacker errors (14% of the total) are responsible for 16 false
alarms, about the same percentage. The errors occur in mostly the
same protocols as wel, SMTP, FTP, and HTTP. This is
unfortunate, because it gives us no easy way to distinguish
between real attacks and false alarms.

A few false alarms are not responsible for any detections, in
particular TCP checksums and TOS (type of service). We thought
it suspicious that no checksum errors whatsoever occur in training
(Table 1), but many occur during testing. On inspection, we
found that the errors are the result of short IP packets that
fragment the TCP header. (These aso generate IP fragment
anomalies, but the checksum contributes the most to the score).
There is no good reason for creating such short fragments, except
to elude the IDS [14], but no attack is labeled. Perhaps the
DARPA team intended to make the problem more difficult, or
perhaps they just made an error and misconfigured one of the
hosts with a small MTU (message transmission unit). We also
found another example of unusual traffic, TCP streams composed
of one byte packets with every other packet missing. Again, this
occurs in the test data and not in the training data, but there is no
attack (and no detection by PHAD or ALAD).

5.3. Coverage of PHAD and ALAD

From Table 4 we can classify each attack by whether it was
detected by PHAD, ALAD, or both. The results are shown in
Table 7.

Table 7. Contributions of PHAD and ALAD to the 70 attack
detections, grouped by attack category.

Type Total By PHAD By ALAD By Both
Detected only only

Probe 12/37 7 4 1

DOS 32/59 17 15 0

R2L 17/49 0 17 0

U2R/Data 9/35 0 9 0

Total 70/180 24 45 1

There is amost no overlap between PHAD and ALAD. The
only attack detected by both is one instance of satan, in which
PHAD detects an anomalous IP packet length and ALAD detects
novel HTTP, SMTP, and finger keywords. PHAD detects mostly
probes and DOS attacks that exploit lower level network
protocols: ipsweep, portsweep, queso, arppoison, dosnuke, pod,
smurf, teardrop, udpstorm. ALAD detects user behavior
anomadlies (all U2R and some R2L), and attempts to exploit errors
in application servers. These include most R2L attacks, as well as
DOS attacks aimed at servers (apache2, crashiis, mailbomb,
processtable), and probes for server vulnerabilities (satan, mscan,
ntinfoscan).

We can combine PHAD and ALAD to improve coverage
because they work in different ways to detect different attacks, but
the mergeis not perfect. By themselves, PHAD detects 54 attacks
when the TTL field is excluded (for both detections and false
alarms), and ALAD detects 59. However, when they are merged,
we must raise the alarm thresholds in order to keep the total false
alarms to 100 (10 per day). This results in some true detections
being discarded, so the total isonly 70 (or 73 excluding TTL false
alarms), not 54 + 59 = 113.

5.4. Overlap with SPADE

From Table 4 we note that we deted 23 d the 77 herd to
deted attadks from the origina 1999 evaluation, whereas the
origina participants deteded at most 15 o these. Also, since
some of these systems detedt more dtadks than we do (Table 3),
we seethat there is a significant nonroverlap between them and
PHAD/ALAD. Aswe noted in sedion 53, it is this property of
non-overlap that allows PHAD and ALAD to be cmbined with
each other to increase total coverage.

In this £dion, we evaluate SPADE [18], which was not one
of the original DARPA participants, to see whether it overlaps
PHAD/ALAD. SPADE is a user behaviora anomaly detedor
which models port numbers and IP addresses on incoming TCP
SYN (request to open) padkets, similar to ALAD. However, since
SPADE is intended for adual use, there is no explicit training
period. It continues training throughou the entire run period and
asdgns an anomaly score to eatcy TCP conredion hesed on the
distribution over the entire run (but with greaer weight given to
recant history). Thus, when a secndinstance of an attadk ocaurs,
it islikely to recave alower score due to being trained onthe first
instance.

To test SPADE, we ran version 0922001 as a plugin to
SNORT 1.7 [15] on the same data used for PHAD/ALAD
("inside" weeks 3, 4, and 5 in ead of SPADE's 4 user seledable
models (Table 8). All other parameters were set to their default
values. SPADE, like PHAD/ALAD, reports an anomaly score, so
after discarding alarms during week 3, we set athreshold al owing
100 false alarms (10 per day) during the attack period.

Table 8. Attacks deteded by SPADE at 10 false darms per day.
Attacks not detected by PHAD/ALAD are showrbiold.

SPADE Model Detections/180
0. Bayes approximation of 7 (1/3 apache2, 1/5 smurf, 1/4
P(src IP/port, dest IP/port perl, 1/1 mscan, 1/5 arppdson,
1/2illegalsniffer, 1/4syslogd)

1. P(src IP/port, dest IP/port 1 (1/1 mscan)

2. P(src IP, dest IP/port) 8 (U4 ps, 1/4 neptune, 1/2
ged, 1/4 yaga, 1/4 perl, 1/3
fdformat, 1/4 queso, 1/1 mscal

3. P(dest IP/port) 7 (as in (2) except yaga)

SPADE models 0, 2, and 3give the best performance. In eat
of these models, 3 ou of the 7 or 8 detedions are not deteded by
PHAD/ALAD. Agan, we have a significant nonoverlap,
suggesting that using a cmbined IDS would result in better
coverage than any system by itself.

It isimportant to stressthat we caanat compare PHAD/ALAD
diredly to SPADE or to the origind DARPA participants with
regard to the number of attacks deteded. SPADE lacks an
explicit training period. Preliminary experiments with PHAD
suggest that under similar condtions it would missabou half of
the dtadks it now deteds. Also, we used a fixed threshold rather
than the many variations of adaptive thresholds offered by
SPADE, some of which might have improved the results. We dso
canna compare PHAD/ALAD to the DARPA participants
because their evaluation was blind (no access to the test data),
because they were designed to detea different sets of attadks with
different data, because some use signature detedion, and because

their evaluation criteria, dthough similar to ous, was not
identical.

6. IMPLEMENTATION

Our implementation d PHAD processes 2.9 gigabytes of
training data and 4.0 gigabytes of test data in 364 seconds (310
user + 54 system), or 95,900 madkets per secnd ona Sparc Ultra
60 with a 450 MHz 64-bit processor, 512 MB memory and 4MB
cade. The overheal is 23 semnds of CPU time per simulated
day, or 0.026% at the simulation rate. The wall time in ou test
was 465 seands (78% usage), consisting of 165 seands of
training (77,665 mdets per second) and 300seands of testing
(73560 mdkets per seaond). The PHAD model uses negligible
memory: 34 fields times 32 pairs of 4-byte integers to represent
the bounds of ead cluster, or 8 kilobytes total. The program is
about 400 lines of C++ code.

ALAD was implemented in two parts, a 400 line C++
program to ressemble TCP padkets into streams, and a 90 line
Perl script to analyze them. Reassmbly of 6.9 GB of data on a
750 MHz PC with 256 MB memory running Windows Me took
17 minutes, athough noattempt was made & optimization, as this
part only had to be run orce prior to developing the second art.
The output of part 1 is 20 MB of training data and 40MB of test
data & two text files. Becaise of the 99% reduction in data, the
Perl script which implements ALAD runsin orly 60 semnds on
the same PC.

ALAD stores all attributes and values (in Perl hashtables), but
there is no reed to doso. Memory could be reduced to a few
kil obytes by storing only the atributes with large r/n and heshing
their associated values.

7. CONCLUDING REMARKS

We investigated network anomaly detedion and saw that most
systems are rule based with the possble exception o |P addresses
and pats. We proposed extending the alaptive model to ather
parts of the protocol, and described two techniques for doing so.
PHAD is a primitive padket model that knows very littl e @ou the
network or protocols it is modeling, or about which fields might
prove to be useful. ALAD combines traditional user modeling of
TCP services (ports and addresses) with a simple generic text-
based model of applicaion potocols. Both modds are
norstationary. They asaume that the probability of an event
depends on the time since it last occurred, regardlessof any prior
occurrences. We believe (adthough we caanat show) that this
model is superior to ore based onfrequency courts. We dso saw
that memory requirements are small, becaise we only neel to
model very low probability events. We saw that modeling bath
user behavior and protocols (for evidence of software erors)

increases coverage to almost twice that of user modeling alone.

Out of 180 attacks in the DARPA IDS evauation dita set,
PHAD and ALAD deted 70 (39% recdl), with 100false darms
(41% predsion). Although these models use pure anomay
detedion, they perform amost as well (by our measure) as
systems that combined bah signature and anomaly detedion in
the 1999 Hind evauation, even though anomaly detedion by
itself is a harder problem becaise the dtadk signatures are
unknown More importantly, there is a significant non-overlap
between ou IDS and aher systems, so that they can be combined
to increase mverage. We deted 23 (by our measure) of the 77
poaly deteded attacks in the 1999 evauation, compared to at

most 15 for the origina evaluation participants. Likewise, thereis

a non-overlap with SPADE, which detects attacks that we miss.

We found five cdegories of anomalies. By deaeasing
frequency, these are:

. User behavior anomalies, as deteded by traditional systems,
for example FTP uploads of U2R exploits on a server
normally used only for downloads.

« Attemptsto exploit bugsin poaly tested feaures, such asthe
malformed IP fragments giod andteardrop.

« Bugsin the atadking code, such as UDP chedsum errorsin
udpstorm, or using lowercase text gendmail anddict.

¢ Induced anomaliesin the target after a succesdul attadk, such
as the unusual TCP options in replyapache2.

. Unsuccesdul attempts to elude the IDS, such as FIN
scanning byportsweep.

Compared to signature detedion, anomaly detedion, which is
a harder problem, has lower detedion rates and higher false darm
rates, and hence less pradicd. Also, unlike signature detedion,
anomalies often appea completely unrelated to the dtadks that
generated them, which makes it difficult to dsplay aarm
messages that even an expert in network protocols could
understand. Devising more sophisticaed attributes for the
leaning algorithm could enhance darm explanation as well as
detection rates.

We have made some progresson ore aped of the anomaly
detedion problem, that of modeling. However, there ae still two
outstanding problems. First, there is the combinatorial explosion
problem of combining attributes. In ALAD, we use cmbinations
of the form P(x,y) (e.g. P(dest IP, dest port)), and P(xly) (e.g.
P(src IP|dest IP)), but these were ad-hoc. We knew that certain
combinations would give better results. Our goal isfor the IDS to
figure out which combinations to use from among the exporential
number of posshilities. We ae arrently developing a system
cdled LERAD (LEarning Rules for Anomaly Detedion) which
addresses this isaue. It quickly finds good (high n/r) candidate
condtiona rules using a small sample of the training data, and it
deteds more datadks than our current system, but it is currently an
off-line algorithm, requiring two passes over the training data.

Semnd is the parsing problem. We had to hard code rules
into PHAD (field sizes and dfsets) and ALAD (words, lines, and
healers) to parse theinpu into attributes. Our goal isfor the IDS
to lean new protocols as they are encourtered, but our system
would fall unless the new protocol had the same syntadic
structure & the eisting ones. Idedly, the system shoud lean the
lexical and syntactic structure. This problem remains unsolved.

Acknowledgments

This reseach is partialy suppated by DARPA (F3060200-1-
0603. We dso thank the aornymous reviewers for their
comments.

References

[1] Anderson, Debra, Teresa F. Lunt, Harold Javitz, Ann
Tamaru, Alfonso Valdes, "Detecting unusual program
behavior using the statistical component of the Next-
generation Intrusion Detection Expert System (NIDES)",
Computer Science Laboratory SRI-CSL 95-06 May 1995.
http://www.sdl.sri.com/papers/5/s/5sri/5sri.pdf

[2] Bell, Timothy, lan H. Witten, John G. Cleary, "Modeling for
Text Compression”, ACM Computing Surveys (21)4, pp.
557-591, Dec. 1989.

[3] Barbara, D., N. Wu, S. Jajodia, "Detecting Novel Network
Intrusions using Bayes Estimators”, First SIAM International
Conference on Data Mining, 2001,
http://www.siam.org/meetings/sdm01/pdf/sdm01_29.pdf

[4] Floyd, S. and V. Paxson, "Difficulties in Simulating the
Internet." IEEE/ACM Transactions on Networking Vol. 9,
no. 4, pp. 392-403, Aug. 2001.
http://www.icir.org/vern/papers.html

[5] Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
"A Sense of Self for Unix Processes", Proceedings of 1996
IEEE Symposium on Computer Security and Privacy.
ftp://ftp.cs.unm.edu/pub/forrest/ieee-sp-96-unix.pdf

[6] Ghosh, A.K., A. Schwartzbard, Mschatz, "Learning
Program Behavior Profiles for Intrusion Detection”,
Proceedings of the 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, April 9-12, 1999, Santa
Clara, CA. http://www.cigital.com/~anup/usenix_id99.pdf

[71 M. Handley, C. Kreibich and V. Paxson, "Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Protocol Semantics”, Proc. USENIX Security Symposium,
2001.

[8] Kendall, Kristopher, "A Database of Computer Attacks for
the Evaluation of Intrusion Detection Systems", Masters
Thesis, MIT, 1999.

[9] Lippmann, R., et al., "The 1999 DARPA Off-Line Intrusion
Detection Evaluation", Computer Networks 34(4) 579-595,
2000.

[10] Mahoney, M., P. K. Chan, "PHAD: Packet Header Anomaly
Detection for Identifying Hostile Network Traffic", Florida
Tech. technical report 2001-04, http://cs.fit.edu/~tr/

[11] Neumann, P., and P. Porras, "Experience with EMERALD to
DATE", Proceedings 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, Santa Clara, California,
April 1999, 73-80,
http://www.csl.sri.com/neumann/det99.html

[12] Paxson, Vern, "Bro: A System for Detecting Network
Intruders in Real-Time", Lawrence Berkeley National
Laboratory Proceedings, 7'th USENIX Security Symposium,
Jan. 26-29, 1998, San Antonio TX,
http://www.usenix.org/publications/library/proceedings
/sec98/paxson.html

[13] Paxson, Vern, and Sally Floyd, "The Failure of Poisson
Modeling", IEEE/ACM Transactions on Networking (3)
226-244, 1995.

[14] Ptacek, Thomas H., and Timothy N. Newsham,élitisn,
Evasion, and Denial of Service: Eluding Network Intrusion
Detection", January, 1998,
http://www.robertgraham.com/mirror/Ptacek-Newsham-
Evasion-98.html

[15] Roesch, Martin, "Snort - Lightweight Intrusion Detection for
Networks", Proc. USENIX Lisa '99, Seattle: Nov. 7-12,
1999.

[16] Sasha/Beetle, "A Strict Anomaly Detection Model for IDS",
Phrack 56(11), 2000, http://www.phrack.org

[17] Sekar, R., M. Bendre, D. Dhurjati, P. Bollineni, "A Fast
Automaton-based Method for Detecting Anomalous Program
Behaviors". Proceedings of the 2001 IEEE Symposium on
Security and Privacy.

[18] SPADE, Silicon Defense,
http://www.silicondefense.com/software/spice/

