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Abstract

Current approaches to object category recognition require

datasets of training images to be manually prepared, with

varying degrees of supervision. We present an approach

that can learn an object category from just its name, by uti-

lizing the raw output of image search engines available on

the Internet. We develop a new model, TSI-pLSA, which

extends pLSA (as applied to visual words) to include spa-

tial information in a translation and scale invariant man-

ner. Our approach can handle the high intra-class vari-

ability and large proportion of unrelated images returned

by search engines. We evaluate the models on standard test

sets, showing performance competitive with existing meth-

ods trained on hand prepared datasets.

1. Introduction

The recognition of object categories is a challenging prob-

lem within computer vision. The current paradigm [1, 2,

5, 10, 14, 15, 21, 22, 24] consists of manually collecting

a large training set of good exemplars of the desired ob-

ject category; training a classifier on them and then eval-

uating it on novel images, possibly of a more challenging

nature. The assumption is that training is a hard task that

only needs to be performed once, hence the allocation of

human resources to collecting a training set is justifiable.

However, a constraint to current progress is the effort in ob-

taining large enough training sets of all the objects we wish

to recognize. This effort varies with the size of the training

set required, and the level of supervision required for each

image. Examples range from 50 images (with segmenta-

tion) [15], through hundreds (with no segmentation) [10],

to thousands of images [14, 23].

In this paper we propose a different perspective on the

problem. There is a plentiful supply of images available at

the typing of a single word using Internet image search en-

gines such as Google, and we propose to learn visual mod-

els directly from this source. However, as can be seen in

Fig. 1, this is not a source of pure training images: as many

as 85% of the returned images may be visually unrelated to

the intended category, perhaps arising from polysemes (e.g.

“iris” can be iris-flower, iris-eye, Iris-Murdoch). Even the

15% subset which do correspond to the category are sub-

stantially more demanding than images in typical training

sets [9] – the number of objects in each image is unknown

and variable, and the pose (visual aspect) and scale are un-

controlled. However, if one can succeed in learning from

such noisy contaminated data the reward is tremendous: it

enables us to automatically learn a classifier for whatever

visual category we wish. In our previous work we have

considered this source of images for training [11], but only

for the purpose of re-ranking the images returned by the

Google search (so that the category of interest has a higher

rank than the noise) since the classifier models learnt were

too weak to be used in a more general setting, away from

the dataset collected for a given keyword.

Figure 1: Images returned from Google’s image search using the

keyword “airplane”. This is a representative sample of our training

data. Note the large proportion of visually unrelated images and

the wide pose variation.
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Figure 2: (a) A summary of our approach. Given the keywords:

airplane, car rear, face, guitar, leopard, motorbike, wrist watch we

train models from Google’s image search with no supervision. We

test them on a collection of 2148 images from the Caltech datasets

and others, showing the top 5 images returned for each keyword

in (b).

The problem of extracting coherent components from a

large corpus of data in an unsupervised manner has many

parallels with problems in the field of textual analysis. A

leading approach in this field is that of probabilistic La-

tent Semantic Analysis (pLSA) [12] and its hierarchical

Bayesian form, Latent Dirichlet Allocation (LDA) [4]. Re-

cently, these two approaches have been applied to the com-

puter vision: Fei-Fei and Perona [8] applied LDA to scene

classification and Sivic et al. applied pLSA to unsuper-

vised object categorisation. In the latter work, the Caltech

datasets used by Fergus et al. [10] were combined into one

large collection and the different objects extracted automat-

ically using pLSA.

In this paper, we adopt and extend pLSA methods to

incorporate spatial information in a translation and scale-

invariant manner and apply them to the more challenging

problem of learning from search engine images. To enable

comparison with existing object recognition approaches, we

test the learnt models on standard datasets.

2. Approach

Before outlining our approaches, we first review pLSA and

its adaption to visual data, following Sivic et al.

We describe the model using the terminology of the text

literature, while giving the equivalence in our application.

We have a set of D documents (images), each containing

regions found by interest operator(s) whose appearance has

been vector quantized into W visual words [20]. The corpus

of documents is represented by a co-occurrence matrix of

size W ×D, with entry n(w, d) listing the number of words

w in document d. Document d has Nd regions in total. The

model has a single latent topic variable, z, associating the

occurrence of word w to document d. More formally:

P (w, d) =

Z∑

z=1

P (w|z)P (z|d)P (d) (1)

Thus we are decomposing a W × D matrix into a W × Z
matrix and a Z ×W one. Each image is modeled as a mix-

ture of topics, with P (w|z) capturing the co-occurrence of

words within a topic. There is no concept of spatial loca-

tion within the model. The densities of the model, P (w|z)
and P (z|d), are learnt using EM. The E-step computes the

posterior over the topic, P (z|w, d) and then the M-step up-

dates the densities. This maximizes the log-likelihood of

the model over the data:

L =

D∏

d=1

W∏

w=1

P (w, d)n(w,d) (2)

In recognition, we lock P (w|z) and iterate with EM, to es-

timate the P (z|d) for the query images. Fig. 4(a)-(c) shows

the results of a two topic model trained on a collection

of images of which 50% were airplanes from the Caltech

datasets and the other 50% were background scenes from

the Caltech datasets. The regions are coloured according to

the most likely topic of their visual word (using P (w|z)):
red for the first topic (which happens to pick out the air-

plane image) and green for the second (which picks out

background images). P (z|d) is shown above each image.

2.1. Absolute position pLSA (ABS-pLSA)

Previous work with pLSA applied to images did not use lo-

cation information and we now extend the pLSA model to

incorporate it. A straightforward way to do this is to quan-

tize the location within the image into one of X bins and

then to have a joint density on the appearance and location

of each region. Thus P (w|z) in pLSA becomes P (w, x|z),
a discrete density of size (W × X) × Z:

P (w, x, d) =

Z∑

z=1

P (w, x|z)P (z|d)P (d) (3)

The same pLSA update equations outlined above can be

easily applied to this model in learning and recognition. The

problem with this representation is that it is not translation

or scale invariant at all, since x is an absolute coordinate

frame. However, it will provide a useful comparison with

our next approach.



2.2. Translation and Scale invariant pLSA

(TSI-pLSA)

The shortcomings of the above model are addressed by in-

troducing a second latent variable, c, which represents the

position of the centroid of the object within the image, as

well as its x-scale and y-scale, making it a 4-vector specify-

ing a bounding box. As illustrated in Fig. 3(c), location x is
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Figure 3: (a) Graphical model of pLSA. (b) Graphical model of

ABS-pLSA. (c) The sub-window plus background location model.

(d) Graphical model for translation and scale invariant pLSA (TSI-

pLSA).

now modeled relative to the centroid c, over a sub-window

of the image. Within the sub-window, there are Xfg loca-

tion bins and one large background bin, xbg, giving a total of

X = Xfg + 1 locations a word can occur in. The word and

location variables are then modeled jointly, as in section 2.1.

This approach means that we confine our modeling of loca-

tion to only the object itself where dependencies are likely

to be present and not the background, where such correla-

tions are unlikely. The graphical model of this approach is

shown in Fig. 3(d).

We do not model an explicit P (w, x|c, z), since that

would require establishing correspondence between images

as c remains in an absolute coordinate frame. Rather,

we marginalize out over c, meaning that we only model

P (w, x|z):

P (w, x|z) =
∑

c

P (w, x, c|z) =
∑

c

P (w, x|c, z)P (c)

(4)

P (c) here is a multinomial density over possible locations

and scales, making for straightforward adaptations of the

standard pLSA learning equations: P (w, x|z) in (3) is sub-

stituted with the expression in (4). In learning we aggregate

the results of moving the sub-window over the locations c.

Due to the high dimensionality of the space of c, it is not

possible to marginalize exhaustively over scale and location

within the image. Instead we use a small set of c, proposed

in a bottom up manner for each topic.

2.2.1 Proposing object centroids within an image

We first run a standard pLSA model on the corpus and then

fit a mixture of Gaussians with k = {1, 2, . . . ,K} compo-

nents to the location of the regions, weighted by P (w|z) for

the given topic. The idea is to find clumps of regions that

belong strongly to a particular topic, since these may be the

object we are trying to model. The mean of the component

gives the centroid location while its axis-aligned variance

gives the scale of the sub-window in the x and y directions.

We try different number of components, since there may be

clumps of regions in the background separate from the ob-

ject, requiring more than one component to fit. This process

gives us a small set (of size C = K(K + 1)/2) of values

of c to sum over for each topic in each frame. We use a

flat density for P (c) since we have no more confidence in

any one of the c being the actual object than any other. Fig.

4(a)-(c) shows the pLSA model using to propose centroids

for the TSI-pLSA model, which are shown as dashed lines

in Fig. 4(d)-(f). In the example, K = 2 and Z = 2.
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Figure 4: (a)-(c) Two airplane and one background image, with re-

gions superimposed, coloured according to topic of a learnt pLSA

model. Only a subset of regions are shown for clarity. (d)-(f)

The same images as in (a)-(c) but showing the bounding boxes

proposed by the pLSA model with dashed lines. The solid rectan-

gle shows the centroid with highest likelihood under a TSI-pLSA

model, with the colour indicating topic (the red topic appears to

select airplanes). (d) shows multiple instances being handled cor-

rectly. (e) shows the object being localized correctly in the pres-

ence of background clutter.



In recognition, there is no need to learn a standard pLSA

model first to propose different values of c. Instead, the

average word density over the sub-window (P̂ (w|z) =∑
xfg

P (w, x|z)) can be used to weight each region and then

compute putative centroids in the manner above. Having

obtained a set of centroids using P̂ (w|z), recognition pro-

ceeds by locking P (w, x|z) and iterating to find P (z|d) for

the novel images. In estimating P (z|d), all states of c are

summed over, thus once convergence is reached, we find c∗,

the value of c within a frame which has the highest likeli-

hood (shown in Fig. 4(d)-(f) as a solid box).

2.2.2 Observations about TSI-pLSA

• Multiple object instances in a frame can be captured

with k > 1, with their information being combined

by the marginalisation process. See Fig. 4(d) for an

example.

• The model is entirely discrete, consisting of WXZ +
DZ parameters, thus is able to cope with multi-modal

non-Gaussian distributions. This enables the model to

handle multiple aspects of the object since the different

word-locations densities for each aspect will appear as

different modes within the P (w, x|z) density.

• Since all three approaches use histograms, unless the

object occupies a reasonably large proportion of the

image, it will not have a sufficient number of de-

tections to compete with regions on the background,

meaning that the image is misclassified as background.

While the sub-window approach of TSI-pLSA will

help, it cannot overcome this effect entirely, so the ob-

ject must still occupy a reasonable proportion of the

image (1/4 to 1/5 of image area).

3. Implementation details

Having outlined the three approaches that we will investi-

gate (pLSA; ABS-pLSA and TSI-pLSA), we now give spe-

cific details. All images are first converted to grayscale and

resized to a moderate width (300 pixels in our experiments).

No further normalization of any kind was carried out.

In view of the large number of parameters in our mod-

els, it is vital to have a large number of data points in each

frame. We therefore use four different types of circular re-

gion detector to give a complete coverage of the image: (i)

Kadir & Brady saliency operator [13]; (ii) Multi-scale Har-

ris detector [17]; (iii) Difference of Gaussians, as used by

Lowe [16] and (iv) Edge based operator, detailed below.

For certain categories, edge information is important and

is not adequately captured by the first three region detectors.

Inspired by the approach of Berg et al. [3], we first find

edgels in the image and then locate a region at points drawn

at random from the edgel set. The scale of the region is cho-

sen by drawing from a uniform distribution over a sensible

scale range (a radius range of 5-30 pixels). The total number

of regions sampled is capped to give a number similar to the

other three types of detector. On average, around N = 700
regions per image were found, with Kadir & Brady and the

difference of Gaussians giving around 100 per image; the

edge based detector 175, and multi-scale Harris 350.

Having found a large set of regions, we represent them

by a SIFT descriptor, using 72 dimensions rather than the

usual 128, resulting in larger histogram bins which are more

appropriate for object categorization. The regions did not

have their orientation normalised before histogramming,

making them orientation variant. The descriptors are then

vector quantized using a fixed codebooks of visual words,

pre-computed using k-means from a large set of images

drawn from the training sets of a large number of differ-

ent categories. A separate codebook was formed for each

feature type and then combined to give W visual words in

total. In our experiments, we used W = 350. Regions could

be quantized to any word, e.g. we did not restrict edge re-

gions to only be allocated to the sub-section of the codebook

formed from edge regions alone.

The two approaches with spatial densities used a grid of

moderate coarseness, mindful of the need to keep the num-

ber of parameters to a reasonable level. The sub-window

used in the experiments had a 6 × 6 grid, giving X = 37.

Training a TSI-pLSA model with Z = 8, D ∼ 500 and the

aforementioned parameters takes roughly 30 minutes using

a Matlab implementation. ABS-pLSA takes approximately

the same time. pLSA takes around half a minute. 100 it-

erations of EM were used. Assuming X = 37, W = 350,

D = 500, N = 700, Z = 8, we have 109, 200 parameters

in the model which are estimated from 350, 000 data points,

giving a data/parameter ratio of just over 3, the minimum

sensible level.

4. Datasets

The experiments used 7 different object categories in 9 date-

sets. 5 of these were the Caltech datasets [9]: Airplane;

Car (Rear); Leopard; Face and Motorbike. Additionally,

more challenging datasets for the car and motorbike classes

were taken from PASCAL [6], using the test2 set of fore-

ground/background training and test images. Finally, Gui-

tar and Wrist watch were the two remaining categories. For

each category four subsets of data were compiled: two hand

gathered sets, where each image contains at least one in-

stance of the object and two automatically gathered sets

with may be contaminated with images unrelated to the cat-

egory.

1. Prepared training set (PT): Manually gathered

frames. In the case of the Caltech datasets, the training

frames from [10] were used. The pose of the object is quite

constrained within these frames. The PASCAL datasets

contained large viewpoint and pose variation.

2. Prepared test set (P): Manually gathered frames, dis-

joint although statistically similar to (PT). For the Caltech

datasets, the test frames from [10] were used. Again, the



pose is fairly constrained. In contrast, the PASCAL datasets

contained large viewpoint and pose variation.

3. Raw Google set (G): A set of images automatically

downloaded from Google’s Image Search1, using the cate-

gory name. See Fig. 1 for typical images downloaded using

“airplane”. Duplicates images were discarded and Google’s

SafeSearch filter was left on, to reduce the proportion of un-

related images returned. For assessment purposes, the im-

ages returned by Google were divided into 3 distinct groups:

i Good images: these are good examples of the keyword category,

lacking major occlusion, although there may be a variety of view-

points, scalings and orientations.

ii Intermediate images: these are in some way related to the keyword

category, but are of lower quality than the good images. They may

have extensive occlusion; substantial image noise; be a caricature or

cartoon of the category; or the object is rather insignificant in the im-

age, or some other fault.

iii Junk images: these are totally unrelated to the keyword category.

The labeling was performed by an individual who was not

connected with the experiments in anyway, possessing no

knowledge of our algorithms. Fig. 5 shows the recall-

precision curves of the raw Google sets for each category.
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Figure 5: Recall precision curves of the raw output of Google’s

image search for the 7 keywords. Good labels count as positive ex-

amples while Intermediate and Junk labels are negative examples.

Note the precision drops rapidly as the recall increases, leveling

out at 20–30% for most categories.

4. Google validation set (V): An empirical observation

(as seen in Fig. 5) is that the first few pages returned by

Google tend to contain more good images than those re-

turned later on. The idea is that we assume the images from

these first pages are positive examples, and hence may be

used as a validation set to make model selection choices in

our experiments. The catch is that the drop off in quality of

Google’s search is so steep that only the first few images of

the first page are likely to be good examples.

Using Google’s automatic translation tool2 we obtain

the translations of the users keyword in the following lan-

guages: German, French, Spanish, Italian, Portugese and

Chinese. Since each translation returns a different set of

1While in this paper Google’s image search was used exclusively

(http://www.google.com/imghp), any other image search engine

may be used provided that the images can be gathered in an automated

manner
2http://translate.google.com/translate_t

images, albeit with the same drop off in quality, we auto-

matically download the first few images from each different

language, and combine to give a validation set of a reason-

able size without a degradation in quality.

Using 7 different languages (including English), taking

the first 5 images we can obtain a validation set of up to

35 images (since languages may share the same word for

a category and we reject duplicate images). Note that this

scheme does not require any supervision. Fig. 6 shows the

validation set for “airplane”. All datasets used are summa-

rized in Table 1.
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Figure 6: The entire validation set for “airplane” obtained au-

tomatically using Google’s translation tool and Google’s image

search. The text by each row shows the translated keyword used

to gather that particular row. The quality of the images is notice-

ably higher than those in Fig. 1.

Size of Dataset Distrib. of Google Images (%)

Category PT P V G Good Inter. Junk

Airplane 400 400 30 874 18.1 8.6 73.3

Cars Rear 400 400 30 596 32.2 12.9 54.9

Face 217 217 30 564 24.3 21.3 54.4

Guitar 450 450 25 511 25.3 30.5 44.2

Leopard 100 100 15 516 19.6 27.5 52.9

Motorbike 400 400 30 688 33.4 29.8 36.8

Wrist watch 180 181 35 342 63.4 13.8 22.8

PASCAL Cars 272 275 - - - - -

PASCAL Cars Bg. 412 412 - - - - -

PASCAL Motorbike 214 202 - - - - -

PASCAL Motorbike Bg. 570 754 - - - - -

Caltech Bg. 400 400 - - - - -

Cars Rear Bg. 400 400 - - - - -

Table 1: Statistics of the datasets used in experiments. Columns 2

& 3: Size of the hand prepared training (PT) and test (P) datasets.

Column 4: The number of validation (V) images automatically

obtained. Column 5: The number of images automatically down-

loaded from Google’s image search (G). The last 3 columns show

the breakdown (for evaluation purposes) of the raw Google im-

ages for each category. Note the low proportion of good examples

present in the majority of categories.

5. Selection of the final classifier

There are two issues to consider when training our mod-

els: (i) the optimal number of topics, Z ; (ii) which subset

of these topics should be used to form a classifier for use



in testing. A larger number of topics will result in more

homogeneous topics at the expense of their ability to gen-

eralize. Given the varied nature of images obtained from

Google, a large number of topics might seem appropriate,

but this raises the issue of how to pick the topics correspond-

ing to the good images, while ignoring topics which model

the junk images within the dataset.

The number of topics to use in experiments was deter-

mined empirically: the performance of the face and airplane

categories was recorded as the number of topics was var-

ied when training from Google and a stable peak picked at

Z = 8 (see Fig. 8(b)). This value was then used for all ex-

periments involving Google data. Having trained an 8 topic

model, each topic is run across the validation set and single

topic that performed best is picked to be the classifier used

in testing.

6. Experiments
Several sets of experiments were performed:

A Caltech experiments. Training on a 50-50 mix of pre-

pared data (PT) from the Caltech datasets (including

watch and guitar) and data from the Caltech background

dataset. Testing, in classification setting, on prepared

data (P) and test data from the Caltech background. In

the case of Cars Rear, the Caltech background was sub-

stituted for the Cars Rear Background for a more realistic

experiment. All 3 methods (pLSA, ABS-pLSA and TSI-

pLSA) were run with 2 topics (reflecting the true number

of components in the training and test data).

B PASCAL experiments. Training on prepared data (PT)

of the two PASCAL datasets (cars, motorbikes) and their

background images. Testing on prepared data (P) of

PASCAL. Training was unsupervised, in the manner of

[19], with the foreground and background data combined

into one training set. All 3 methods (pLSA, ABS-pLSA

and TSI-pLSA) were run with 6 topics and the best topic

or equally weighted pair of topics chosen based on their

performance on (PT). These experiments are designed to

investigate the difference between ABS-pLSA and TSI-

pLSA and measure localisation as well as detection per-

formance.

C Google experiments. Training on raw Google data (G);

the best topic is then picked using the validation set (V),

which is then tested on prepared data (P), measuring

classification performance. All 3 methods were evalu-

ated with 8 topics. The ability of our algorithm to train

directly from Google data is evaluated.

D Search engine improvement experiments. In the man-

ner of [11]. Training on raw Google data (G); picking the

best topic using (V) and using it to re-rank the Google

images (G). The idea is that the recall-precision curve of

good images should be improved by the models learnt.

pLSA ABS TSI pLSA ABS TSI

Category Prep. Prep. Prep. Google Google Google

(A)irplane 17.7 13.2 4.7 24.7 17.2 15.5

(C)ars Rear 2.0 0.2 0.7 21.0 13.2 16.0

(F)ace 22.1 11.5 17.0 20.3 36.4 20.7

(G)uitar 9.3 10.0 14.4 17.6 62.0 31.8

(L)eopard 12.0 12.0 11.0 15.0 16.0 13.0

(M)otorbike 19.0 6.0 7.0 15.2 18.5 6.2

(W)rist watch 21.6 7.7 15.5 21.0 20.5 19.9

PASCAL Car 31.7 33.0 25.8 - - -

PASCAL Motorbike 33.7 30.2 25.7 - - -

Table 2: Comparison of different methods trained on: prepared

data (first three columns) and raw Google data (rightmost three

columns). All methods were tested on prepared data. The task is

classification, with the figures being the error rate at point of equal-

error on an ROC curve. The error margins are roughly +/−2%.

6.1. Caltech and PASCAL experiments

The results of experiments A, B in a classification setting

are given in Table 2, columns 2–4. The results on the Cal-

tech datasets show that (except for the leopard and guitar

categories), the incorporation of location information gives

a significant reduction in error rate. However, due to the

constrained pose of instances within the images, the ABS-

pLSA model often does as well if not better than the TSI-

pLSA model (e.g. wrist watch and guitar). By contrast,

when testing on the PASCAL datasets which contain far

greater pose variability, the TSI-pLSA model shows a clear

improvement over ABS-pLSA. See Fig. 7 for some exam-

ples of the TSI-pLSA model correctly detecting and localis-

ing cars in PASCAL test images. See Table 3 for a compari-

son between TSI-pLSA and other current approaches on the

PASCAL datasets.
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Figure 7: Examples of the TSI-pLSA model, trained on the pre-

pared PASCAL Cars data, correctly localising test instances. The

ground truth bounding box is shown in magenta, while the pro-

posed bounding box, c
∗, is shown in blue.

6.2. Google experiments

The results of experiment C in a classification setting are

given in the last 3 columns of Table 2. As expected, training

directly on Google data gives higher error rates than train-

ing on prepared data. For around half the categories, the use

of location information reduces the error significantly, al-

though only in the case of motorbikes and airplanes is TSI-

pLSA better their either of the other two approaches.

Both ABS-pLSA and TSI-pLSA perform notably poorly

on the guitar dataset. This may be explained by the fact

that all the prepared data has the guitar in a vertical position

while guitars appear at a seemingly random orientation in



the Google training data. Since neither of the models using

location can handle rotation they perform badly, in contrast

to pLSA which still performs respectably. An example of a

TSI-pLSA model learnt from Google data is shown in Fig.

9. In the case of Motorbikes, the common words correspond

to parts of the wheels of the bike and the exhaust/tail struc-

ture. In the case of Leopards, the textured fur of the animal

is captured by the most common regions. However, their lo-

cation densities are spread out, reflecting the diffuse spatial

representation of the animal.

The confusion table of the seven classes is shown in

Fig. 8(a). For the majority of classes the performance is

respectable. Notable confusions include: airplanes being

classified as cars rear (both have lots of horizontal edges);

the guitar model misclassifying faces and wrist watches

(due to the weak guitar model). See also Fig. 2 for the TSI-

pLSA models used in a retrieval application.
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Figure 8: (a) Confusion table for the 7 classes. The row is the

ground truth label; the column indicates the classification. (b)

“Face” keyword. Performance of models trained on Google data,

tested on prepared data, with a varying number of topics. Red -

pLSA; Green - ABS-pLSA; Blue - TSI-pLSA. Solid lines indicate

performance of automatically chosen topic within model. Dashed

lines indicate performance of best topic within model.

In Table 3 we compare our performance to existing ap-

proaches to object recognition for experiments B and C,

noting their degree of supervision.

Dataset TSI-pLSA [10] [18] [15]

Expt. B Img. labels Img. labels Img. labels Segmented

PASCAL Car 25.8 / 0.062 - - 34.2 / 0.181

PASCAL Motorbike 25.7 / 0.249 - - 31.7 / 0.341

Expt. C None Img. labels Img. labels Segmented

Airplane 15.5 7.0 11.1 -

Cars Rear 16.0 9.7 8.9 6.1

Face 20.7 3.6 6.5 -

Leopard 13.0 10.0 - -

Motorbike 6.2 6.7 7.8 6.0

Table 3: Comparison of performance and supervision with other

weakly supervised training approaches for experiments B and C.

The first value is the ROC EER classification rate; the second

(where given) is the average precision [6] in localisation. In PAS-

CAL experiments (B), the classification performance is better than

[15], but is less good at localisation. In Google experiments (C),

the results for Leopard and Motorbike are comparable to other ap-

proaches. Airplane and Cars Rear are around 10% worse. How-

ever the supervision requirements of the other methods are greater.
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Figure 9: (a) Watches from the prepared dataset, with regions su-

perimposed that belong to the 4 most common visual words (ir-

respective of location) from the automatically chosen topic of the

Google-trained TSI-pLSA watch model. Each colour shows re-

gions quantized to a different visual word. The circular bezel of

the watch face is picked out. Due to the rotation sensitivity of our

region presentation, different parts of the bezel are quantized to

different words. (b) The location densities of the 4 most common

words shown in (a). White corresponds to a high probability, black

to a low one. Note their tightly constrained, multi-modal, nature.

6.3. Investigation of number of topics

In Fig. 8(b) we vary the number of topics in a face model

trained on Google data and evaluate: (a) the automatically

chosen topic, and (b) the actual best topic on the prepared

test set. The performance of all three methods does not

seem to increase too much beyond 10 topics. This is due

to the selection of a single topic – picking a combination

of topics is likely to yield superior results. The difficulty is

in deciding which ones to pick: the validation set picks the

best topic (or close to it) reliably up to 8 topics or so. Be-

yond this its performance drops off significantly. For small

numbers of topics, the models are unreliable, while it is dif-

ficult to pick the correct topic from very large models. The

point of compromise seems to be in region of 5-10 topics

(the curves are very similar for different categories), hence

the use of Z = 8.

6.4. Improving Google’s image search

As in Fergus et al. [11], the models learnt from Google data

may be directly employed to improve the quality of the im-

age search by re-ranking the images using the topic chosen

from the validation set. As can be seen in Fig. 5, the na-

tive performance of Google’s search is quite poor. Fig. 10

shows the improvement in precision achieved by using the

best topic chosen from an 8 topic model trained on the raw

data. Figs. 11 and 12 show the top ranked images for each

topic for the pLSA and TSI-pLSA approaches respectively,

using the “motorbike” keyword.
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Figure 10: Improvement in the precision at 15% recall obtained

with an 8 topic TSI-pLSA model (blue) over the raw Google rank-

ing (yellow). This level of recall corresponds to a couple of web

pages worth of images.

topic 7topic 7

Figure 11: Top ranked images for each topic of an 8 topic pLSA

model trained on Google data (G), using the keyword “motorbike”.

Topic selected by validation set (V) was topic 7. The coloured dots

in the top-left corner of each image show the ground truth labels

(Green = Good; Yellow = Intermediate and Red = Junk).

7. Summary and Conclusions

We have proposed the idea of training using just the objects

name by bootstrapping with an image search engine. The

training sets are extremely noisy yet, for the most part, the

results are competitive (or close to) existing methods requir-

ing hand gathered collections of images. This was achieved

by improving state-of-the-art pLSA models with spatial in-

formation. It would be interesting to compare our methods

to [7], trained from the Google Validation set. However

there are many open issues: the choice of features; better

centroid proposals; the use of fixed background densities to

assist learning; how to pick the most informative topics; the

number of topics to use; the introduction of more sophisti-

cated LDA models using priors.
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Figure 12: As per Fig. 11 but for an 8 topic TSI-pLSA model.

Topic 7 was again the automatically selected topic. Note the in-

creased consistency of each topic compared to pLSA.
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