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This paper shows how the results returned by an image search engine
can be used to construct models from Internet images and

use them for object recognition.

By Rob Fergus, Li Fei-Fei, Pietro Perona, Member IEEE, and Andrew Zisserman

ABSTRACT | In this paper, we describe a simple approach to

learning models of visual object categories from images

gathered from Internet image search engines. The images for

a given keyword are typically highly variable, with a large

fraction being unrelated to the query term, and thus pose a

challenging environment from which to learn. By training our

models directly from Internet images, we remove the need to

laboriously compile training data sets, required by most other

recognition approachesVthis opens up the possibility of

learning object category models ‘‘on-the-fly.’’ We describe

two simple approaches, derived from the probabilistic latent

semantic analysis (pLSA) technique for text document analysis,

that can be used to automatically learn object models from

these data. We show two applications of the learned model:

first, to rerank the images returned by the search engine, thus

improving the quality of the search engine; and second, to

recognize objects in other image data sets.

KEYWORDS | Internet image search engines; learning; object

categories; recognition; unsupervised

I . INTRODUCTION

The Internet contains vast quantities of visual data in the

form of images or video. Methods for searching and

utilizing this rich resource have recently become a topic of

interest within computer vision, being collectively known

as ‘‘Internet vision.’’

To effectively search the visual content of the Internet,

we must tackle a central problem in vision, that of

recognizing the object categories present in an image. This

task requires learning models of the visual appearance of

object categories (e.g., dogs, tea cups), typically using data

sets of images which have been manually ‘‘labeled’’ to

indicate the objects present.

However, in Internet search, a myriad of queries are

possible. This makes it impractical to manually gather the

training images needed to build visual search models for

every query.

In this paper, we describe two simple techniques that

let us build visual search models directly from Internet

images, without the need for manually labeled images. We

leverage existing image search engines (which mainly use

textual cues) to give us a set of images, some of which are

visually related to query term. From these, we show how a

robust visual model can be learned, which can then be

used for a variety of applications. Crucially, our approach is

fully automatic, hence we can learn models for any object.
One important application, which we explore in this

paper, is to use the learned models to rerank the images

returned by the search engine thus boosting its perfor-

mance. The current performance of image search engines

is rather variable, a direct consequence of them relying on

weak textual cues. By using our visual models to improve

their output, a large gain in search quality can be achieved.

A second application that we explore is using the learned

model to recognize the object in other image data sets,

distinct from the original search engine images. A wide

range of other applications are possible and we discuss

these at the end of the paper.
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The background to this work is the following: a wide

range of different approaches has been taken to the chal-

lenging problem of object category recognitionV[2], [11],

[16], [25], [30], [32], [40]. All share a common assumption:

the data used to train the system is labeled in some way. The

level of labeling varies considerably: some require manual

segmentation of object instances [26]; others require the

centroid of each instance [40]; while some just require that

each training image contains an instance of the object class to

be learned [16]. The approaches also vary in the number of

images required, ranging from dozens [12] up to thousands

[25], [43]. However, they all assume the existence of a set of

manually gathered collection of training images, each con-

taining an instance of the object. In this paper, we address

the problem of learning from contaminated data where a

substantial portion of the training set images do not contain

the object of interest, consisting instead of totally unrelated

objects. From a machine learning perspective, the labels of

the training data are considered to be noisyVwhile we

expect them to be positive, there is a nonzero probability that

they may be negative.

The motivation for investigating such a challenging

learning scenario is that gathering and labeling images is

time consuming and expensive and a constraint on prog-

ress. To obtain large sets of training data for more than a

handful of categories, the vision community has been

forced to adopt large collaborative efforts [10], [19], [21],

[33], [41], [44], or leverage cheap web labor (e.g., Amazon’s

Mechanical Turk [37]). Such projects make the implicit

assumption that the training of a recognition system only

needs to be done once, justifying the time and effort

expended. While this may be true in general, there are

important cases where new models might need to be

trained on-the-fly or from contaminated data. For example,

home photo collections contain a diverse collection of

objects, varying in their specificity [e.g., your girlfriend/

boyfriend (whose appearance and clothing will evolve with

time); your dog; people’s backyards]. To search through

your photos, e.g., to find all the photos containing a dog,

existing approaches would require you to manually label a

number of examples of each object from which a model

could be trained. It would be more desirable if the

computer could automatically learn these objects without

your guidanceVsimply by typing ‘‘dog.’’ Another applica-

tion would be mobile robotics where a robot could learn

frequently occurring objects as it explores its environment

(contaminated data).

As will be shown, by removing the need for a con-

sistently labeled set of training data, we are able to train

directly from the loose collections of images typically

returned by Internet image search engines. These use weak

text-based cues (such as the filename or Alt text) to group

collections of images, meaning that they frequently contain

many different visual groups and a large portion of visually

unrelated images. The search engines also track user click

through and use this to rerank the images. However, since

users rarely go beyond the first couple of pages of images,

this reranking only affects a tiny fraction of the total images

returned. Nevertheless, we show how we can use this small

number of positive examples to help automate the learning

procedure.

To train robust models we need many images, and since

these search engines return many hundreds or thousands of

images, despite the heavy contamination, several hundred

positive examples exist. Nonetheless, it makes for a highly

challenging learning environment. Fig. 1 shows a sample of

images returned from Google’s image search using the

keyword ‘‘airplane,’’ illustrating the diversity of the data.

However, if one can succeed in learning from such noisy

contaminated data the reward is tremendous: it enables us

to automatically learn a classifier for any visual category,

given only its name.

In this work, we use Google’s image search1 exclusively

but any other image search engine may be used provided

that the images can be gathered in an automated manner.

Since all of the major Internet search engines use mainly

text cues and user click through in their image search,

their performance is similar.

A. Related Work
The methods we present are related to three areas of

work: 1) discovering object categories within a collection of

images; 2) training on the output of image search engines;

and 3) learning categories with text-based cues.

The problem of object discovery in a large corpus of

image data is that of extracting coherent components in an

unsupervised manner, and has many parallels with

problems in the field of textual analysis. A leading approach

in this field is that of probabilistic latent semantic analysis

(pLSA) [20] and its hierarchical Bayesian form, latent

Dirichlet allocation (LDA) [4]. Recently, these two gen-

erative approaches have been applied to computer vision:

Fei-Fei and Perona [13] applied LDA to scene classification

and more relevantly, Sivic et al. applied pLSA to unsuper-

vised object categorization. In the latter work, the

California Institute of Technology (Caltech, Pasadena)

data sets used by Fergus et al. [16] were combined into one

large collection and the different objects extracted auto-

matically using pLSA. The drawback to these schemes is

that they incorporate no spatial information, being a simple

visual bag-of-words model [8], [36].

A variety of papers have employed and extended these

methods. Quelhas et al. [31] and Bosch et al. [5] perform
scene classification. Spatial information has been incor-

porated loosely in [17], for unsupervised discovery in data

sets such as PASCAL [10], and by Lazebnik et al. [24] who
use spatial pyramid matching in the Caltech data sets [19].

Sudderth et al. [38], [39] construct hierarchical scene-

object-part models based on LDA.

1http://www.google.com/imghp.
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For the most part, existing work has used training data

which were cleanly divided into separate groups: each

image contained one instance of an object. The Google data

are more varied in that there may be one or more coherent

visual components (due to polysemes, e.g., ‘‘iris’’ can be iris

flower, iris eye, Iris Murdoch) with the remaining images

either vaguely related to one of the visual components (e.g.,

cartoon depiction of the object), or totally unrelated. This

makes the learning problems harder and the data are no

longer a set of tightly grouped clusters.

In this paper, we will show that the pLSA model can be

applied successfully to this type of data, and use the pLSA

model to illustrate the idea of learning visual object

models from Google image data. Previous work has used a

variety of methods to learn from such internet data. Berg

and Forsyth [3] overcome the limitations of Google’s

image search by using text on the original web pages to

extract further contextual cues. By using these in

conjunction with the image features they demonstrate

how large sets of animal images can be gathered from the

web, although some manual intervention is required.

Schroff et al. [34] extend this method to be fully automatic

by first ranking the images based on the text and other

metadata, and then learning a visual model discrimina-

tively from the highly ranked images by using a support

vector machine (SVM) classifier to cope with the noisy

image labels. Vijayanarasimhan and Grauman [42] use

multiple-instance learning techniques to overcome the

labeling noise in Internet images. Li et al. [27] show how

methods, similar to those introduced in this paper, can be

used in incremental fashion to compile a data set of a

desired class from the Internet. Collins et al. [7] use an

active learning approach to rapidly build up a large data set

from Internet images, using a human-in-the-loop with the

recognition model.

The techniques presented in this paper are closely

related to these approaches. Indeed, methods from the

papers above could also be applied to the tasks we explore.

However, an attraction of the pLSA approach is that it is

simple and straightforward to implement, while still

addressing many of the important elements of the problem.

Other work has focused on the joint learning of text

and images. Barnard et al. [1] present a method where

models are learned not just from images but also accom-

panying text labels. Each image is oversegmented using

normalized cuts to give large number of regions. The

regions are represented by vectors encoding low-level

concepts such as color and area. The vectors from each

image are modeled jointly with the text labels, establishing

a correspondence between the two. Hence, in a recogni-

tion scenario, given one the other can be predicted.

Carbonetto et al. [6] also consider the text and images

problem but here use sparse kernel methods to determine

sets of features related to each object class.

Both these works assume that text annotations are

available for the training set. The text cues given by the

Internet search engines are very crude: the same keyword

for every image returned, thus these techniques are not

directly applicable to our problem.

II . OVERVIEW

In this paper, we investigate the ability of a pLSA-based

model, based on Sivic et al. [35], to successfully learn from

Fig. 1. (a) Images returned from Google’s image search using the keyword ‘‘airplane.’’ This is a representative sample of our training data.

Note the large proportion of visually unrelated images and thewide pose variation. (b)Anoverviewof the training and testing procedures for the

pLSA-based model introduced in this paper.
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Google images. We first introduce the standard pLSA

model, which does not use any form of location information,

and then extend pLSA to include location information in a

straightforward manner to address this shortcoming. For

this extension, we use a simple spatial model that captures

only the absolute location of objects within the image using a

discrete grid. At first sight, this would seem to be rather

limited: if the object were to shift significantly within the

image, then the representation would change. However, a

quirk of our training images results in this happening far less

than might be expected. For the most part, images con-

taining good examples have been captured by a human

photographer who has centered and filled the frame with the

object of interest, thus giving a fairly stable position and

scale (although the aspect is highly variable). Furthermore,

search engines rely on textual cues such as the filename,

which often reflects the dominant object in the image.

Hence, while the images overall are highly variable, some

images will contain approximately centered instances of the

object filling the frame. See Fig. 6 for examples of the

phenomenon.

We investigate two different scenarios involving

images from Google. In the first scenario, we train models

directly on Google images and use them to rerank the

training images, using the likelihood of each image under

the model learned. Hopefully the good images will score

highly, while the junk (visually unrelated) images score

poorly, resulting in the first few reranked pages containing

more good examples than they originally did, thus

improving the performance of Google’s image search.

The second, more ambitious scenario, is to train

models on the Google images and then to test them on

other data sets on the webVthe Caltech and PASCAL VOC

[45] data setsVto see how they compare to existing

methods, trained on manually prepared (uncontaminated)

data. This open world evaluation requires stronger models

than the first scenario since they will be used in a more

general setting.

The structure of the paper is as follows. In Section III,

we introduce the pLSA framework of Sivic et al. and detail

our extension to their scheme. Having described the two

approaches, in Section IV, we look at the specific issues in

applying them to the Google data. We describe the visual

features in Section V. In Section VI, we apply the algo-

rithms to learning from the Google data, evaluating them

under both scenarios. Finally, in Section VII, we discuss

their relative benefits and draw conclusions.

III . PROBABILISTIC LATENT SEMANTIC
ANALYSIS (pLSA)

A problem of significant interest in the text analysis

community is that of extracting coherent components,

such as topics, from a large corpus of documents. Latent

semantic analysis (LSA) is an approach whereby each

document is represented by a histogram of word counts

over a vocabulary of fixed size. The histograms from all

documents in the corpus form a large co-occurrence matrix

which is then decomposed using singular value decompo-

sition, with the eigenvectors corresponding to different

topics within the corpus and the eigenvalues giving their

relative weighting.

Hofmann [20] placed LSA in a probabilistic context,

calling it pLSA. Each document is modeled as a mixture of

Z topics, each topic being a distribution over the vocab-

ulary of words. More formally, we have a set of D docu-

ments, each modeled as a histogram of word counts over a

vocabulary of size W. The corpus of documents is rep-

resented by a co-occurrence matrix of size W � D, with
entry nðw; dÞ listing the number of words w in document d.
Document d has Nd words in total. The model has a single

latent topic variable z associating the occurrence of word w
to document d

Pðw; dÞ ¼
XZ

z¼1

PðwjzÞPðzjdÞPðdÞ: (1)

Thus, we are decomposing a W � D matrix into a W � Z
matrix and a Z�W one. PðwjzÞ captures the co-occurrence
of words within a topic, while PðzjdÞ gives the weighting of
each topic within a document. The graphical model is

shown in Fig. 2(a).

The densities of the model PðwjzÞ and PðzjdÞ are

learned using an alternating optimization scheme known

Fig. 2. (a) Graphical model of pLSA. (b) Learning a pLSA model consists of factoring the matrix PðwjdÞ into two smaller ones: PðwjzÞ and PðzjdÞ.

See text for details. (c) Graphical model of ABS-pLSA. It is trained in a similar fashion to pLSA.
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as expectation–maximization (EM). The E-step computes

the posterior over the topic Pðzjw; dÞ and then the M-step

updates the densities

E-step: Pðzjw; dÞ ¼
PðwjzÞPðzjdÞP
z0 Pðwjz

0ÞPðz0jdÞ
(2)

M-step: PðwjzÞ /
XD

d¼1

nðw; dÞPðzjw; dÞ (3)

PðzjdÞ /
XW

w¼1

nðw; dÞPðzjw; dÞ: (4)

This maximizes the likelihood of the model over the data

L ¼
YD

d¼1

YW

w¼1

Pðw; dÞnðw;dÞ: (5)

A novel document d� is classified by running EM with

PðwjzÞ fixed, computing Pðzjd�Þ, the mix of topics within

the image.

A. Applying pLSA to Visual Data
While pLSA and LDA model text documents, we can

use them to model images by using the analogies (as

proposed by Sivic et al. [35] and Fei-Fei and Perona [13]),

which may be summarized as follows: a document d cor-

responds to an image; a word w corresponds to a visual

word; and finally, a topic z corresponds to an object. These

terms are self-evident except for visual words which we

now explain.

1) Visual Words: Both Sivic et al. and Fei-Fei and Perona
adopt the same procedure whereby a set of regions is

extracted from the image using a feature detector that

finds salient localized regions. Then, the appearance of

each localized region is vector quantized to a prebuilt

vocabulary of visual words [36]. No location information is

taken from the regions, the image being represented solely

by a histogram of visual words.

The visual vocabulary is built by running k-means on a

large set of regions from an independent set of training

images of widely varying content. The size of the vocab-

ulary is a specified parameter of the system, with Sivic et al.
and Fei-Fei and Perona using W in the range 200–2000.

The feature detectors and descriptors used are detailed in

Section V. This process is illustrated in Fig. 3.

2) An Example: To consolidate our description, we give a
toy example. Fig. 4(a)–(c) shows the results of a two topic

model trained on a collection of images of which 50% were

airplanes from the Caltech data sets and the other 50%

were background scenes from the Caltech data sets.

Learning is performed in an unsupervised manner in that

image labels (airplane or background) were not provided

to the algorithm. The regions are colored according to the

most likely topic of their visual word [using PðwjzÞ]: red for
the first topic (which happens to pick out the airplane

images) and green for the second (which picks out back-

ground images). PðzjdÞ is shown above each image.

B. Adding Location Into the pLSA Model
Having described how pLSA may be applied to visual

data, we now introduce location information into the

model. We choose to apply these changes to pLSA rather

than LDA since the former is simpler in nature. The ben-

efits of LDA are marginal since, for the most part, we do

not intend to train the model from a small number of

images, making the priors in LDA irrelevant. However, the

proposed changes could easily be made to LDA also.

A straightforward way to incorporate location is to

quantize the location within the image into one of X bins

and then to have a joint density on the appearance and

location of each region. Thus, PðwjzÞ in pLSA becomes

Pðw; xjzÞ, a discrete density of size ðW � XÞ � Z

Pðw; x; dÞ ¼
XZ

z¼1

Pðw; xjzÞPðzjdÞ: (6)

We denote this model ABS-pLSA. The graphical model is

shown in Fig. 2(b).

The same pLSA update equations outlined above can be

easily applied to this model in learning and recognition.

The problem with this representation is that it is not

translation or scale invariant at all, since x is an absolute

coordinate frame.

C. Recognition Using the pLSA
and ABS-pLSA Models

To classify a test image, interest points are found and

vector quantized in the same manner as in training. Then,

the EM equations (4) are iterated, holding pðwjzÞ fixed

[pðw; xjzÞ in the case of ABS-pLSA]. Hence, only the

weighting of the different topics within the image pðzjdÞ is
inferred. Given a particular topic z� (for details on how this

can be done automatically, see Section IV-B), the

classification confidence is thus given by pðz�jdÞ.
Although we restrict ourselves to classification in this

paper, if the test images contain objects whose scale and

location vary considerably, both models can be employed

in a sliding-window fashion, whereby a small subwindow

of the image is cropped out and classified independently.

IV. APPLICATION TO GOOGLE DATA

The pLSA-based approaches outlined above have previ-

ously been used in weakly supervised settings where the

Fergus et al.: Learning Object Categories From Internet Image Searches
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images were known to contain an instance of the object to

be learned. In applying the methods to search engine

images, issues arise due to the unsupervised nature of the

problem and the labeling noise of the data. In particular,

the methods require a validation set to make important

model design decisions but it is not clear how such a set

Fig. 4. (a) and (b) Two airplane and (c) one background image, with regions superimposed, colored according to topic of a learned pLSA model.

Red corresponds to topic 1; green to topic 2. The color of each circle is given by the probability of belonging to each topic, based on the

regions’ visualword (e.g., a browncirclemeans the region is equally likely tobelong toboth topics). As is evident, topic 1 corresponds toairplanes

and topic 2 to the background. Only a subset of regions are shown for clarity.

Fig. 3. Our image representation based on visual word histograms. Counterclockwise from top left: Region detectors are applied to a large set of

images, where salient regions are localized (in reality, many hundreds of regions are output per image). Each region is represented by a SIFT

descriptor which corresponds to a point in the high-dimensional descriptor space. All descriptors from all images are then vector quantized

using a precomputed set of cluster centers (W ¼ 350 in our case). Each cluster center corresponds to a visualword. Then, a histogram is built over

the visual words. In pLSA, location is ignored and the histogram is formed using all regions in the image. In ABS-pLSA, we use a discrete

location grid and build a separate histogram within each grid cell, using only the regions that occur within it.

Fergus et al. : Learning Object Categories From Internet Image Searches
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may be obtained, given the lack of labeled data. We now

describe a novel way to obtain a small set of images which

may be used as a noisy validation set and then detail the

application of both approaches to the Google data.

A. Automatic Gathering of Noisy Validation Set
We make the empirical observation (as seen in Fig. 5)

that the first few pages returned by Google tend to contain

more good images than those returned later on.2 The idea

is that we assume that the images from these first pages are

positive examples, and hence may be used as a validation

set to make model selection choices in our experiments.

The catch is that the dropoff in quality of Google’s search is

so steep that only the first few images of the first page are

likely to be good examples.

Using Google’s automatic translation tool [18], we

obtain the translations of the user’s keyword in the fol-

lowing languages: German, French, Spanish, Italian,

Portuguese, and Chinese. Since each translation returns a

different set of images, albeit with the same dropoff in

quality, we automatically download the first few images

from each different language, and combine them to give a

validation set of a reasonable size without a degradation in

quality. Although automatic translation tools are far from

perfect, the fact that the keyword is a noun usually means

that there is a unique translation, hence making the process

more reliable. The idea of using linguistic translation of

query terms to assist with visual search has also been

explored by Etzioni et al. [9].

Using seven different languages (including English),

taking the first five images, we can obtain a validation set

of up to 35 images (since languages may share the same

word for a category and we reject duplicate images). Note

that this scheme does not require any supervision. Fig. 6

shows the validation sets for airplane and motorbike.

B. Picking the Number of Topics
The example in Section III-A2 only required two

topics, but in general, more topics are required to model

the variety of the data. The choice of the number of topics

brings up two additional issues when training our models

on images from Google: 1) the optimal number of topics Z;
and 2) which subset of these topics should be used to form

a classifier for use in testing. A larger number of topics will

result in more homogeneous topics at the expense of their

ability to generalize. Given the varied nature of images

obtained from Google, a large number of topics might

seem appropriate, but this raises the issue of how to pick

the topics corresponding to the good images, while

ignoring topics which model the junk images within the

data set.

For a given keyword, the validation set used to pick

topics from a model. In view of the small size and imper-

fect quality of the validation set, we limit ourselves to

picking a single topic from the larger model. While this is a

suboptimal strategy, it is all that can be done reliably given

the lack of labeled data.

In our experiments, we used Z ¼ 8 topics, this being

the largest number from which we can reliably pick the

single topic that corresponds to the good images. For more

details on these design choices, see [14].

Fig. 5. Recall precision curves of the raw output of Google’s image search for seven keywords. Good labels count as positive examples while

intermediate and junk labels are negative examples (the three classes of label are defined in the text). (a) Shows recall from 0 to 1, while

(b) zooms in, showing the recall from0 to0.1.Aseachdata set is roughly500 images insize,with the fractionofgood imagesaround25%meaning

that 0.1 recall corresponds to around 12 good images. Note that the precision drops rapidly as the recall increases, leveling out at 20%–30%

for most categories.

2The images were downloaded from Google in June 2005. All data
sets used in this paper may be downloaded from http://cs.nyu.edu/
~fergus/.
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V. FEATURE DETECTORS AND
REPRESENTATION

Since we wish to apply our methods to a wide variety of

object categories, we use a variety of different object detec-

tors to ensure a good coverage of the image, regardless of its

content.

We use four different types of circular region detector:

1) Kadir & Brady saliency operator [23]; 2) multiscale

Harris detector [29]; 3) difference of Gaussians, as used by

Lowe [28]. The fourth type is an edge-based operator,

designed for certain categories where edge information is

important since the other types of detectors do not ade-

quately capture this information. The details of this

operator can be found in [14]. In total, all four types of

detector produce around 700 regions/image.

Following the work of Sivic et al. [35] and others, we

describe each region using the SIFT descriptor [28], using

72 dimensions rather than the usual 128, resulting in lar-

ger histogram bins which are more appropriate for object

categorization.

The descriptors are then vector quantized using a fixed

codebooks of visual words, precomputed using k-means

from a large set of images drawn from the training sets of a

large number of different categories. A separate codebook

was formed for each feature type and then combined to

give a total of W ¼ 350 visual words.

Fig. 6. (a) The entire validation set for ‘‘airplane’’ obtained automatically using Google’s translation tool and Google’s image search. The text by

each row shows the translated keyword used to gather that particular row. The quality of the images is noticeably higher than in the random

sampleofairplane imagesdownloaded fromGoogle, shown in (c). (b)Theentire validation set formotorbikes.Again, theportionofgood images is

considerably higher than a random page of images, shown in (d).
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VI. EXPERIMENTS

A. Data Sets
For seven categories, a set of images was automatically

downloaded from Google’s image search using the key-

words: airplane, cars rear, face, guitar, motorbike, leopard

and wrist watch. Although in this paper Google’s image

search was used exclusively, any other image search engine

may be used provided that the images can be gathered in

an automated manner, using the category name. Dupli-

cates images and very small images (G 100 pixels in width)

were discarded and Google’s SafeSearch filter was left on,

to reduce the proportion of unrelated images returned. For

assessment purposes, the images returned by Google were

divided into three distinct groups.

1) Good images: these are good examples of the key-

word category, lacking major occlusion, although

there may be a variety of viewpoints, scalings, and

orientations.

2) Intermediate images: these are in some way related

to the keyword category, but are of lower quality

than the good images. They may have extensive

occlusion; substantial image noise; be a caricature

or cartoon of the category; or the object is rather

insignificant in the image, or some other fault.

3) Junk images: these are totally unrelated to the

keyword category.

The labeling was performed by an individual who was not

connected with the experiments in anyway, possessing no

knowledge of our algorithms. Table 1 shows the relative

portions of labels for each of the seven categories. Addi-

tionally, a background data set was collected from Google,

using the keyword ‘‘things.’’ This gave a large collection of

highly variable images.

We also use two open-world data sets to explore the

performance of the models trained on Google images. The

first are seven classes from the Caltech data set [15],

matching the classes collected from Google and listed

above (see examples in Figs. 9 and 10). These are relatively

straightforward in that the objects tend to fairly centered

and large within the image. The second, more challenging

data set, consists of two classes from the PASCAL VOC

2005 [11]: motorbikes and cars. Note that we use the more

challenging test set 2 in both cases, where the object pose

is highly variable. For both these open-world data sets, we

restrict ourselves to a classification task (i.e., object

present/absent within image), making no attempt to local-

ize the object.

B. Improving Google’s Image Search
To improve Google’s image search with the pLSA

methods, we first train a model on Google data, then

choose a single topic with the validation set and use it to

rerank the entire Google data set. An overview of the

whole training procedure is given in Fig. 1.

In Figs. 7 and 8, we can see what each topic in pLSA

and ABS-pLSA has learned from the motorbike, and cars

rear Google data sets. Note that each topic clusters visually

consistent images: some correspond to the object; others

to images of text or other junk. Some of the ABS-pLSA

models seem to be clustering object instances by aspect

(e.g., motorbikes). Qualitatively, the addition of location

information seems to improve the consistency of each

topic. The performance improvement is quantified in

Table 1, where the precision at 15% recall (corresponding

to a couple of web pages) is recorded for the two pLSA

methods and the raw Google ranking.

Table 1 shows pLSA and ABS-pLSA improving on the

raw Google precision, in many cases significantly. The

method using location information, ABS-pLSA, generally

outperforms pLSA.

C. Open World Experiments
The models used to improve Google’s image search are

now tested on other data sets, enabling us to see what

performance penalty is incurred when training on con-

taminated data.

For such experiments, we use the Caltech data sets

matching the keywords entered into Google’s image search.

In Figs. 9 and 10, we show ABS-pLSA models trained on

Table 1 Column 2: Number of Images Collected From Google’s Image Search, Column 3: Size of Validation Set. Columns 4, 5, and 6: Breakdown of Google

Images for Each Class. Note the Low Proportion of Good Examples Present in the Majority of Categories. Remaining Columns: Precision at 15% Recall for

Different pLSA-Based Methods of Reranking Images Returned by Google’s Images Search. Good Images Are Taken as Positive Examples, While

Intermediate and Junk Images as Negative Examples. The Raw Google Ranking Is Compared to the Three pLSA-Based Methods. 15% Recall Corresponds

to a Couple of Web Pages Worth of Images
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Google data being tested on Caltech images. These are the

same models used in Section VI-B. The location densities in

the figures give some idea of the tightness of the model,

which appears to be surprisingly goodVbetter in some

cases than the models trained directly on Caltech data.

Table 2 shows the performance on a classification task

(object versus background class of Google ‘‘things’’

images) of the pLSA-based methods when tested on the

Caltech data sets (having been trained on Google data).

For the most part, a significant drop in performance is

Fig. 7. (a) pLSAapplied to images collected fromGoogle using the ‘‘motorbike’’ keyword. Each column shows the top ten images for a given topic.

The colored dots indicate the ground-truth label (only used for assessment purposes): greenVgood; yellowVintermediate; redVjunk. Note the

visual consistency of most topics: some consist mainly of motorbikes while others cluster figures and diagrams with a white background. The

validationset automatically selects topic 7, containingmanygoodmotorbike images, as thebest topic. (b)As for (a)but usingABS-pLSA insteadof

pLSA. The addition of location information increases visual consistency, with different aspects of motorbikes now being separated into two

different topics.

Fig. 8. (a) pLSA and (b) ABS-pLSA applied to images collected from Google using the ‘‘car rear’’ keywords. Topics 1 and 4, respectively, were

chosen by the validation set. Both these topics contain a high proportion of good images (indicated by the green dots). In (b), the addition of

location information means that the different viewpoints of the car are clustered by the different topics.

Fergus et al. : Learning Object Categories From Internet Image Searches

1462 Proceedings of the IEEE | Vol. 98, No. 8, August 2010



Fig. 10. Similar to Fig. 9, examples from the Motorbike class are shown. Regions are superimposed that belong to the six most common

visual words from the automatically chosen topic of the Google-trained ABS-pLSA motorbike model. Each color shows regions quantized to a

different visual word. The common words correspond to curved sections of the wheels, the handlebars, and the engine block area.

Fig. 9. An insight into what the model has learned. Watches from the Caltech data set, with regions superimposed that belong to the six most

common visual words (irrespective of location) from the automatically chosen topic of the Google-trained ABS-pLSA watch model. Each color

shows regions quantized to a different visualword. The circular bezel of thewatch face is picked out. Due to the rotation sensitivity of our region

representation, different parts of the bezel are quantized todifferentwords. (b) The location densities in the subwindowof the sixmost common

words shown in (a), ordered from red to yellow. White corresponds to a high probability, black to a low one.
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observed when training from Google images, compared to

training on Caltech images. For around half the categories,

the use of location information reduces the error sig-

nificantly, although only in the case of motorbikes and

airplanes is ABS-pLSA better than either of the other two

approaches.

ABS-pLSA performs notably poorly on the guitar data

set. This may be explained by the fact that all the prepared

data have the guitar in a vertical position while guitars

appear at a seemingly random orientation in the Google

training data. Since neither of the models using location

can handle rotation, they perform badly, in contrast to

pLSA which still performs respectably.

We also applied our pLSA-based methods to two classes

from the PASCAL 2005 VOC Challenge [11]: cars and

motorbikes. Table 3 shows the performance of the three

approaches in a classification task on the test set of each

class. We used two different training approaches: 1) training

an eight-topic model on Google images and selecting the

single best topic using the PASCAL validation set; 2) training

a five-topic model on the PASCAL training set, picking the

single best topic using the PASCAL validation set. Table 3

shows that the PASCAL-trained models outperform the

Google-trained ones, in the case of cars being competitive

with the best competition entry.

VII. SUMMARY

Visual Internet search is a vital tool needed to enable users

to access the vast amount of image and video data on the

Internet. A number of different approaches to this problem

have been proposed, for example, the approach of Jing and

Baluja [22] who adapt the PageRank algorithm to the visual

domain. By contrast, our approach directly addresses the

core object recognition problem, constructing object class

models that can be used for recognition in a domain beyond

that raw search engine data. A key aspect of our approach is

the ability to construct such models with a minimum of

supervision, enabling their use without needed human

labeled images (which are typically very scarce in real

tasks).

The Google data sets present an extremely challenging

environment within which to learn. It is therefore pleasing

to see that our methods are able to find some consistency

within the data, with the addition of location into the

model giving a convincing performance gain. Since users

typically examine only the first few web pages, the visual

model only needs to select a few images to generate big

improvement in search quality. There are many possible

variants on our testing paradigm, such as the inclusion of

user feedback, for example, which would further improve

the performance.

The application of models trained on Google data in

more general settings showed a difference in performance

between the two methods. The learned models gave a

respectable performance on the PASCAL and Caltech data

sets, with the exception of a few classes. Determining the

number of topics to use remains an open issue. If a larger

validation set were available, then it might be possible to

combine several of them rather than picking a single one.

This would be particularly advantageous when different

aspects (views) of the object are split into separate topics.

Table 2 Comparison of Different Methods Trained on Caltech and Raw Google Data. All Methods Were Tested on Caltech Data. The Task Is Classification,

With the Figures Being the Error Rate at Point of Equal Error on a Receiver Operating Characteristic Curve. The Error Margins Are Roughly þ=�2%, Using

Different Random Initializations

Table 3 pLSA-Based Models Applied to Two Classes From the PASCAL VOC 2005 Challenge. Values Are Classification Error (in Percent). Column 2: Best

Classification Performance Obtained by All Methods in Competition. Columns 3, 4, and 5: Performance of Google-Trained Models, Evaluated on PASCAL

Test Data. Columns: 6, 7, and 8: Performance of Models Trained on PASCAL Training Data, Evaluated on PASCAL Test Data
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Also, given the easy availability of negative examples,

discriminative training techniques for learning the topics

would seem to be a potential way to improve performance.

While we have focused on the Internet image search

application, our techniques can easily be applied to related

applications such as search images on company intranets

or grouping portions of video footage. Another intriguing

application would be to use the visual models to refine the

text query models, for example, cluster of watch images

found by the visual model. h
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