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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We address the problem of automatically learning 

object models for recognition and pose estimation. 

In contrast to the traditional approach, we formu- 

late the recognition problem as one of matching 

visual appearance rather than shape. The ap- 

pearance of an object in a two-dimensional im- 

age depends on its shape, 

pose in the scene, 

reflectance properties, 

and the illumination conditions. 

While shape and reflectance are intrinsic proper- 

ties of an object and are constant, pose and illu- 

mination vary from scene to scene. We present a 

new compact representation of object appearance 

that is parametrized by pose and illumination. For 

each object of interest, a large set of images is ob- 

tained by automatically varying pose and illumina- 

tion. This large image set is compressed to obtain 

a low-dimensional subspace, called the eigenspace, 

in which the object is represented as a hypersur- 

face. Given an unknown input image, the recogni- 

tion system projects the image onto the eigenspace. 

The object is recognized based on the hypersurface 

it lies on. The exact position of the projection on 

the hypersurface determines the object’s pose in 

the image. We have conducted experiments using 

several objects with complex appearance charac- 

teristics. These results suggest the proposed ap- 

pearance representation to be a valuable 

variety of machine vision applications. 

Introduction 

tool for a 

One of the primary goals of an intelligent vision system 

is to recognize objects in an image and compute their 

pose in the three-dimensional scene. Such a recognition 

system has wide applications ranging from autonomous 

navigation to visual inspection. For a vision system 

to be able to recognize objects, it must have models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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of the objects stored in its memory. In the past, vi- 

sion research has emphasized on the use of geometric 

(shape) models [l] for recognition. In the case of manu- 

factured objects, these models are sometimes available 

and are referred to as computer aided design (CAD) 

models. Most objects of interest, however, do not come 

with CAD models. Typically, a vision programmer is 

forced to select an appropriate representation for object 

geometry, develop object models using this representa- 

tion, and then manually i nput this information into the 

system. This procedure is cumbersome and impracti- 

cal when dealing with large sets of objects, or objects 

with complicated geometric properties. It is clear that 

recognition systems of the future must be capable of 

acquiring object models without human assistance. In 

other words, recognition systems must 

matically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlearn the objects of interest. 

be able to auto- 

Visual learning is clearly a well-developed and vital 

component of biological vision systems. If a human is 

handed an object and asked to visually memorize it, he 

or she would rotate the object and study its appearance 

from different directions. While little is known about 

the exact representations and techniques used by the 

human mind to learn objects, it is clear that the over- 

all appearance of the object plays a critical role in its 

perception. In contrast to biological systems, machine 

vision systems today have little or no learning capabili- 

ties. Hence, visual learning is now emerging as an topic 

of research interest [6]. The goal of this-paper is to ad- 

Vance this important but relatively unexplored area of 

machine vision. 

Here, we present a technique for automatically learn- 

ing object models from images. The appearance of an 

object is the combined effect of its shape, reflectance 

properties, pose in the scene, and the illumination con- 

ditions. Recognizing objects from brightness images is 

therefore more a problem of appearance matching rather 

than shape matching. This observation lies at the core 

of our work. While shape and reflectance are intrin- 

sic properties of the object that do not vary, pose and 

illumination vary from scene to scene. We approach 

the visual learning problem as one of acquiring a com- 

pact model of the object’s appearance under different 
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illumination directions and object poses. The object is surface in two different eigenspaces; the universal 

“ shown”  to the image sensor in several orientations and eigenspace and the object’s own eigenspace. The uni- 

illumination directions. This can be accomplished us- versal eigenspuce is computed by using the image sets 

ing, for example, two robot manipulators; one to rotate of all objects of interest to the recognition system, and 

the object while the other varies the illumination direc- the object eigenspace is computed using only images of 

tion. The result is a very large set of object images. the object. We show that the universal eigenspace is 

Since all images in the set are of the same object, any best suited for discriminating between objects, whereas 

two consecutive images are correlated to large degree. the object eigenspace is better for pose estimation. Ob- 

The problem then is to compress this large image set 

into a low-dimensional representation of object appear- 

ante. 

A well-known image compression or coding technique 

is based on principal component analysis. Also known 

as the Karhunen-Loeve transform [5] [2], this method 

computes the eigenvectors of an image set. The eigen- 

vectors form an orthogonal basis for the representation 

of individual images in the image set. Though a large 

number of eigenvectors may be required for very ac- 

curate reconstruction of an object image, only a few 

eigenvectors are generally sufficient to capture the sig- 

nificant appearance characteristics of an object. These 

eigenvectors constitute the dimensions of what we refer 

to as the eigenspuce for the image set. From the per- 

spective of machine vision, the eigenspace has a very 

attractive property. When it is composed of all the 

eigenvectors of an image set, it is optimal in a corretu- 

tion sense: If any two images from the set are projected 

onto the eigenspace, the distance between the corre- 

sponding points in eigenspace is a measure of the simi- 

larity of the images in the l2 norm. In machine vision, 

the Karhunen-Loeve method has been applied primar- 

ily to two problems; handwritten character recognition 

[3] and human face recognition [8], [9]. These applica- 

tions lie within the domain of pattern classification and 

do not use complete parametrized models of the objects 

of interest. 

In this paper, we develop a continuous and com- 

pact representation of object appearance that is 

parametrized by the variables, namely, object pose and 

illumination. This new representation is referred to as 

the parametric eigenspuce. First, an image set of the 

object is obtained by varying pose and illumination in 

small increments. The image set is then normalized 

in brightness and scale to achieve invariance to image 

magnification and the intensity of illumination. The 

eigenspace for the image set is obtained by comput- 

ing the most prominent eigenvectors of the image set. 

Next, all images in the object’s image set (the learning 

samples) are projected onto the eigenspace to obtain a 

set of points. These points lie on a hypersurfuce that is 

parametrized by object pose and illumination. The hy- 

persurface is computed from the discrete points using 

the cubic spline interpolation technique. It is impor- 

tant to note that this parametric representation of an 

object is obtained without prior knowledge of the ob- 

ject’s shape and reflectance properties. It is generated 

using just a sample of the object. 

ject recognition and pose estimation can be summarized 

as follows. Given an image consisting of an object of 

interest, we assume that the object is not occluded by 

other objects and can be segmented from the remain- 

ing scene. Th e segmented image region is normalized 

in scale and brightness, such that it has the same size 

and brightness range as the images used in the learning 

stage. This normalized image is first projected onto the 

universal eigenspace to identify the object. After the 

object is recognized, the image is projected onto the 

object eigenspace and the location of the projection on 

the object’s parametrized hypersurface determines its 

pose in the scene. 

The learning of an object requires the acquisition of 

a large image set and the computationally intensive 

process of finding eigenvectors. However, the learn- 

ing stage is done off-line and hence can afford to be 

relatively slow. In contrast, recognition and pose es- 

timation are often subject to strong time constraints, 

and our approach offers a very simple and computa- 

tionally efficient solution. We have conducted exten- 

sive experimentation to demonstrate the power of the 

parametric eigenspace representation. The fundamen- 

tal contributions of this paper can be summarized as 

follows. (a) The parametric eigenspace is presented 

as a new representation of object appearance. (b) Us- 

ing this representation, object models are automatically 

learned from appearance by varying pose and illumi- 

nation. (c) Both learning and recognition are accom- 

plished without prior knowledge of the object’s shape 

and reflectance. 

Visual Learning of Objects 

In this section, we discuss the learning of object models 

using the parametric eigenspace representation. First, 

we discuss the acquisition of object image sets. The 

eigenspaces are computed using the image sets and 

each object is represented as a parametric hypersurface. 

Throughout this section, we will use a sample object to 

describe the learning process. In the next section, we 

discuss the recognition and pose estimation of objects 

using the parametric eigenspace representation. 

Normalized Image Sets 

While constructing image sets we need to ensure that 

all images of the object are of the same size. Each 

digitized image is first segmented (using a threshold) 

into an object region and a background region. The 

background is assigned a zero brightness value and the 

object region is re-sampled such that the larger of its Each object is represented as a parametric hyper- 
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two dimensions fits the image size we have selected for 

the image set representation. We now have a scale nor- 

malized image. This image is written as a vector x 

by reading pixel brightness values from the image in a 

raster scan manner: 

k=[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, 22, “ “

‘

Y 

hJ1* (1) 

The appearance of an object depends on its shape and 

reflectance properties. These are intrinsic properties of 

the object that do not vary. The appearance of the 

object also depends on the pose of the object and the 

illumination conditions. Unlike the intrinsic properties, 

object pose and illumination are expected to vary from 

scene to scene. If the illumination conditions of the en- 

vironment are constant, the appearance of the object 

is affected only by its pose. Here, we assume that the 

object is illuminated by the ambient lighting of the en- 

vironment as well ‘

as 

one additional distant light source 

whose direction may vary. Hence, all possible appear- 

ances of the object can be captured by varying object 

pose and the light source direction with respect to the 

viewing direction of the sensor. We will denote each 

image as $?/  where T is the rotation or pose parame- 

ter, I represents the illumination direction, and p is the 

object number. The complete image set obtained for 

The above described normalizations with respect to 

scale and brightness give us normalized object image 

sets and a normalized universal image set. In the fol- 

lowing discussion, we will simply refer to these as the 

object and universal image sets. 

The images sets can be obtained in several ways. 

If the geometrical model and reflectance properties of 

an object are known, its images for different pose and 

illumination directions can be synthesized using well- 

known rendering algorithms. In this paper, we do not 

assume that object geometry and reflectance are given. 

Instead, we assume that we have a sample of each ob- 

ject that can be used for learning. One approach then 

is to use two robot manipulators; one grasps the object 

and shows it to the sensor in different poses while the 

other has a light source mounted on it and is used to 

vary the illumination direction. In our experiments, we 

have used a turntable to rotate the object in a single 

plane (see Fig. 1). This gives us pose variations about 

a single axis. A robot manipulator is used to vary the 

illumination direction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf the recognition system is to 

be used in an environment where the illumination (due 

to one or several sources) is not expected to change, the 

image set can be obtained by varying just object pose. 

an object is referred to as the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAobject image set and 

can be expressed as: 

1 ’ 
$1

’ 

) . . . . . . ) kk”

‘

l, 

iiip; > “ “ “ 9 I , (2) 

Here, R and L are the total number of discrete poses 

and illumination directions, respectively, used to obtain 

the image set. If a total of P objects are to be learned 

by the recognition system, we can define the universal 

We assume that the imaging sensor used for learning 

and recognizing objects has a linear response, i.e. image 

brightness is proportional to scene radiance. We would 

like our recognition system to be unaffected by varia- 

tions in the intensity of illumination or the aperture of 

the imaging system. This can be achieved by normaliz- 

ing each of the images in the object and universal sets, 

such that, the total energy contained in the image is 

unity, i.e. ] ] x I] = 1, This brightness normalization 

transforms each measured image % to a normalized im- 

age x: 

Figure 1: Setup used for automatic acquisition of ob- 

ject image sets. The object is placed on a motorized 

turntable. 

Computing Eigenspaces 

Consecutive images in an object image set tend to be 

correlated to a large degree since pose and illumination 

variations between consecutive images are small. Our 

first step is to take advantage of this correlation and 

compress large image sets into low-dimensional repre- 

sentations that capture the gross appearance charac- 

teristics of objects. A suitable compression technique 

is the Karhunen-Loeve expansion [2] where the eigen- 

vectors of the image set are computed and used as or- 

thogonal basis functions for representing individual im- 

ages. Though, in general, all the eigenvectors of an 

where: 

X = 
[Xl, x2, ““ ‘ Y WIT (4) 

xn = $(?,), CT = 

d 

&&)

” 

(5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n=i 
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image set are required for the perfect reconstruction of 

an object image, only a few are sufficient for the repre- 

sentation of objects for recognition purposes. We com- 

pute two types of eigenspaces; the universal eigenspace 

that is obtained from the universal image set, and ob- 

ject eigenspaces computed from individual object image 

sets. 

To compute the universal eigenspace, we first sub- 

tract the average of all images in the universal set 

from each image. This ensures that the eigenvector 

with the largest eigenvalue represents the dimension in 

eigenspace in which the variance of images is maximum 

in the correlation sense. In other words, it is the most 

important dimension of the eigenspace. The average c 

of all images in the universal image set is determined 

as: 

(6) 
p=1 r=1 jr, 

“ -- 

A new image set is obtained by subtracting the average 

image c from each image in the universal set: 

x ik { x1,1(l) - c, .“ ., XRp) - c, . ...) xj#) - c } 

(7) 
The image matrix X is N x Ad, where M = RLP is 

the total number of images in the universal set, and 

N is the number of pixels in each image. To compute 

prominent eigenvectors of the universal image set are 

computed. The result is a set of eigenvalues { & ] i = 

1, 2, . ..) k} where {Xl > X2 2 . . . . . 2 Xk}, and acor- 

responding set of eigenvector { ei ] i = 1,2, . . . . k }. 

Note that each eigenvector is of size N, i.e. the size of 

an image. These k eigenvectors constitute the univer- 

sal eigenspace; it is an approximation to the complete 

eigenspace with N dimensions. We have found from 

our experiments that less than ten dimensions of the 

eigenspace are generally sufficient for the purposes of 

visual learning and recognition (i.e. k 5 10). Later, we 

describe how objects in an unknown input image are 

recognized using the universal eigenspace. 

Once an object has been recognized, we are inter- 

ested in finding its pose in the image. The accuracy of 

pose estimation depends on the ability of the recogni- 

tion system to discriminate between different images of 

the same object. Hence, pose estimation is best done in 

an eigenspace that is tuned to the appearance of a single 

object. To this end, we compute an object eigenspace 

from each of the object image sets. The procedure for 

computing an object eigenspace is similar to that used 

for the universal eigenspace. In this case, the average 

c(P) of all images of object p is computed and subtracted 

from each of the object images. The resultin 

are used to compute the covariance matrix Q PI. 7 
images 

The 

eigenspace for the object p is obtained by solving the 

eigenvectors 

matrix as: 

of the image set we define the covariance system: 

X;(P) eilP) = Q(P) ,i(P) 
(10) 

QeXXT (8) 

The covariance matrix is N x N, clearly a very large ma- 

trix since a large number of pixels constitute an image. 

The eigenvectors ei and the corresponding eigenvalues 

Xi of Q are to be determined by solving the well-known 

eigenvector decomposition problem: 

Xi ei = Q ei (9) 

All N eigenvectors of the universal set together con- 

stitute a complete eigenspace. Any two images from 

the universal image set, when projected onto the 

eigenspace, give two discrete points. The distance be- 

tween these points is a measure of the difference be- 

tween the two images in the correlation sense. Since 

the universal eigenspace is computed using images of 

all objects, it is the ideal space for discriminating be- 

tween images of different objects. 

Determining the eigenvalues and eigenvectors of a 

large matrix such as Q is a non-trivial problem. It 

is computationally very intensive and traditional tech- 

niques used for computing eigenvectors of small matri- 

ces are impractical. Since we are interested only in a 

small number (k) of eigenvectors, and not the complete 

set of N eigenvectors, efficient algorithms can be used. 

In our imnlementation, we have used the spatial tempo- 

Once again, we compute only a small number (k< 10) 

of the largest eigenvalues { AiCp) ] i = 1,2, . . . . k } where 

. . . . . { Xl(P) > xp > - - > XkCp) }, and a corresponding - 

set of eigenvector { ei(P) ] i = 1,2, . . . . k}. An object 

eigenspace is computed for each object of interest to 

the recognition system. 

Parametric Eigenspaee Representation 

We now represent each object as a hypersurface in the 

universal eigenspace as well as its own eigenspace. This 

new representation of appearance lies at the core of our 

approach to visual learning and recognition. Each ap- 

pearance hypersurface is parametrized by two parame- 

ters; object rotation and illumination direction. 

A parametric hypersurface for the object p is con- 

strutted in the universal eigenspace as follows. Each 

image x,,l(P) (learning sample) in the object image set 

is projected onto the eigenspace by first subtracting the 

average image c from it and finding the dot product of 

the result with each of the eigenvectors (dimensions) of 

the universal eigenspace. The result is a point g,,{(P) in 

the eigenspace: 

g,,l(P) = [el, e2, . . . . . . eklT ( &-,I(~) - C) (11) 
A 

ral adaptive (STA) algorithm proposed by Murase and 

Lindenbaum [4]. Th is algorithm was recently demon- 

strated to be substantially more efficient than previ- 

ous algorithms. Using the STA algorithm the k most 

Once again the subscript r represents the rotation pa- 

rameter and I is the illumination direction. By pro- 

jetting all the learning samples in this manner, we ob- 

tain a set of discrete points in the universal eigenspace. 
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Since consecutive object images are strongly correlated, 

their projections in eigenspace are close to one another. 

Hence, the discrete points obtained by projecting all 

the learning samples can be assumed to lie on a k- 

dimensional hypersurface that represents all possible 

poses of the object under all possible illumination direc- 

tions. We interpolate the discrete points to obtain this 

hypersurface. In our implementation, we have used a 

standard cubic spline interpolation algorithm [7]. Since 

cubic splines are well-known we will not describe them 

here. The resulting hypersurface can be expressed as: 

dp)(el, 02) (12) 
where 01 and 02 are the continuous rotation and il- 

lumination parameters. The above hypersurface is a 

compact representation of the object’s appearance. 

In a similar manner, a hypersurface is also con- 

structed in the object’s eigenspace by projecting the 

learning samples onto this space: 

fr,l(p) = [e,(P), e2(P),.....,ee(p)lT (x,,~(~) - dp)) 

(13) 
where, c(P) is the average of all images in the object 

image set. Using cubic splines, the discrete points f,.l(") - 
are interpolated to obtain the hypersurface: 

f(“) ( 6, 02 > 

Once again, 01 and 82 are the rotation and illumination 

parameters, respectively. This continuous parameteri- 

zation enables us to find poses of the object that are 

not included in the learning samples. It also enables us 

to compute accurate pose estimates under illumination 

directions that lie in between the discrete illumination 

directions used in the learning stage. Fig.2 shows the 

parametrized eigenspace representation of the object 

shown in Fig.1. The figure shows only three of the most 

significant dimensions of the eigenspace since it is diffi- 

cult to display and visualize higher dimensional spaces. 

The object representation in this case is a curve, rather 

than a surface, since the object image set was obtained 

using a single illumination direction while the object 

was rotated (in increments of 4 degrees) about a single 

axis. The discrete points on the curve correspond to 

projections of the learning samples in the object image 

set. The continuous curve passing through the points 

is parametrized by the rotation parameter 01 and is 

obtained using the cubic spline algorithm. 

Recognition and Pose Estimation 

Consider an image of a scene that includes one or more 

of the objects we have learned using the parametric 

eigenspace representation. We assume that the objects 

are not occluded by other objects in the scene when 

viewed from the sensor direction, and that the image 

regions corresponding to objects have been segmented 

away from the scene image. First, each segmented 

image region is normalized with respect to scale and 

brightness as described in the previous section. This 

Figure 2: Parametric eigenspace representation of the 

object shown in Fig.1. Only the three most prominent 

dimensions of the eigenspace are displayed here. The 

points shown correspond to projections of the learning 

samples. Here, illumination is constant and therefore 

we obtain a curve with a single parameter (rotation) 

rather than a surface. 

ensures that (a) the input image has the same dimen- 

sions as the eigenvectors (dimensions) of the parametric 

eigenspace, (b) the recognition system is invariant to 

object magnification, and (c) the recognition system is 

invariant to fluctuations in the intensity of illumination. 

As stated earlier in the paper, the universal 

eigenspace is best tuned to discriminate between dif- 

ferent objects. Hence, we first project the normalized 

input image y to the universal eigenspace. First, the 

average c of the universal image set is subtracted from 

y and the dot product of the resulting vector is com- 

puted with each of the eigenvectors that constitute the 

universal space. The k coefficients obtained are the co- 

ordinates of a point z in the eigenspace: 

Z = [el, e2 ,....., eklT(y - c) = [xl, z2 ,....., zk] 

(1~1 

The recognition problem then is to find the object p 

whose hypersurface the point z lies on. Due to fac- 

tors such as image noise, aberrations in the imaging 

system, and digitization effects, z may not lie exactly 

on an object hypersurface. Hence, we find the object 

p that gives the minimum distance dlcp) between its 

hypersurface g (PI (81, 02) and the point z: 

cp = oyi; 11 z - dP)(h, 02) II (16) 

If dlcp) is within some pre-determined threshold value, 

we conclude that the input image is of the object p. If 

not, we conclude that input image is not of any of the 

objects used in the learning stage. It is important to 

note that the hypersurface representation of objects in 

eigenspace results in more reliable recognition than if 
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the object is represented as just a cluster of the points the object is represented as just a cluster of the points 

g,,l(J

’

). 

The hypersurfaces of different objects can inter- g,,l(J

’

). 

The hypersurfaces of different objects can inter- 

sect each other or even be intertwined, in which cases, sect each other or even be intertwined, in which cases, 

using nearest cluster algorithms could easily lead to in- using nearest cluster algorithms could easily lead to in- 

correct recognition results. correct recognition results. 

Once the object in the input image is recognized, Once the object in the input image is recognized, 

we project the input image y to the eigenspace of the we project the input image y to the eigenspace of the 

object. This eigenspace is tuned to variations in the object. This eigenspace is tuned to variations in the 

appearance of a single object and hence is ideal for pose appearance of a single object and hence is ideal for pose 

estimation. estimation. Mapping the input image to the object Mapping the input image to the object 

eigenspace gives the k-dimensional point: eigenspace gives the k-dimensional point: 

zcp) zcp) = = [cl(P), e2(P), . . . . . [cl(P), e2(P), . . . . . , ek(P) ] T ( y - c(P)) , ek(P) ] T ( y - c(P)) (17) (17) 

= = [ Zl(P), &), . ..

‘

.. 

.,(qT [ Zl(P), &), . ..

‘

.. 

.,(qT (18) (18) 

The-pose estimation problem may be stated as follows: The-pose estimation problem may be stated as follows: 

Find the rotation parameter 01 and the illumination Find the rotation parameter 01 and the illumination 

parameter 62 that minimize the distance da(p) between parameter 62 that minimize the distance da(p) between 

the point z(P) and the hypersurface f(P) of the object p: the point z(P) and the hypersurface f(P) of the object p: 

czp = oyignz 11 czp = oyignz 11 z - f(Wh, 0,) 11 z - f(Wh, 0,) 11 (19) (19) 

The 01 value obtained represents the pose of the object The 01 value obtained represents the pose of the object 

in the input image. Fig. 3(a) shows an input image of in the input image. Fig. 3(a) shows an input image of 

the object whose parametric eigenspace was shown in the object whose parametric eigenspace was shown in 

Fig. 2. This input image is not one of the images in Fig. 2. This input image is not one of the images in 

the learning set used to compute the object eigenspace. the learning set used to compute the object eigenspace. 

In Fig. 3b, the input image is mapped to the object In Fig. 3b, the input image is mapped to the object 

eigenspace and is seen to lie on the parametric curve eigenspace and is seen to lie on the parametric curve 

of the object. The location of the point on the curve of the object. The location of the point on the curve 

determines the object

’

s 

pose in the image. Note that determines the object

’

s 

pose in the image. Note that 

the recognition and pose estimation stages are compu- the recognition and pose estimation stages are compu- 

tationally very efficient, each requiring only the pro- tationally very efficient, each requiring only the pro- 

jection of an input image onto a low-dimensional (gen- jection of an input image onto a low-dimensional (gen- 

erally less than 10) eigenspace. Customized hardware erally less than 10) eigenspace. Customized hardware 

can therefore be used to achieve real-time (frame-rate) can therefore be used to achieve real-time (frame-rate) 

recognition and pose estimation. recognition and pose estimation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Experimentation Experimentation 

We have conducted several experiments using complex We have conducted several experiments using complex 

objects to verify the effectiveness of the parametric objects to verify the effectiveness of the parametric 

eigenspace representation. eigenspace representation. This section summarizes This section summarizes 

some of our results. Fig. some of our results. Fig. 1 in the introduction shows 1 in the introduction shows 

the set-up used to conduct the experiments reported the set-up used to conduct the experiments reported 

here. The object is placed on a motorized turntable here. The object is placed on a motorized turntable 

and its pose is varied about a single axis, namely, the and its pose is varied about a single axis, namely, the 

axis of rotation of the turntable. The turntable position axis of rotation of the turntable. The turntable position 

is controlled through software and can be varied with is controlled through software and can be varied with 

an accuracy of about 0.1 degrees. Most objects have a an accuracy of about 0.1 degrees. Most objects have a 

finite number of stable configurations when placed on finite number of stable configurations when placed on 

a planar surface. For such objects, the turntable is ad- a planar surface. For such objects, the turntable is ad- 

equate as it can be used to vary pose for each of the equate as it can be used to vary pose for each of the 

object

’

s 

stable configurations. object

’

s 

stable configurations. 

We assume that the object is illuminated by the am- We assume that the object is illuminated by the am- 

bient lighting conditions of the environment that are bient lighting conditions of the environment that are 

not expected to change between the learning and recog- not expected to change between the learning and recog- 

nition stages. This ambient illumination is of relatively nition stages. This ambient illumination is of relatively 

low intensity. The main source of brightness is an addi- low intensity. The main source of brightness is an addi- 

tional light source whose direction can vary. In most of tional light source whose direction can vary. In most of 

(b) 

Figure 3: (a) An input image. (b) The input image is 

mapped to a point in the object eigenspace. The lo- 

cation of the point on the parametric curve determines 

the pose of the object in the input image. 

our experiments, the source direction was varied manu- 

ally. We are currently using a 6 degree-of-freedom robot 

manipulator (see Fig. 1) with a light source mounted 

on its end-effector. This enables us to vary the illu- 

mination direction via software. Images of the object 

are sensed using a 512x480 pixel CCD camera and are 

digitized using an Analogies frame-grabber board. 

Table 1 summarizes the number of objects, light 

source directions, and poses used to acquire the image 

sets used in the experiments. For the learning stage, a 

total of 4 objects were used. These objects (cars) are 

shown in Fig. 4(a). For each object we have used 5 

different light source directions, and 90 poses for each 

source direction. This gives us a total of 1800 images 

in the universal image set and 450 images in each ob- 

ject image set. Each of these images is automatically 

normalized in scale and brightness as described in the 

previous section. Each normalized image is 128x 128 

pixels in size. The universal and object image sets were 

used to compute the universal and object eigenspaces. 

The parametric eigenspace representations of the four 

objects in their own eigenspaces are shown in Fig. 4(b). 

Table 1: Image sets obtained for the learning and recog- 

nition stages. The 1080 test images used for recognition 

are different from the 1800 images used for learning. 

A large number of images were also obtained to test 

the recognition and pose estimation algorithms. All 
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Figure 4: (a)The four objects used in the experiments. 

(b) The parametric hypersurfaces in object eigenspace 

computed for the four objects shown in (a). For dis- 

play, only the three most important dimensions of each 

eigenspace are shown. The hypersurfaces are reduced 

to surfaces in three-dimensional space. 
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Figure 5: (a) Recognition rate plotted as a function of 

the number of universal eigenspace dimensions used to 

represent the parametric hypersurfaces. (b) Histogram 

of the error (in degrees) in computed object pose for 

the case where 90 poses are used in the learning stage. 

(c) Pose error histogram for the case where 18 poses are 

used in the learning stage. The average of the absolute 

error in pose for the complete set of 1080 test images is 

0.5 in the first case and 1.2 in the second case. 
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of these images are different from the ones used in the 

learning stage. A total of 1080 input (test) images were 

obtained. The illumination directions and object poses 

used to obtain the test images are different from the 

ones used to obtain the object image sets for learning. 

In fact, the test images correspond to poses and illu- 

mination directions that lie in between the ones used 

for learning. Each input image is first normalized in 

scale and brightness and then projected onto the uni- 

versal eigenspace. The object in the image is identified 

by finding the hypersurface that is closest to the input 

point in the universal eigenspace. Unlike the learning 

process, recognition is computationally simple and can 

be accomplished on a Sun SPARC 2 workstation in less 

than 0.2 second. 

To evaluate the recognition results, we define the 

recognition rate as the percentage of input images for 

which the object in the image is correctly recognized. 

Fig. 5(a) illustrates the sensitivity of the recogni- 

tion rate to the number of dimensions of the univer- 

sal eigenspace. Clearly, the discriminating power of the 

universal eigenspace is expected to increase with the 

number of dimensions. For the objects used, the recog- 

nition rate is poor if less than 4 dimensions are used 

but approaches unity as the number of dimensions ap- 

proaches 10. In general, however, the number of di- 

mensions needed for robust recognition is expected to 

increase with the number of objects learned by the sys- 

tem. It also depends on the appearance characteristics 

of the objects used. From our experience, 10 dimensions 

are sufficient for representing objects with fairly com- 

plex appearance characteristics such as the ones shown 

in Fig. 4. 

Finally, we present experimental results related to 

pose estimation. Once the object is recognized, the in- 

put image is projected onto the object’s eigenspace and 

its pose is computed by finding the closest point on the 

parametric hypersurface. Once again we use all 1080 

input images of the 4 objects. Since these images were 

obtained using the controlled turntable, the actual ob- 

ject pose in each image is known. Fig. 5(b) and (c) 

shows histograms of the errors (in degrees) in the poses 

computed for the 1080 images. The error histogram in 

Fig. 5(b) is for the case where 450 learning samples (90 

poses and 5 source directions) were used to compute the 

object eigenspace. The eigenspace used has 8 dimen- 

sions. The histogram in Fig. 5(c) is for the case where 

90 learning samples (18 poses and 5 source directions) 

were used. The pose estimation results in both cases 

were found to be remarkably accurate. In the first case, 

the average of the absolute pose error computed using 

all 1080 images is found to be 0.5 degrees, while in the 

second case the average error is 1.2 degrees. 

Conclusion 

In this paper, we presented a new representation for 

machine vision called the parametric eigenspace. While 

representations previously used in computer vision are 

based on object geometry, the proposed representa- 

tion describes object appearance. We presented a 

method for automatically learning an object’s para- 

metric eigenspace. Such learning techniques are funda- 

mental to the advancement of visual perception. We 

developed efficient object recognition and pose esti- 

mation algorithms that are based on the parametric 

eigenspace representation. The learning and recogni- 

tion algorithms were tested on objects with complex 

shape and reflectance properties. A statistical analysis 

of the errors in recognition and pose estimation demon- 

strates the proposed approach to be very robust to fac- 

tors, such as, image noise and quantization. We believe 

that the results presented in this paper are applicable 

to a variety of vision problems. This is the topic of our 

current investigation. 
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