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Abstract

In this paper, we propose a novel framework for model-

ing image-dependent contextual relationships using graph-

based context model. This approach enables us to selec-

tively utilize the contextual relationships suitable for an in-

put query image. We introduce a context link view of con-

textual knowledge, where the relationship between a pair of

annotated regions is represented as a context link on a sim-

ilarity graph of regions. Link analysis techniques are used

to estimate the pairwise context scores of all pairs of unla-

beled regions in the input image. Our system integrates the

learned context scores into a Markov Random Field (MRF)

framework in the form of pairwise cost and infers the se-

mantic segmentation result by MRF optimization. Experi-

mental results on object class segmentation show that the

proposed graph-based context model outperforms the cur-

rent state-of-the-art methods.

1. Introduction

Scene understanding is one of the core problems in com-

puter vision. Recent works [5, 7, 9, 10, 11, 14, 21, 22, 29]

have shown that employing contextual information is ex-

tremely helpful for resolving this problem. There are var-

ious sources of context including scene [10, 29], seman-

tic [21, 22], scale [7, 21], and spatial relation [6, 8]. Re-

cently, many researchers have highlighted the importance

of pairwise relationships between objects [6, 8, 11, 21, 22].

This relationship is commonly represented by high-level

statistics such as the object class co-occurrence which cap-

tures semantic context between object classes. For example,

building and road are likely to co-occur in an image. To in-

corporate object relationships, traditional approaches often

model such relations as local interactions between pixels or

regions. To produce the final labeling result, the obtained
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Figure 1. Comparison of our context model to a conventional con-

text model based on co-occurrence statistics. We appropriately

establish the object relationship depend on the visual appearance

as well as the contextual relation from the matched similar scene.

object relationships are combined with pre-learned unary

potentials which are usually learned based on the visual fea-

tures of the objects. This scenario, separately learning con-

textual relationships and visual appearance, has been suc-

cessfully used to solve the scene understanding problem.

However, this system tends to prefer frequently appeared

objects to enforce object label agreement according to se-

mantic relevance. For example, consider the example il-

lustrated in Figure 1, where the ground truth label of the

unknown regions is crosswalk. Notice that the regions la-

beled as building enforce the unknown regions to be labeled

as road because building and road are more strongly corre-

lated than building and crosswalk. Furthermore, as pointed

out in [15], conventional context models are not invariant to

the number of pixels/regions that an object occupies, which

makes the small objects likely to be eliminated. Our key

idea is to utilize context relationships adaptively according
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Figure 2. Illustration of our approach. The contextual relationship between the pair of the annotated regions is represented as (building,car)-

link between the two corresponding nodes on the similarity graph. No link is constructed between the two regions from the test image

because they are unlabeled. By applying link analysis techniques [18], our system predicts the strength of (building,car)-link between them

based on node similarity.

to the visual appearance of objects to correctly label such

unknown regions.

In this work, we present a novel approach for properly

capturing the contextual relationships between two regions

by considering the content of an input image. One difficulty

is that learning such relations between all pairs of regions

across whole object classes is computationally challenging.

To overcome this problem, we propose a novel nonparamet-

ric exemplar-based context model. This nonparametric con-

text model consists of a bunch of context exemplars which

are basically annotated region pairs extracted from similar

training images to the input image. From these context ex-

emplars, we provides the novel interpretation of contextual

relationships in a context link view and relates the problem

of learning contextual relationships to the link prediction

problem on a similarity graph of regions. The configura-

tion of the similarity graph naturally reflects visual similar-

ity between regions. On this similarity graph, all context

exemplars can be compactly encoded in the form of con-

text links. Moreover the similarity graph is usually sparse,

so computation of learning contextual relationships can be

done very efficiently.

The key contributions of this paper are as follows. (1) We

establishes a novel context link view of contextual knowl-

edge. (2) In this view, we formulate the problem of learn-

ing object relationships as graph-based link prediction prob-

lem which can be efficiently solved via state-of-the-art link

analysis techniques [12, 18]. (3) Our system is nonpara-

metric and exemplar-based, and therefore does not need to

see whole training images to build a context model. Hence,

it easily scales to large datasets with the tremendous num-

ber of images and object classes. Our system can also infer

contextual relationships even from a single training image.

The rest of the paper is organized as follows. In Sec-

tion 2, we review some relevant works. Section 3 presents

our context model. Section 4 describes a region labeling al-

gorithm using our context model. Section 5 provides exper-

imental results and related discussion, followed by a con-

clusion in Section 6.

2. Related Work

There are two different types of approaches to object re-

lationships. The first type focuses on the neighborhood in-

teractions that captures the relation of two classes between

nearby pixels/regions. To obtain it, various approaches have

been proposed such as simple continuity preference [17],

training classifier over pairwise features [7], and penalty

term using co-occurrence statistics [26, 27]. However, the

adjacent interactions is limited to modeling local proper-

ties of the image. Nevertheless, many existing nonpara-

metric scene parsing methods [17, 26, 27] have employed

neighboring relationships due to the scalability. The sec-

ond type, on the other hand, models high-level relationships

among objects by considering both long range and neigh-

boring dependencies. This context model is typically rep-

resented by co-occurrence statistics or spatial relationships

between object classes. Ravinovich et al. [22] incorporated

co-occurrence statistics into the fully connected Conditional

Random Field (CRF). Galleguillos et al. [6] proposed ex-

ploiting the information of relative location such as above,

beside, or enclosed between object classes. Gould et al. [8]

designed a more complex and informative relative location

prior among object classes. Parikh et al. [21] differently

learned co-occurrence statistics according to location and
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scale information. However, all these existing global con-

text models rely on pixels/regions label prediction and are

unable to incorporate visual appearance information effec-

tively during context learning stage.

Jain et al. [11] proposed adaptively predicting “what”

object relationships to consider and “how” to evaluate these

relationships based on local and global image features.

They learnt class-specific pairwise feature weights in a

nonparametric manner, but they only consider simple rel-

ative position, overlap, and brightness. Different to Jain et

al. [11], our approach relies on context link, allowing us to

model complex object relationships directly associating to

object classes.

Perhaps one of the most similar works to our approach is

that of Malisiewicz and Efros [19]. They developed the Vi-

sual Memex graph with similarity and contextual edges. In

contrast to [19], we builds the memex at query time only us-

ing matched images on global similarity level. Furthermore,

our system reasons the strength of contextual relationships

between regions, while [19] only predicts the category of a

hidden object with some provided objects. This paves new

promising way of representing and embedding higher-level

semantic contextual relationships among objects in scene

parsing and understanding.

3. Our Approach

3.1. Overview

For a query image, we first retrieve its best matched

similar scenes in a large dataset using global descriptors

analogous to several nonparametric scene parsing meth-

ods [17, 24, 26]. All pairs of the annotated regions in the

retrieved scenes can be defined and exploited as context ex-

emplars. A context exemplar is composed of a pair of re-

gions and a pair of the corresponding object classes. It rep-

resents that a region with its particular object class supports

the paired region to have its corresponding object class. For

example, in Figure 2, the contextual relation from the re-

gion labeled as building to the region labeled as car forms

a context exemplar. This means, when the former region

is labeled as building, the latter region would be labeled as

car. Note that this context exemplar can capture the global

interaction between regions and is not limited to the local

adjacent interaction.

Our goal is to estimate how much each region pair of

the query image is consistent with the context exemplars

from the retrieved images. For this, we first construct the

similarity graph in which unlabeled regions from the test

image and the annotated regions from the matched scenes

are regarded as nodes. Each context exemplar is then en-

coded as a link between two nodes with the corresponding

object classes on the similarity graph as illustrated in Fig-

ure 2. By applying the label propagation technique, a kind

of semi-supervised learning method, the links between all

nodes of the query image are constructed with their asso-

ciated scores. Note that this label propagation method was

originally proposed to solve the node classification prob-

lem [30]. After that, many researchers [12, 18] extended it

to predict the relations among the nodes. In this work, we

follow the approach of [18] because it is efficient compared

to other methods [12]. Finally, the learned context scores

are incorporated into the MRF framework for final labeling.

3.2. Retrieval System

A confident image set for the input test image is first ex-

tracted from a large training dataset because it is not scal-

able to consider all context exemplars from whole labeled

training images. What we expect to have in the retrieval set

are similar objects with consistent spatial arrangement com-

pared to the test image. Hence, retrieval is done not only

for computational efficiency but also for more informative

region-based context learning.

Four different types of global image features are used:

color histogram, spatial pyramid [16], gist [20], and tiny

image [28]. For each feature, top-scored T/4 images ac-

cording to the ranking scores are collected and used as the

retrieval set similar to [26]. Having the best matches from

each of the global features allows us to take into account

various examples of scene context with the different views.

All pairs of annotated regions in this retrieved set will form

the context exemplars and serve as the source of region-

level context learning.

3.3. Graph Construction

The k-nearest neighbor similarity graph is constructed

between regions from both the test image I and the corre-

sponding retrieved image set Î. Each image is segmented

into a number of regions based on the fast graph-based seg-

mentation algorithm [4], and then each region is described

by its appearance using selective shape, location, texture,

color, and appearance features same as in [26]. The simi-

larity graph is defined as a weighted graph G = (V, E ,W),
where V is a set of vertices that contains a set of regions

SU = {s1, ..., sM} from the test image I and a set of re-

gions SL = {sM+1, ..., sN} from the retrieved images Î.

Each vertex is connected to its k-nearest neighbor. A weight

wij ∈ W is assigned to an edge eij ∈ E , and is defined by

the following similarity measure comparing two regions si
and sj based on Gaussian kernel:

wij =
∏

Hk∈H

exp

(

−
‖Hk(si)−Hk(sj)‖

σHk

)

, (1)

where Hk(si) is the feature vector of the k-th type for si,
H represents the set of features, σHk

denotes the standard

deviation of Hk, and all features are equally weighted.
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3.4. Context Exemplar Description

In this step, the contextual relationships within the re-

trieved scenes are extracted in the form of contextual exem-

plars. Instead of counting co-occurrence or voting spatial

arrangement between object classes, we simply extract all

pairs of the annotated regions from the retrieved scenes and

represent each pair as a context exemplar with the corre-

sponding pair of object classes. More formally, given a set

of classes C = {c1, c2, ..., cK} (e.g. sky, building, ..) con-

taining all existing classes in the corresponding retrieved

image set Î, the set of context exemplars for each class pair

(ca, cb) is represented as

Mab = {(si, sj) : G(si) = ca, G(sj) = cb, si, sj ∈ Îl},
(2)

where si, sj ∈ Îl represents two regions si and sj in the

same image Îl included in the retrieved image set Î and

G(si) represents the ground truth class of region si. Note

that the order of all pairs (si, sj) should be preserved since

each context exemplar is assumed to have direction. Hence,

based on region pair (si, sj) labeled as (ca, cb), two context

exemplars (si, sj) ∈ Mab and (sj , si) ∈ M ba are con-

structed. We hold M = {M11,M12,M13, ...,MKK} for

all object class pairs and this contains the whole contextual

relationships within the retrieved image set Î without loss

of information.

Our key observation is that a context exemplar (si, sj) ∈
Mab can be viewed as a directional (ca, cb)-type link be-

tween two nodes si and sj on the similarity graph. We

will refer to this link as the (ca, cb)-link. To transform all

context exemplars into context link form, let F denote the

set of N × N matrices with nonnegative entries. A matrix

Fab ∈ F associates to (ca, cb)-links and [Fab]ij represents

the strength of (ca, cb)-link between two nodes si and sj .

The strength close to 1 means high confidence of the exis-

tence of a link. On the other hand, the strength close to 0

means the absence of a link. We define Qab ∈ F to repre-

sent the observed (ca, cb)-links within the retrieved images

such that

[Qab]ij =

{

1 if (si, sj) ∈Mab

0 otherwise
. (3)

Now we have a set of context link Q =
{Q11,Q12,Q13, ...,QKK}.

3.5. Context Link Prediction

Link prediction problem is a task of predicting how

likely a link exists in a network. In this work, we consider a

problem of predicting (ca, cb)-link among the pairs of nodes

of SU based on Qab consistent to the configuration of the

similarity graph. For this, we adopt semi-supervised link

propagation approach using node similarity similar to [12].

Procedure 1 Proposed Context Learning Algorithm

Input: Query image I
Output: Learned context scores L(si, ci, sj , cj)

1: Retrieve the scene-level similar image set Î
2: Generate superpixels SU of the query image I
3: Construct the similarity graph W of regions SU from I

and SL from Î
4: Derive the matrix L = D−1/2WD−1/2 in which D is a

diagonal matrix with its (i, i)-element equal to the sum

of the i-th row of W.

5: Extract the context exemplars M from Î
6: Build the context link Q
7: for each object class pair (ca, cb) do

8: Initialize Fc(1) = Fr(1) = 0

9: ( Column-wise link propagation )

10: Iterate Fc(t+ 1) = (1− c)LFc(t) + cQab until con-

vergence

11: ( Row-wise link propagation )

12: Iterate Fr(t + 1) = (1 − c)Fr(t)L + cF̂c until con-

vergence where F̂c indicates the limit of {Fc(t)}
13: Assign L(si, ci = ca, sj , cj = cb) = [F̂r]ij where

1 ≤ i, j ≤M and F̂r denotes the limit of {Fr(t)}
14: end for

We directly propagate (ca, cb)-links in Qab to the pairs of

nodes of SU and estimate the strength of them. We assume

that all Qab is uncorrelated to each other, therefore, context

link prediction problem can be solved by K2 independent

link propagation problems. We drop the ab suffix for clarity.

However, directly applying the approach of [12] to our

context link prediction problem is impractical because it re-

quires O(N4) times for a link propagation. Thus, we fol-

low the strategy of the constraint propagation for spectral

clustering [18]. We decompose the link propagation prob-

lem into two independent label propagation subproblems.

First, the j-th column Q.j serves as an initial configuration

of two-class label propagation problem with respect to sj .

We will refer this process as a column-wise link propaga-

tion. The work of Zhou et al. [30] is employed to solve the

label propagation problem with respect to sj . All columns

of Q are handled separately and the converged configura-

tion F̂c (Step 10) is obtained. In practice, we observed

that the columns of Q.j within a retrieved image are exactly

same. Therefore, only T , the number of retrieved images, of

column-wise link propagation is required not N (T ≪ N ).

Next, the i-th row of [F̂c]i. is set as an initial configu-

ration of two-class label propagation problem with respect

to si. This is a row-wise propagation which works similar

to the column-wise propagation. Practically, only what we

want to obtain is the link information within the query im-

age. Hence, row-wise link propagation with (M < i ≤ N )

is not necessary. After convergence of the row-wise iter-
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Table 1. Performance comparison of our algorithm on Jain et al. [11] dataset and SIFT Flow dataset [17]. Per-pixel rates and average

per-class rates in parentheses are presented.

Jain et al. [11] Dataset SIFT Flow dataset [17]

Jain et al. [11] 59.0 ( - ) [11] -

Chen et al. [3] 75.6 (45) [3] -

Liu et al. [17] - 74.75 ( - ) [17]

Tighe and Lazebnik [26] - 76.82 (29.38) [26]

Baseline classifier 77.62 (49.45) 73.35 (29.04)

Baseline MRF 76.48 (47.13) 74.08 (26.87)

Our (without ψi) 76.35 (45.72) 71.51 (30.84)

Our (with ψi) 80.14 (53.25) 77.14 (32.29)

ation (Step 12), the strength of (ca, cb)-link between two

nodes si and sj within the query image I is obtained.

Learning is independently performed for each Qab and

repeated K2 times. Each context learning is solved

O(kN2) times on the k-nearest neighbor similarity graph

(k ≪ N ) [18]. Therefore, the overall complexity of learn-

ing the context scores using our approach is O(K2N2).

4. Inference

To assign labels to a set of regions SU , the learned con-

text scores L(si, ci, sj , cj) are incorporated to the fully con-

nected MRF model. The fully connected model is proved to

be effective for encoding the object interactions [6, 21, 22].

Similar to that of [6, 21, 22], we define the energy function

of object class labels C = {c1, c2, .., cK} as:

J (c) =
M
∑

i=1

ψi(ci) + λ
M
∑

i,j=1

φij(ci, cj), (4)

where M is the number of regions in the test image I . The

data term ψi(ci) represents the negative logarithm of the

probability of class ci given the region si. To obtain ψi(ci),
we train discriminative classifiers from training dataset us-

ing visual features [26]. The smoothness term φij(ci, cj) in-

dicates pairwise contextual cost between the regions learned

by our approach. This can be written as

φij(ci, cj) = −log(
1

Z
L(si, ci, sj , cj)), (5)

where Z =
∑M

i=1

∑K
ci
L(si, ci, sj , cj) is the normalization

constant. Notice that the energy function is controlled by λ,

which is the influence of the learned context scores. To min-

imize the MRF energy function, we applied α-expansion al-

gorithm [2, 13] using the Quadratic Pseudo-Boolean Opti-

mization (QPBO) algorithm [1, 23] which is publicly avail-

able1.

1http://pub.ist.ac.at/˜vnk/software.html

5. Experiements

In this section, we report experimental results on two

challenging datasets: the dataset of Jain et al. [11] and

SIFT Flow dataset [17]. We evaluate the performance of

the learned context scores and compare the accuracy of our

approach both to a baseline and to recent state-of-the-art re-

sults. In each experiments, we evaluate four different mod-

els: a baseline classifier without MRF model; a baseline

MRF with convential co-occurrence prior; our approach

without unary potential. Our implementation is in MAT-

LAB based on the available SuperParsing code2. We fix

the parameters of our system with T = 16, k = 10, c =
0.9, λ = 1 in all experiments.

Baseline MRF: We evaluate the performance of the pro-

posed approach against a conventional co-occurrence based

model for object interaction. Following the most success-

ful approaches [22], we incorporate the object class co-

occurrence as local interaction into the fully connected

MRF model. Hence, we design a baseline MRF model that

has different form of the smoothness term to our model as

φij(ci, cj) = −log(
P (ci|cj) + P (cj |ci)

2
)× δ[ci 6= cj ],

(6)

where P (ci|cj) is the empirical probability of classes ci and

cj co-occurring in the training images.

Jain et al. [11] Dataset: Jain et al. [11] dataset contains

total 350 images randomly selected from LabelMe [25]

dataset with 19 classes (250 training and 100 test images).

We train boosted decision tree classifiers [10] for comput-

ing ψi terms. Per-pixel and per-class rates are presented in

Table 1. Our system has an overall pixel-wise accuracy of

80.14% and a class-wise accuracy of 53.25%. We achieves

pixel-wise 5% and class-wise 8% improvement over state-

of-the-art performance [3]. Compared to the baseline MRF,

our approach improves overall per-pixel rates by about 4%

and this result clearly shows the advantage of our approach.

2http://www.cs.unc.edu/˜jtighe/Papers/ECCV10/

index.html
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Figure 3. Representative results from the SIFT Flow dataset. Column (a) shows the query image to be labeled and Column (b) represents

the ground truth of (a). Column (c), (d), (e), and (f) show the prediction of the baseline classifier, baseline MRF models, SuperParsing [26],

and our approach with unary potential, respectively. The numbers under each image indicate pixel-wise accuracy (%) on that image.

Crosswalk is appeared in the first row, building is removed without smoothing in the second row, and sidewalk and plant are recovered

in the last row. Obviously, implausible baseline classifier results are appropriately corrected based on the learned context scores. These

figures are best viewed in color.
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Figure 4. The per-class recognition rate of our system compared

with baseline MRF on (a) SIFT flow dataset and (b) Jain et al. [11]

dataset.

More importantly, baseline MRF drops per-class rates since

the conventional context models smooth away smaller ob-

ject classes. On the other hands, our approach does not suf-

fer from such problem and even improves per-class rates by

3%.

SIFT Flow dataset: The SIFT Flow dataset provided by

Liu et al. [17] consists of 2,688 images of outdoor scenes.

The dataset provides ground truth labels hand-annotated by

LabelMe users. Liu et al. [17] split this dataset into 2,488

training images and 200 test images, and selected top 33

object categories as semantic labels. For comparison, the

same training/test split is used as [17, 26]. To obtain ψi

terms, we employ nonparametric nearest-neighbor classi-

fiers [26, 27]. Our system achieves an overall pixel-level

accuracy of 77.49% and a per-class accuracy of 32.29%.

Figure 4 (a) shows that our per-class rate on the SIFT Flow

dataset is significantly better than that of the baseline MRF.

Next, we validate our system by varying the parame-

ters including the number of retrieved images T , the fea-

ture combination, k of k-nearest neighbor, and the influ-

ence of context scores λ. First, we fix k = 10, use all fea-

tures, and plot the recognition rate as a function of T in

Figure 5 (a) with different λ. The recognition rate increases

as more retrieved images are used. However, the recogni-

tion rate slightly drops continue to add retrieved images.

Additionally, it is observed that strongly enforcing contex-

tual consistency increases ambiguities and degenerates the

performance. The maximal performance is achieved when

T = 16 and λ = 1. Second, we fix λ = 1, use all features,

and plot the recognition rate as a function of T in Figure

5 (b) with different k. Clearly, appropriate number of re-
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k = 5

k = 10

k = 20

(a) (b)

Region feature Rate (%)

SIFT 75.27 (28.29)

+ Texture 75.62 (29.28)

+ Location 76.49 (30.65)

+ Shape 76.82 (30.68)

+ Appearance 76.80 (30.97)

+ Color 77.14 (32.29)

(c)

Figure 5. (a): Recognition rate as a function of the number of the retrieved images T and the influence of our model λ. (b): Recognition

rate as a function of the number of the retrieved images T and the k of the visual similarity graph. (c): Feature evaluation on the SIFT

Flow dataset.

Table 2. Average computation time in second.

Jain et al. Dataset SIFT Flow Dataset

Image size 640× 480 (few exception) 256× 256
Average N (the number of regions) 4243 1005

Average K (the number of object class) 15 11

Time (second)

Graph Construction 23.92 4.22

Context Link Prediction 155.51 18.09

Inference 8.83 0.79

trieved images is needed to achieve accurate context consis-

tency. The maximal performance is achieved when T = 16
and k = 10. Finally, Figure 5 (c) shows recognition rates

with region features added consecutively. Notice that it is

arranged in order of increasing per-class rate and the SIFT

histogram is the strongest feature in our system similar to

the result of [26].

The computation time of our algorithm is shown in Table

2. All experiments were run on a standard PC with 3.0 GHz

Intel quadcore CPU and 8 GB RAM. For both datasets, we

fixed our parameters to T = 16, k = 10, λ = 1. It means

that total T + 1 = 17 images are used to construct a simi-

larity graph. Since our algorithm requires O(K2N2) times,

increasingK andN makes our algorithm significantly slow.

6. Conclusion

We have presented a nonparametric exemplar-based con-

text model in which object relationships are explicitly cap-

tured. A graph-based context representation is proposed

to efficiently transfer contextual relationships from train-

ing images to a query image. This allows jointly mod-

eling visual appearance and context. Our novel approach

helps to overcome the limitation of conventional con-

text models relying on object label agreement and gives

richer appearance-based context information. Moreover,

the learned object relationships can be incorporated into

any region-based scene labeling approaches as an additional

cue. One of the main limitations of our model is that it con-

siders all relations between regions as equally important.

Clearly, there might be implausible or unimportant context

exemplars, but our model cannot eliminate them. Our future

work is to overcome this problem and extend our system to

the multiple segmentation framework.
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