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Abstract. Realistic representation of objects requires models which can
synthesize the image of an object under all possible viewing conditions.
We propose to learn these models from examples. Methods for learning
surface geometry and albedo from one or more images under fixed posed
and varying lighting conditions are described. Singular value decompo-
sition (SVD) is used to determine shape, albedo, and lighting conditions
up to an unknown 3×3 matrix, which is sufficient for recognition. The use
of class-specific knowledge and the integrability constraint to determine
this matrix is explored. We show that when the integrability constraint
is applied to objects with varying albedo it leads to an ambiguity in
depth estimation similar to the bas relief ambiguity. The integrability
constraint, however, is useful for resolving ambiguities which arise in
current photometric theories.
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1 Introduction

The image of an object depends on many imaging factors such as lighting condi-
tions, viewpoint, articulation and geometric deformations of the object, albedo
of the object, and whether it is partially occluded by other objects. It is therefore
necessary to design object representions which capture all the image variations
caused by these factors. Such representations can then be used for object detec-
tion and recognition.

We believe that realistic representions of objects will require models which
can synthesize the image of an object for all possible values of the imaging factors.
Such an approach has long been advocated by people influenced by Bayesian
probability theory [8]. This approach has some similarities to “appearance based
models” [23] but, as we will argue in the next section, there are some important
differences.1

We propose to learn these representations from examples. Learning from ex-
amples allows us the possibility of representing objects which are too complicated

1 Alternative approaches, such as extracting invariant features, [22] may only be ap-
plicable to limited classes of objects such as industrial parts.



for current modelling systems. If statistical techniques are used, this allows us to
concentrate on the important characteristics of the data and ignore unimportant
details. For example, aspect graphs [18] give an elegant way of characterizing the
different views of objects. But for many objects, they are difficult to calculate
and hard to use. By contrast, the statistical methods used in [23] are able to
recognize certain objects from different viewpoints using simpler techniques. It
seems therefore, that some of the complexities of the aspect graph representation
are unnecessary, at least for some classes of objects.

We argue that it is important to model the variations of all the factors af-
fecting the image independently and explicitly. This will allow the object repre-
sentations to be more general, suitable for more complicated objects, and more
easy to generalize to new instances. For example, the appearance based match-
ing algorithm of Murase and Nayar [23] is highly successful within its choosen
domain of simple rigid objects but its avoidance of geometric and reflectance
models means that it could be fooled by simply repainting one of the learned
objects. The new (repainted) object would then have to be learnt again, requir-
ing a costly training procedure. Similar problems would arise if the object is
allowed to deform geometrically.

Modelling variations explicitly also makes it easy to incorporate prior knowl-
edge about the object class into the learning procedure. If the object class is
known, and explicit models are used, then far less training data will be needed.
It appears that humans can make use of this type of class specific knowledge
in order to generalize rapidly from one instance of an object [21]. In related
work, we are exploring whether our models can account for these and other
psychophysical experiments.

In this paper, therefore, we will describe methods for learning the geometry
and reflectance functions of objects from one of more images of the object. We
assume fixed pose but vary the lighting conditions2. For this paper we assume
Lambertian reflectance functions with non-constant albedo, but we are currently
generalizing our work to other types of relectance models.

We describe mechanisms for learning the shape, reflectance, and albedo of
an object with or without the use of class specific knowledge. In particular, we
make use of the surface integrability constraint and discover a close relation
between the bas relief ambiguity and integrability. We illustrate the usefulness
of our representions by synthesizing images. In related work, Belhumeur and
Kriegman [2] characterize the set of images that can be generated by using
Lambertian models, of the type we learn here, and give further examples of
image synthesis.

Our approach makes use of singular value decomposition (SVD) which has
previous been applied to the related problem of photometric stereo by Hayakawa
[13]. For Lambertian sources with a single illuminant, SVD allows one to estimate
shape, albedo, and lighting conditions up to an unknown 3× 3 constant matrix,
which we call the A matrix. We observe that the stated assumptions in [13]
only determines A up to an unknown rotation matrix. It can be shown [30] this

2 An extension to variable pose is described in Epstein and Yuille (in preparation).



assumption is valid for certain types of surfaces but will be incorrect for others.
However, we demonstrate that a variety of general purpose and/or class specific
assumptions, including surface integrability, can be used to determine the A

matrix uniquely. Moreover, it can be shown [2] that the set of allowable images
of the object (from fixed viewpoint) can be determined without knowing A.

2 Appearance Based Models and Image Synthesis

To set our work in context, it is important to describe how it relates to other
work on image synthesis and the influential work on appearance based models
[23].

Appearance based models (ABM’s) of objects are learned by applying princi-
pal component analysis (PCA) to a representative dataset of images of an object.
For certain classes of objects, this produces a low-dimensional subspace which
captures most of the variance of the dataset. The object can then be represented
by a manifold defined in this low-dimensional space. The position of the image
on this manifold will depend on the lighting and viewpoint conditions. An input
image, or subpart of an image, can be matched to the appearence manifold and
hence recognized. This approach is extremely successful within specific domains.

It is interesting to contrast ABM’s with image synthesis models of the type
that we use in this paper. Our approach requires specifying a representation for
the object and an imaging model. The representation model should be flexible
enough to deal with all the variations described previously – due to lighting,
articulation, geometric deformations, etc. The imaging model enables us to syn-
thesize an image of the object. The representation and imaging models are learnt
by statistical techniques from samples of the data.

Synthesis models and ABM’s are similar in two important respects. Firstly,
unlike many (most) current object recognition systems, they do not first extract
sparse features, such as edges, from the image (see [9]). However, the word “ap-
pearance” in ABM’s is slightly misleading because the ABM’s only model the
appearance of the object within the low dimensional subspace. They ignore all
image variations that project outside this subspace. The synthesis models, by
contrast, generate all possible image variations. Secondly, both synthesis mod-
els and ABM’s are statistical with their models being generated by the data.
This makes them more robust with respect to noise which can destroy more
deterministic modelling approaches such as geometric invariants [22].

From our viewpoint, however, the ABM’s are limited because they do not
represent variables like shape and lighting explicitly. It is straightforward to
adapt synthesis models to take into account geometrical deformations or to add
paint onto the surface of an object. But an ABM would have to learn all such
changes from scratch. Similar problems would also apply in the related eigenface
approach [27] where the eigenfaces combine albedo, lighting, and geometrical
changes, but represent none of them explicity. Like ABM’s this approach involves
projecting the image onto a low-dimensional space and ignoring anything that
lies outside this space.



The ABM’s have gone a long way in demonstrating the advantages of using
much richer descriptions than simply sparse features like edges and corners for
recognition. Still, a drawback of these approaches is that in order to recognize an
object seen from a particular pose and under a particular illumination, they must
have previously seen the object under the same conditions. Yet, if one tries to
enumerate all possible poses and permutes these with all possible illumination
conditions, things get out of hand quite quickly. Fortunately, this brute-force
approach to modeling, which requires observing objects under the full range of
parametric variation, is unnecessary since appearance can usually be predicted
from a modest number of images.

Indeed, both eigenfaces and ABM’s can be considered to be feature based
methods where the features are extracted by applying linear filters determined
by PCA. It can be argued [3] that if the goal is discrimination between objects,
rather than representation, then better linear filters can be used based on Fisher’s
linear discriminant. PCA projects into the subspace which captures most of the
variance between objects. By contrast, Fisher’s linear discriminant [7] projects
into the subspace which maximizes the variation between different objects. This
can be illustrated by considering applying both techniques to a set of faces in
which a small subclass of people have glasses. The PCA approach would tend
to project onto a subspace which ignores the glasses (because they appear in
two few samples to significantly affect the variance). By contrast, Fisher’s linear
discriminant would project into a subspace which included the glasses because
they would be powerful cues for distinguishing between people.

A more explicit way of modelling faces occurs in [4] where the eigenfaces are
considered to be principal components of the albedoes of faces. Two-dimensional
geometrical distortions are applied to allow for changes in viewpoint and expres-
sion. These deformations occur by warping a set of feature points, corresponding
to the facial features, and interpolating the warp over the rest of the face.

Lighting variations are also handled explicity by a related model by Hallinan
[12] which is able to recognize faces under highly variable lighting conditions
and to distinguish reliably between faces and non-faces. Lighting variations are
represented by a linear combination of lighting basis images obtained from PCA.
To model geometric changes, Hallinan [12] uses two-dimensional image warps.
Though this not an explicit model of surface geometry, it can be shown that the
spatial warps correspond to warps of the surface normal vectors of the underlying
three dimensional shape [29]. It is therefore straightforward to recompute the
surfaces from the warps. Hallinan’s lighting models were the starting point for
this current work and we will return to them later in the paper.

Another model, that uses image synthesis and explicit representations is the
face recognition system reported in [1]. This face model uses three dimensional
geometry and a Lambertian imaging model. By using a dataface of face geometry,
obtained by laser scanning, a strong prior distribution for the shape of faces is
obtained. Using this prior the three dimensional geometry of the face can be
estimated from a single image. However, the types of geometric models used in
this system are somewhat limited and only apply to objects made of single parts,



such as faces. For objects with several articulating parts more sophisticated
geometrical models should be used, perhaps of the type described in [31].

3 The Lambertian Model and Lighting Basis Functions

Suppose we pick an object and fix its pose and articulation. Then the principle
of superposition ensures that the set of images of the object, as the lighting
varies, lies within a linear space3. How does this obervation relate to reflectance
function models of image formation?

The most used reflectance model is the Lambertian model [14] which is often
written as:

I(x, y) = a(x, y)n(x, y) · s ≡ b(x, y) · s, (1)

where a(x, y) is the albedo of the object, n(x, y) is its surface normal, b(x, y) ≡
a(x, y)n(x, y) and s is the light source direction (the light is assumed to be at
infinity). If this equation applies then it is clear [26],[28],[25] [20], that the space
of images of the object, as the light source direction changes, spans a three
dimensional subspace. In other words, any image of the object can be expressed
as:

I(x, y) =

3
∑

i=1

αibi(x, y), (2)

for some coefficients {αi}, where i labels the vector components. This is a linear
subspace model of image formation.

Equation (1), however, has several limitations. It ignores attached shadows
(where b(x, y) · s ≤ 0), cast shadows, and partial or hidden shadows (where
there are several light sources and the light from some of them are shadowed).
It also ignores intereflections. When these effects are taken into account, the
dimensionality of the image space rises enormously [2]. Moreover, the model
ignores specularities and will break down if the light source is close to the object.
These limitations mean that caution is necessary when using this model.

Alternatively, motivated by the principle of superposition, one can try to
analyze the empirical structure of the set of possible images . In a series of em-
pirical studies [11], [5] principal component analysis (PCA) was used to analyze
the space of images generated by one object at fixed pose with varying lighting
conditions. The lighting conditions were sampled evenly on the view hemisphere,
so the dataset included extreme lighting configurations. The experimental results
showed that 5 ± 2 eigenvalues were typically enough to account for most of the
variance. For faces, the percentage of variance covered by the first five eigneval-
ues was approximately 90 %. For objects which were highly specular (such as a
helmet) or with many shadows (such as an artificial parrot) the percentage de-
creased. Nevertheless, the specularities and shadows, though perceptually very
saliant, contributed little to the variance. In addition, Hallinan [11] showed that

3 In fact it can shown to lie within a convex cone inside this linear space [2]



if different faces were aligned geometrically, using affine transformations, then
the first five eigenvalues still captured approximately 90 % of the variance.

These results meant that for each object we could approximate the image
space by a linear combination of the first five eignevectors or lighting basis func-

tions. In other words an image of the object, under fixed viewpoint, could be
expressed as:

IM (x; {αi}) =

5
∑

i=1

αiBi(x), (3)

where the {Bi(.)} are the lighting basis functions (i.e. the first five principal
components), and the {αi} are the coefficients (which depend on the specific
lighting conditions).

If this number of coefficients is set equal to three then this would be similar
to the Lambertian linear model, see equation (2). Indeed it was observed that
the first three lighting basis functions usually corresponded to the image lit from
in front, from the side, and from above. This is explained in [30].

The empirical linear subspace model, see equation (3), was used by Hallinan
[12] to successfully model lighting variation. Such models are attractive but
they do have several limitations: albedo and shading information is combined
indiscriminantly and there is no explicit 3-D model. (Although, under certain
circumstances [29] it does allow recovery of the three-dimensional shape.)

For reasons described above, we would prefer a more explicit representation
based on three-dimensional shape and albedo. We argue, therefore, that the
success of the linear subspace results suggest that Lambertian models are a
good approximation to a number of real objects. Indeed, it was conjectured [5]
that the first three principal components of this space correspond to Lambertian
illumination of the object and higher order principal components dealt with
specularities and sharp shadows.

4 Learning the Models

Our approach consists of learning models of the objects – their surface geometry
and albedo – using variants of the Lambertian model which make it robust to
shadows and specularities. This is done with four different schemes.

Suppose we have a set of images of an object illuminated by M different
point light sources. We denote these light sources by {s(µ) : µ = 1, ..., M}. The
resulting images are represented by {I(p, µ) : µ = 1, ..., M p = 1, ..., P} where
the index p labels the pixels of the image (these pixels lie on a two dimensional
grid but it is convenient to represent them as a vector).

Our first scheme assumes that we have multiple images of the object4 and
the light sources are known. This is of least interest since it is a strong assump-
tion and corresponds to standard photometric stereo [26, 28, 14, 17], though with
nonconstant albedo. We investigated this scheme mainly to test the Lambertian

4 Fixed pose and varying illumination.



asumptions about our data. We concluded that the model is a good approxima-
tion though robust techniques are needed to reduce the influence of shadows and
specularities.

If, however, there are multiple unknown light sources then we show that SVD
can be applied (see also [13]) to simultaneously estimate the surface geometry
and albedo up to a 3×3 linear transformation, the A matrix. This transformation
arises due to an ambiguity in the Lambertian equation (1). This is because for
any arbitrary invertible linear transformation A:

b · s = bT s = bTAA−1s. (4)

Our second learning scheme, follows from this result and the proof in [2] that
the set of images of the object are independent of the precise value of A provided
the objects are viewed from front on. This means that it unecessary to estimate
A. Our second scheme, therefore consists merely of applying SVD to the input
data and thereby generating the light cone representation described in [2].

For our third learning scheme, we demonstrate that the A matrix can be re-
covered by using the surface integrability constraint and the assumption that we
either have an image of the object under ambient lighting, or that the sampling
set of lighting conditions allows us to generate one. We compare our assumptions
to those of [13] and prove that his method relies on an, unstated, assumption
about the dataset which will often not be valid. In addition, we describe a new
perceptual ambiguity related to the integrability constraint. This scheme results
in the full albedo and three-dimensional shape of the object.

In our fourth learning scheme, we consider the use of prior knowledge about
the class of the viewed object. We demonstrate that A can be learnt by merely
assuming that we know a prototype object of that class. Not suprising, if the
object class is known then fewer images are needed to learn the object model.
This seems to agree with current psychophysical results [21].

4.1 Learning the Models with known light source direction

Suppose we assume that the light source vectors {s(µ) : µ = 1, ..., M} are known.
This is true for our dataset because the images have been gathered under con-
trolled conditions.

We can formulate estimating shape and albedo as a least squares optimization
problem:

E[b; V ] =
∑

µ,p

V (p, µ){I(p, µ) −
∑

i

bi(p)si(µ)}2 (5)

where V (p, µ) is a binary indicator function whose value is 1 if point p is not in
shadow, or have a specularity, under lighting condition µ, and is zero otherwise.

The arguments of the energy function – b, s, V – represent the sets {b(p) :
p = 1, ..., P}; {s(µ) : µ = 1, ..., M}, and {V (p, µ) : p = 1, ..., P µ = 1, ..., M}
respectively.

We observe that the energy can be written as the sum of P independent en-
ergies Ep[b(p), {V (p, µ) : µ = 1, ..., M}] =

∑

µ V (p, µ){I(p, µ)−
∑

i bi(p)si(µ)}2.



These energy functions Ep (p = 1, ..., P ) are all quadratic in b and so they can
be minimized by linear algebra provided the V are specified. This allows us to
estimate the surface normal and albedo at all points p independently.

We first assume that there are no specularities or shadows, in other words
we set V (p, µ) = 1, ∀ p, µ. This gives the results shown in figures (1, 2). This is
equivalent to the photometric stereo techniques described in [26], [28], [14].

Fig. 1. The albedo and normals estimated directly assuming known light source direc-
tions and without using robust techniques to remove specularities and shadows. The
first three images are the z, x, and y components of the surface normal respectively. The
rightmost image is the albedo. Observe that the estimated albedo appears to get darker
near the boundaries of the face causing the albedo image to appear to be non-flat. This
is due to failure to treat the shadows correctly.

Fig. 2. The surface computed from the normals in the previous figure. The face appears
flattened. This is because the algorithm’s failure to remove shadows means that it
underestimates the albedo in shaded regions and correspondingly makes the surface
flatter.

These results are reasonable but close inspection shows that the estimated
albedo becomes darker towards the boundaries of the face, see figure (1), and the
shape of the face is flattened, see figure (2). This is because the algorithm knows
nothing about shadows and tries to model them as regions of dark albedo. This in



turn causes the shape to appear too frontoparallel. We conclude that the object
is approximately Lambertian but that it also has shadows and specularities.

We observe, however, that specularities are bright, shadows are dark, and
a point will tend to be in shadow or specular only for a limited set of lighting
directions. Thus if we histogram the intensity values at a single image point, as
it is illuminated from many directions, the brightest and darkest points will tend
to be specularities and shadows5.

Thus we can remove most of the effects of shadows and specularities by
plotting the histogram, see figure (3), and set V = 0 for the bottom α1% and
top α2 %. If α1 and α2 are sufficiently large (say 30%) then we set V = 0 for
the remaining data (which we now assume is purely Lambertian).

We now minimize the Ep again using linear algebra. The results are signifi-
cantly improved, see figures (4, 5). Observe that the albedo image in figure (4)
appears to be much flatter, suggesting that we have removed much of the effects
of the shadows. This is further supported by the surface plot, see figure (5), which
is no longer foreshortened – compare with figure (2). Thus eliminating the shad-
ows by pruning the histogram gives us significantly more uniform albedoes on
the skin and a more accurately estimated shape.
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Fig. 3. Histograms for two pixels on the bridge and the side of the nose, locations
shown in the left image by the two black dots. The middle image shows the histogram
for the pixel on the bridge of the nose. This pixel was never in shadow so there is no
peak in the histogram for small intensity values (corresponding to shadows). The right
image shows the histogram for the pixel on the side of the nose. This pixel was often in
shadow and so its histogram has a peak at low intensity values. Note that background
ambient illumination prevents the shadows from being perfectly dark.

Alternatively, instead of eliminating the top α2% and the bottom α1% of
{I(p, µ) : µ = 1, ..., M} we could instead eliminate all intensities below a shadow

threshold and above a specularity threshold. Or, we could do residual analysis
to check whether the intensities thrown away correspond to true shadows or
specularities. We can use our estimate b∗(p) to predict what the intensities would
be for those cases. Those light source configurations for which the predictions

5 Ideally perfect shadows would have zero intensity, but our light sources are not true
point sources and there was some ambient light present when our database was
collected.



Fig. 4. The normals and albedo calculated directly. Residuals at low intensity values
< 70 have been removed.

Fig. 5. Surface computed from normals above.

Fig. 6. This figure shows the extent to which each pixel was thresholded. Pixel bright-
ness corresponds to the number of images in which the pixel was over threshold. Hence,
dark pixels were thresholded out (considered in shadow) more. Observe that points will
low albedos, such as the irises of the eyes, are overrepresented.



agree with the observed intensities are no longer assumed to be due to shadows,
or specularities, and so are used to make a second estimate of b(p). This process
can be repeated.

4.2 Light Source Direction Unknown: Using SVD to estimate

surface properties and light source directions up to a linear

transformation.

It is unrealistic to assume that the light source directions will be given. Thus
we need a method which can estimate them and the surface properties simul-
taneously. In other words, we need to minimize the energy function E[b, s] =
∑

µ,p{I(p, µ) −
∑3

i=1 bi(p)si(µ)}2 as a function of b and s. Fortunately mini-
mization of this function, up a linear transform, can be done using singular
value decomposition (SVD). This has been first applied to photometric stereo in
[13].

Observe that the intensities {I(µ, p)} can be expressed as a M ×P matrix J.
Similarly we can express the surface properties {bi(p)} as a P × 3 matrix B and
the light sources {si(µ)} as a 3×M matrix S. SVD implies that we can write J

as:
J = UΣVT , (6)

where Σ is a diagonal matrix whose elements are the square roots of the eigen-
values of JJT (or equivalently of JT J). The columns of U correspond to the
normalized eigenvectors of the matrix JTJ. The ordering of these columns cor-
responds to the ordering of the eigenvalues in Σ. Similarly, the columns of V

correspond to the eigenvectors of JJT .
If our image formation model is correct then there will only be three nonzero

eigenvalues of JJT and so Σ will have only three nonzero elements. We do not
expect this to be true for our dataset because of shadows, specularities, and
noise. But SVD is guaranteed to gives us the best least squares solution in any
case. Thus the biggest three eigenvalues of Σ, and the corresponding columns
of U and V represent the Lambertian part of the reflectance function of these
objects. We define the vectors {f(µ) : µ = 1, ..., M} to be the first three columns
of U and the {e(p) : p = 1, ..., P} to be the first three columns of V.

This assumption enables us to use SVD to solve for B and S up to a linear
transformation. The solution is:

s(µ) = Pf(µ), ∀ µ,

b(p) = Qe(p), ∀ p, (7)

where P and Q are 3 × 3 matrices which are constrained to satisfy PT Q = Σ3,
where Σ3 is the 3× 3 diagonal matrix containing the square roots of the biggest
three eigenvalues of JJT . There is an ambiguity P 7→ AP, Q 7→ A−1 TQ where
A is an arbitrary invertible matrix.

This means we can determine {s} and {b} up a linear transform. It can
be shown [2] that this is sufficient to recognize objects from front-on under



arbitrary illumination. To verify that these linear subspaces are correct we use
our knowledge of the light source directions to determine the P and Q matrices
(i.e. we use least squares to solve s(µ) = Pf(µ), ∀ µ for P.) The resulting
albedos and surface normals are shown in figure (7). The results are similar to
those obtained by using knowledge of the light source directions directly. They
appear slightly better than the results without residuals, figure (1), and slightly
worse than the results with residuals, figure (4).

Fig. 7. Normals and albedo calculated directly from SVD using known light source
directions to estimate the linear transformations.

4.3 Estimating the linear transformations.

We would like, however, to estimate the true geometry and albedo because this
would enable us to predict how the object changes as the viewpoint varies (and
to deal with cast shadows). The next subsection discusses ways to use additional
information can be used to determine the linear transformation and hence to
determine the surface albedo and shape.

Objects of Unknown Class Suppose we have an object of unknown class
and we wish to determine the A matrix.

One plausible assumption is that we have an estimate of the object’s albedo.
This might consist of an additional image of the object taken under ambient
lighting conditions6. Alternatively we can assume that the light source directions
sample the view hemisphere and so, by taking the mean of our dataset we get
an approximation to an ambient image of the object. It should be emphasized
that this estimated albedo need only be very approximate.

We use the mean of our dataset to estimate the albedo. This means that,
using Equation (7), for each point p in the image we have a constraint on the
linear transformations:

a(p)2 = eT (p)PT Pe(p), ∀ p = 1, ..., P. (8)

6 Recall that the image of an object under ambient lighting conditions is given by the
albedo [14]



We impose these constraints using a least squares goodness of fit criterion.
This can be solved using SVD to estimate PTP. This yields PTP = WMWT ,
where M is diagonal. We then estimate P∗ = M1/2W which is correct up to
rotation.

We note that Hayakawa assumes that this rotation matrix is the identity [13].
It can be shown, however, that this is not always the case. Indeed, see [30], it
can be shown to hold if the matrices

∑

p bi(p)bj(p) and
∑

µ si(µ)sj(µ) are both
diagonal. But, for example, it does not hold if

∑

µ si(µ)sj(µ) is diagonal but
∑

p bi(p)bj(p) is not. The condition that these matrices are both diagonal can
be traced to symmetry assumptions about the dataset. It is straightforward to
generate situations for which they fail.

Fortunately, however, this rotation ambiguity can be cured by using the sur-
face integrability constraint, see section 5. The results shown in figures (8,9) are
consistent with integrability.

Fig. 8. Normals and albedo calculated from eigenvectors. We used the mean of the
dataset as an initial estimate of albedo. The matrix P T P is then calculated from
a2(x) = eT (x)P T Pe(x)∀x. SVD on P T P gives P T P = W ∗ M ∗ W T , M diagonal. We
then take, as an estimate of P , P ∗ = sqrt(M) ∗ U . This is correct up to rotation. In
the above results, we take the rotation matrix to be the identity and check consistency
with integrability.

Objects of Known Class We can use knowledge about the class of the
object to determine the linear transformations P and Q, and hence determine
the surface properties and the light sources uniquely.

To do this all we need is a b(p) vector from a prototype member of the
class. For example, we assume that we know bPr(p) for a prototype face Pr.
Then when we get the data for a new face image we will estimate its P and Q

matrices by assuming that it has the same surface properties as the prototype.
Thus we estimate P by minimizing:

∑

p

|bPr(p) − Pe(p)|
2
, (9)

where the e(p) are computed from the new dataset. We are minimizing a quadratic
function of P so the result, P∗, can be obtained by linear algebra.



Fig. 9. Surface computed from normals above.

We now solve for the surface properties using:

b(p) = P∗e(p), ∀ p. (10)

Observe that the prototype is used merely in conjunction with the dataset to
solve for the 3×3 matrix P. Our results demonstrate that the surface properties
computed using this assumption are good.

Fig. 10. Normals and albedos calculated for a new subject using the results shown in
figure 7 as a prototype.

This result has used prior knowledge about object class in the simplest pos-
sible form – a prototype model. More sophisticated class knowledge, such as a
prior probability distribution for shapes and albedoes, would lead to improved
results.

5 Surface Integrability

The surface integrability constraint requires that the normal vectors are consis-
tent with a surface (for a discussion, see [15].) It puts restrictions on the set of
normals vectors but it is not sufficient to determine the surface uniquely. We



will show that for Lambertian objects with unknown albedo this leads to an
ambiguity including scaling in depth.

The unit normals n(x) = (n1(x), n2(x), n3(x)) of a surface must obey the
following surface integrability constraint to ensure that they form a consistent
surface:

∂

∂y

(n1(x)

n3(x)

)

=
∂

∂x

(n2(x)

n3(x)

)

. (11)

This constraint is a necessary and sufficient condition and can be derived
from the fact that any surface can be locally parameterized as z = f(x, y) with
normals of form:

n(x) =
1

{∇f · ∇f + 1}(1/2)
(fx, fy,−1). (12)

It is straightforward to see that the vector b(x) = a(x)n(x) also satisfies the
same constraint – i.e. we can replace (n1/n3) and (n2/n3) by (b1/b3) and (b2/b3)
in the constraint equations.

Now recall that the linear algebra in the previous section determined the
b(x) up to an unknown linear transformation determined by the P matrix.

The surface integrability constraint will partially determine the P matrix. It
is straightforward to show, and to verify, that the only linear transformations
which preserve the integrability constraint are:

b1(x) 7→ λb1(x) + µb3(x),

b2(x) 7→ λb2(x) + νb3(x),

b3(x) 7→ ρb3(x). (13)

Observe that there is a constant scaling factor in this transformation which
can never be determined (a dark surface lit with a bright light is indistinguishable
from light surface lit by a dark light) so we could set ρ = 1 without loss of
generality.

If the A matrix is known up to a rotation ambiguity, as in section 4.3, then
integrability determines the remaining part of the transformation.

Moreover, if the albedo is known to be constant, then the class of transfor-
mations are reduced to the well known convex/concave (or light up/light down)
ambiguity well known in the psychophysics literature. This is because the re-
quirement that b(x) has constant magnitude (independent of x) puts further
restrictions on the transformation.

Thus for objects with unknown albedo, we get a class of perceptual ambigui-
ties corresponding to the transformations given in equation (13). To understand
these ambiguities we let the transformed surface be represented by z = f̄(x, y).
It is straightforward calculus to see that:

f̄(x, y) = λf(x, y) + µx + νy. (14)

In other words, the ambiguity consistent with the integrability constraint
consists of scaling the depth by a factor λ and adding a planar surface z =



µx + νy. Interestingly, it has been reported [19] that humans appear to differ
in their judgement of shape from shading by a scaling in the z direction. This
connection is being explored in our current work.

Thus we see that the integrability constraints reduces the ambiguity in re-
constructing the surface but it does not eliminate it altogether. To solve the
problem uniquely we must impose additional constraints.

6 Learning an Object from a Single View

In previous sections we developed methods for learning object models assuming
that we have multiple images of the object. In practice, however, we may only
have one image of each object. Moreover, it is important to know how much we
can learn about an object from a single image.

A single image, however, gives us little information about the object. Recall
that, assuming Lambertian models, we can express the image as I(x) = b(x) · s
where b(x) and s are unknown. This equation, without additional assumptions,
is not sufficient to determine b(x) and s

7. To make progress we must use knowl-
edge about the class of the object. One way to do this would be to do statistics
on the class of objects to develop a prior distribution for them[1]. Instead we
will determine techniques for learning object models making as few assumptions
as possible about the object class. Our assumptions are: (i) a prototype model,
b

p(x), for the class, and (ii) symmetry assumptions about the object.
For faces the symmetry assumption is valid and we can select a prototype

head from our database. It is convenient to use as a prototype one of our pre-
viously learnt models shown in figures (8,9). The algorithm proceeds in several
stages.

Stage I. We use the prototype model to estimate the light source direction.
More precisely, we solve for:

s
∗ = arg min

s

∫

dx |I(x) − b
p(x) · s|2 . (15)

Stage II. The symmetry assumption. We assume that the object is symmetric
across the y-axis at x = 0. This means that we can express the model as:

(

b1(x, y), b2(x, y), b3(x, y)
)

=
(

h1(x, y), h2(x, y), h3(x, y)
)

, x ≥ 0,
(

b1(x, y), b2(x, y), b3(x, y)
)

=
(

− h1(−x, y), h2(−x, y), h3(−x, y)
)

, x ≤ 0, (16)

where
(

h1(x, y), h2(x, y), h3(x, y)
)

represents the right half of the face.
By using the image of the left and the right part of the face we can observe

s1h1(x, y) + s2h2(x, y) + s3h3(x, y) and −s1h1(x, y) + s2h2(x, y) + s3h3(x, y).
Therefore, using the fact that we know s from Stage I, we know s1h1(x, y) and
s2h2(x, y) + s3h3(x, y). Thus we know two components of h(x, y). It remains to

7 Current shape from shading algorithms usually assume known light source and con-
stant albedo.



determine the third component −s3h2(x, y)+s2h3(x, y). Of course, this requires
that neither s1 = 0 nor s2 = s3 = 0. So the lighting cannot be purely front-on
or purely from the x-direction.

Stage III. To determine the third component – −s3h2(x, y)+ s2h3(x, y) – we
make use of the integrability constraint and, if necessary, the prior model. The
integrability constraint is:

∂

∂x

h2(x, y)

h3(x, y)
=

∂

∂y

h1(x, y)

h3(x, y)
, ∀x, y. (17)

Multiplying this equation by h2
3(x, y) and expanding it gives:

h3(x, y)
∂

∂x
h2(x, y)−h2(x, y)

∂

∂x
h3(x, y) = h3(x, y)

∂

∂y
h1(x, y)−h1(x, y)

∂

∂y
h3(x, y).

(18)
We define two new vectors p2(x, y) (known) and p3(x, y) (unknown) by:

p2(x, y) =
s2h2(x, y) + s3h3(x, y)

(s2
2 + s2

3)
, p3(x, y) =

−s3h2(x, y) + s2h3(x, y)

(s2
2 + s2

3)
,

h2(x, y) = s2p2(x, y) − s3p3(x, y), h3(x, y) = s3p2(x, y) + s2p3(x, y).(19)

Then we express integrability by defining a function K(x, y):

K(x, y) = (s2
2 + s2

3)p3(x, y)
∂p2(x, y)

∂x
− (s2

2 + s2
3)p2(x, y)

∂p3(x, y)

∂x

−
(

s3p2(x, y) + s2p3(x, y)
)∂h1(x, y)

∂y
+ h1(x, y)

∂
(

s3p2(x, y) + s2p3(x, y)
)

∂y
,(20)

and requiring that K(x, y) = 0 ∀ (x, y).
Observe that this constraint is linear in the unknown variable p3(x, y) and

we have one constraint for each position (x, y). Thus there may be sufficient
information in these constraints to determine p3(x, y) uniquely, although possibly
there are some linear dependencies between the constraints which would prevent
uniqueness. It therefore seems wise to impose these constraints by least squares
– i.e. write a quadratic cost function for p3(x, y) by summing the squares of
K(x, y) over (x, y) – and add an additional prior term. This gives an energy
function:

E[P3] =

∫

dxK2(x) +λ

∫

dx{p3(x, y)−
1

(s2
2 + s2

3)

(

−s3h
p
2(x, y) + s2h

p
3(x, y)

)

}2,

(21)
where λ is a constant and hp

2(x, y), hp
3(x, y) are the y and z components of the

prototype model for the right half of the face.
This completes the three stages. Results are shown in figures (11, 12,13).

7 Object Synthesis

This section briefly shows how to peform recognition by using our learned ob-
ject models to synthesize images. The methods used are described in [2] which
includes further examples.



Fig. 11. Left – the original input image. Center – the estimate of p3. Right – the
estimate of the albedo.

Fig. 12. Estimated b vectors of the face.

Fig. 13. Estimated normals of the face.



We first learned the illumination subspace for each face in the database,
by determining b∗ up to the A matrix. We then presented the algorithm with
input images of the faces in the database seen under different lighting condi-
tions. The algorithm estimates the best lighting conditions for generating the
input assuming a Lambertian model – this is done by finding s∗ to minimize
∑

x,y{I(x, y) − b∗(x, y) · s}2 – and then synthesizes the image using s∗. The
algorithm appeared to have no problem in estimating the correct lighting and
in synthesizing an image similar to the input, even if the input image was taken
under novel lighting conditions and included shadows and specularities, see fig-
ures (14,15,16).

Figure (14) shows some of the images used to construct the model. Figure (15)
shows four of the input images to the system and figure (16) shows the result of
using the algorithm to obtain synthesized images closest to the corresponding
inputs. Observe that the synthesized images are similar except for certain shad-
ows and specularities which cannot be synthesized using a purely Lambertian
model. Although these shadows and specularities are perceptually salient, they
are small in the least squares sense and do not prevent the light sources from
being estimated accurately.

Fig. 14. Five of the original images used to construct the basis.

8 Conclusion

This paper developed a variety of techniques for learning models of the 3D shape
and albedoes of objects. We demonstrated, using the dataset of faces constructed
in [12], that the resulting models were fairly accurate and that they could be
used to synthesize images of objects under arbitrary lighting conditions.

Our four learning schemes used different amounts of knowledge about the
light source distribution and the object class. The first learning scheme assumed
knowledge of light source directions and was equivalent to standard photometric



Fig. 15. Four of the input images used to test the the fitting algorithm.

Fig. 16. The synthesized images corresponding to the input images in the previous
figure. They are found by first estimating the best principal light source direction and
then reconstructing the best fit. Note that estimate of the best light source direction
is found only up to an arbitrary invertible linear transformation.



stereo. The remaining three schemes used SVD to estimate light source direc-
tions, albedo, and shape up a linear transformation A. We discussed why it was
uneccessary to know A in order to construct the light cone representation [2].
We also described ways to estimate A using surface integrability and/or prior
knowledge about the object class.

While exploring surface integrability, we found an additional ambiguity in
depth estimation which might be related to experimental findings by Koenderink
[19]. This is being explored in current work.

We observed that surface integrability could be used to resolve an ambiguity
in the SVD approach to photometric stereo [13] and described cases in which
Hayawara’s model would fail. Our work therefore has relevance to photometric
stereo.

In addition, it has been applied to allowing for lighting variations of a moving
object and hence improving tracking devices [10]. We are currently working on
other applications and attempting to generalize to other reflectance functions.
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